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Abstract. E-commerce search faces challenges such as sparse data and
poor generalization from issues like multi-attribute resolution, multi-
hop reasoning, and implicit intent. We propose iterative reranking as
a compute-scaling strategy for LLM-based rankers, repeatedly applying
listwise rankers to refine results by exploiting LLM non-determinism.
Evaluated on three open datasets with three open-source LLMs, the
method trades increased computation for consistently improves perfor-
mance, yielding strong nDCG@40 gains on DL19, FutureQueryEval, and
difficult Amazon query types. These findings show that iterative rerank-
ing is an effective inference-time scaling approach for LLM rankers.
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1 Introduction and Related Work

Search queries typically follow a long-tailed distribution, where infrequent queries
suffer from limited data availability and poor generalization. To address this, we
investigate iteratively applying listwise LLM-based rankers to difficult queries,
a process where the output ranking from one pass serves as the input order
for the next. Unlike pointwise or pairwise approaches, listwise ranking enables
crucial inter-document judgments [14], yet it faces challenges regarding compu-
tational costs, limited context windows, and positional bias. Recent efforts to
scale inference-compute for better ranking have primarily explored generating
extended reasoning traces, [18] and [16]. Other work has focused on efficiently fit-
ting candidates into context windows, [12], [7]. Our approach, by contrast, seeks
to translate additional compute into quality by allowing the model to iteratively
refine its own permutations.

While iterative or multi-pass strategies have been touched upon in other
work, they have largely remained on the fringes of research, usually treated
as auxiliary experiments rather than primary subjects of study. For instance,
RankVicuna [8] and RankZephyr [9] include iterative reranking only as an ab-
lation experiment, without exploring generalization beyond their proprietary
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Query Difficulty Description Example

Vague Implicit exploratory intent Student Gaming Laptop
Ambiguous queries

Multi-Attribute Queries with many wireless noise-cancelling
specifications and /or headset under $200 with at
constraints least 30 hours of battery life

Comparative Comparative or Cheaper alternative to AirPods
preference-based queries

Negation Queries with negations Non-toxic nail polish for

toddlers
Natural Language Full-sentence descriptions I need a compact blender that’s

easy to clean and good for
making smoothies
Others Other aspects that make Queries with temporal aspects
answering the query difficult, (seasonal, time-sensitive).
such as code switching or use  Queries requiring context of
of abbreviations previous search history

Table 1. Overview of the query difficulty types used to annotate the Amazon dataset.

finetuned models. Similarly, Liu et al. [6] utilize multiple passes solely to gen-
erate labels for finetuning, offering no analysis of the quality changes per pass.
The closest prior attempt, Qin et al. [10], applies a pairwise ranker over multi-
ple passes; however, their investigation is relegated to an appendix and lacks an
in-depth exploration of design decisions or generalizability.

In this work, we move beyond peripheral observations to provide a systematic
study of iterative listwise reranking. Drawing inspiration from human cognitive
processes, where complex tasks are often solved through step-by-step refinement
[13], [5], [2], we provide the first systematic investigation of this method. We
evaluate the approach across two passage datasets and one product dataset, using
LLMs to annotate the latter for difficulty sources. Our analysis reveals that while
iterative, listwise reranking generally improves passage ranking, performance
gains in product ranking are highly dependent on the specific query difficulty

type.

2 TIterative Reranking

We propose iterative reranking where at step t of T" total reranking steps, given a
search query ¢ that is part of an instruction prompt p?, and a list I, of n ranked
items at step t, our goal is to refine the current ranking list into a new ranking
at stept+1

L= LLM (1, |p") (1)

so that given an evaluation function eval that measures the quality of the rank-
ing eval(IT') > eval(1%). The evaluation function eval is usually nDCG, MAP or
MRR at different cutoff ranges, when ranking is based on relevance. To ensure
that we can rerank a given list of documents without cutting off documents due
to the LLM’s finite context length, we follow [9] and employ a sliding window
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approach. The window starts ranking the bottom M documents and slides up-
wards with a stride of S, until it reaches the top. One full sliding window pass
constitutes one ranking iteration. At each iteration ¢, the LLM uses the previous
iteration’s ranking I!, to produce an updated ranking [’*1.

2.1 Experimental Setup

Datasets: We evaluate our approach on three datasets: (i) a curated dataset
from Amazon Shopping Queries [11], using a targeted 1000-query-sample. This
subset was extracted from the 22,458 English test queries which consists of real
user search data and product rankings annotated by crowd workers. This sub-
set is intentionally hard, with 80% of the queries populated with difficult query
types. We annotated queries with the difficulty types from Table 1 by the ma-
jority vote of three LLMs. The dataset is structured to ensure a minimum repre-
sentation of each difficult query type. The remaining 20% are non-hard queries.
This focus on difficult queries provides the necessary context for the performance
analysis per query difficulty type discussed in Section 3; (ii) TREC DL19 [4], a
well-established passage ranking benchmark with 43 annotated test queries and
9,260 documents from MSMARCO; and (iii) FutureQueryEval [1] contains 147
manually created queries about post-April 2025 events across seven topics, to
test ranking performance on data beyond current LLM training cutoffs.
Models: We evaluate three large language models: RankZephyr, fine-tuned on
ranking data; Qwen3-8B [17] and Gemma3-4B[15], two dense LLMs without
dedicated ranking finetuning.

Evaluation: The two metrics, nDCG@5 and nDCG@40 [3,19], are chosen to
evaluate ranking quality at different levels of user exposure, with nDCG@5 fo-
cusing on highly visible, immediate results and nDCG@40 on a broader range.

3 Results

Table 2 presents results for RankZephyr, Qwen and Gemma on the three datasets.
Iterative reranking always improves performance by iteration five on the Fu-
tureQueryEval dataset for both nDCG@5 and @40, and it always improves
nDCG@40 on DL19, whereas it is more mixed for nDCG@5. On the Ama-
zon dataset, only RankZephyr showcases better performance. Whether the the
prompt instructs to rank from scratch (default) or refine an existing list (‘Im-
prove’) has a small, model-dependent impact. On the Amazon dataset the other
models gradually degrade with subsequent iterations. We further investigate this
phenomenon by presenting nDCG@5 performance per query difficulty type for
the first and ninth iterations in Figure 1.

The analysis shows that improvement depends on the query’s difficulty. Qwen
improves rankings for queries of all classes except multi-attribute ones. RankZephyr
slightly improves all classes but the ‘Other’ category. For Gemma the impact
of iterative reranking is more mixed, possibly due to its smaller size of only
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nDCGQ5 nDCGQ@40
Iteration 1 2 3 4 5 1 2 3 4 5

Amazon Subset

- RankZephyr - Default ~ 75.95 76.64 76.61 76.80 76.741 87.79 87.94 87.83 87.92 87.88%
- RankZephyr - “Improve” 75.95 76.47 76.14 76.41 76.181 87.79 87.90 87.68 87.82 87.67.
- Qwen3-8B - Default 82.05 80.72 80.00 80.23 79.89] 90.55 89.77 89.34 89.47 89.32)
- Qwen3-8B - “Improve”  82.13 80.34 79.51 79.77 79.69] 90.59 89.54 89.01 89.20 89.08)
- Gemma3-4B - Default 76.58 75.31 74.44 74.35 73.78] 86.94 86.89 86.39 86.48 85.95)
- Gemma3-4B - “Improve” 76.58 74.37 71.85 72.80 72.21] 86.94 86.32 84.92 85.47 84.87|

TREC DL19

- RankZephyr - Default  67.71 67.76 66.96 67.03 67.03] 53.35 55.68 55.90 56.51 56.157
- RankZephyr - “Improve” 67.61 67.65 67.78 67.52 67.52] 53.35 55.75 56.35 56.53 56.607
- Qwen3-8B - Default 65.54 65.91 67.16 66.47 67.347 52.11 54.82 56.06 56.17 56.357
- Qwen3-8B - “Improve”  65.12 65.34 65.68 66.59 65.681 51.89 54.46 55.80 56.26 56.107
- Gemma3-4B - Default  61.53 62.23 60.25 62.62 60.73] 49.57 51.31 51.78 52.33 52.271
- Gemma3-4B - “Improve” 61.80 61.68 61.02 60.71 62.181 49.64 51.11 51.77 52.18 52.787

FutureQueryEval

- RankZephyr - Default 62.44 62.76 62.85 62.86 62.887 65.55 65.97 66.12 66.14 66.171
- RankZephyr - “Improve” 62.44 62.54 62.83 62.82 62.821 65.55 65.90 66.06 66.06 66.1071
- Qwen3-8B - Default 61.11 62.48 62.86 63.16 62.861 64.46 65.44 65.56 66.11 65.771
- Qwen3-8B - “Improve”  61.07 62.08 62.40 62.61 62.311 64.38 65.54 65.63 65.79 65.541
- Gemma3-4B - Default  54.33 56.13 56.99 55.48 56.7417 59.85 61.62 61.98 60.92 61.8171
- Gemma3-4B - “Improve” 54.56 56.07 57.52 56.92 57.491 59.95 61.27 62.09 61.73 62.071
Table 2. nDCG@k in %, k € {5,40} when iteratively reranking for five iterations with
different ranking prompts. Unlike the default prompt, the “Improve” prompt asks to
improve the given ranking. Results are aggregated over five seeds. Best performance
per model and metric over all iterations is shown in bold. The arrows at iteration five
indicate whether performance improved or degraded compared to the initial ranking.

four billion parameters compared to the others’ seven and eight billion. Surpris-
ingly, iterative reranking has a strong impact on the performance of comparative
queries, i.e., those comparing (parts of) the product against another. Here, the
two LLMs more than double nDCG@5. While this effect needs to be further
studied due to the limited number of comparative queries in our data subset, we
hypothesize that the strong listwise, inter-product dependencies that need to be
captured to answer these queries particularly benefit from iterative reranking.

4 Conclusion

We investigated iterative reranking as a compute-scaling strategy to refine list-
wise rankings. The method yielded consistent gains on passage ranking bench-
marks (DL19, FutureQueryEval). However, performance on e-commerce product
ranking was mixed and highly model-dependent: while RankZephyr showed over-
all improvement, other models degraded over multiple iterations, with success
heavily relying on specific query difficulties. Iterative reranking can be of par-
ticular use if no larger suitable model is available. Future work should explore
optimal routing strategies, develop adaptive stopping criteria, and more precisely
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NDCG@5 Performance: Initial vs Final Iteration by Query Difficulty Type
(on Amazon Subset)
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Fig. 1. NDCG@5 performance by query difficulty type on the Amazon Shopping
Queries subset, comparing the initial and tenth reranking iterations.

evaluate the trade-offs between ranking quality improvements and the associated
computational overhead across different query types and domains.
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