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Classical simulation of lossy boson sampling using matrix product operators
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Characterizing the computational advantage from noisy intermediate-scale quantum (NISQ) devices is an
important task from theoretical and practical perspectives. Here, we numerically investigate the computational
power of NISQ devices focusing on boson sampling, one of the well-known promising problems which can
exhibit quantum supremacy. We study hardness of lossy boson sampling using matrix product operator (MPO)
simulation to address the effect of photon loss on classical simulability using MPO entanglement entropy (EE),
which characterizes a running time of an MPO algorithm. An advantage of MPO simulation over other classical
algorithms proposed to date is that its simulation accuracy can be efficiently controlled by increasing an MPO’s
bond dimension. Notably, we show by simulating lossy boson sampling using an MPO that as an input photon
number grows, its computational cost, or MPO EE, behaves differently depending on a loss scaling, exhibiting
a different feature from that of lossless boson sampling. Especially when an output photon number scales faster
than the square root of an input photon number, our study shows an exponential scaling of time complexity for
MPO simulation. On the contrary, when an output photon number scales slower than the square root of an input
photon number, MPO EE may decrease, indicating that an exponential time complexity might not be necessary.
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I. INTRODUCTION

Quantum computers are expected to provide a computa-
tional advantage that enables solving problems that lie beyond
the computational power of classical computers [1]. Ulti-
mately, quantum computers are demanded to be fault tolerant
and scalable to solve various practical problems that no known
classical algorithm can efficiently solve such as integer factor-
ization [2]. However, since fault-tolerant quantum computing
is not immediately feasible with current technology, there
has been a huge interest in achieving “quantum supremacy”
with noisy intermediate-scale quantum (NISQ) [3] devices.
In particular, various sampling problems, such as IQP [4],
boson sampling [5,6], Fourier sampling [7], and random cir-
cuit sampling (RCS) [8], have been proposed as promising
candidates for demonstrating quantum advantage over classi-
cal computers. Indeed, there are various complexity-theoretic
hardness results which show that these problems cannot be
tackled efficiently by a classical computer under reasonable
conjectures [5,9–13].

Recently, RCS was implemented in a state-of-the-art su-
perconducting qubit system comprising 53 qubits which are
connected in a planar architecture via two-qubit gates of error
rates lower than 0.6% [14]. Remarkably, it has been estimated
that it would take 2.5 days [15], 20 days [16], and 10 000
years [14] to solve an equivalent computational task using
one of the best available classical supercomputers. While the
estimates vary, it has become evident that classical simulation

*This was work done before K.N. joined AWS Center for Quantum
Computing.

of the state-of-the-art NISQ systems can only be done, if ever
possible, using the most powerful supercomputer available
today.

Aside from demonstrating quantum computational advan-
tage, RCS may prove to have practical applications such
as certified random number generation [17]. Regardless of
the usefulness of the sampling problems, the question of
whether a classical computer can simulate random circuits
of a NISQ device has important implications in the field
of quantum computing: by studying classical simulability of
noisy versions of sampling problems, we can sharpen our
understanding of how noise limits quantum computational
power and hence the utility of a NISQ device.

It is worth noting that many classical algorithms for sim-
ulating NISQ systems do not take advantage of the fact that
NISQ devices are noisy. That is, many classical simulation
methods become unavoidably ineffective for simulating large
quantum systems (consisting of, e.g., 70 qubits) due to expo-
nentially large Hilbert space, even if such systems are noisier
than a smaller system which can be classically simulated. On
the other hand, various efficient simulation methods based
on matrix product state (MPS) and matrix product opera-
tor (MPO) [18] have recently been proposed for simulating
large but noisy quantum systems [19–22]. These methods take
advantage of the fact that noise in quantum circuits limits
the growth of quantum entanglement in NISQ devices and
thus use MPS or MPO to describe such NISQ systems with
bounded entanglement in a compressed manner. Hence, these
MPS-based simulation methods allow us to systematically ex-
plore the adverse effects of noise on the computational power
of a NISQ device.
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Among various proposals for quantum supremacy ex-
periments, we study boson sampling, which is one of the
promising candidates expected to exhibit quantum supremacy.
Boson sampling has been proven to be classically intractable
under plausible assumptions [5]. More precisely, there is
no classical algorithm under complexity-theoretic conjectures
that approximately samples the outcomes of an ideal boson
sampling in polynomial time as an input photon number
grows. Thanks to its experimental setup’s relatively simple
structure, experimental implementations of boson sampling
are rapidly developing [23–39]. Remarkably, the most recent
boson sampling experiment and Gaussian boson sampling
experiment, a variant of boson sampling, have detected up to
14 photon clicks out of 20 single-photon input [38] and up to
76 photons from squeezed states with squeezing parameters
ranging from 1.34 to 1.84 [39], respectively. Also, there has
been a proposal to employ Gaussian boson sampling [6,39]
to generate molecular vibronic spectra, which has recently
been experimentally conducted [40] using a superconducting
bosonic processor.

The experimental platform of boson sampling is based on
linear optics (beam splitters and phase shifters), as well as
single-photon sources and detectors. Although these appara-
tuses are readily available in experiments, current quantum
optics experiments still severely suffer from various imper-
fections such as impurity of single photons, photon loss in
the circuit, and inefficiency of photodetectors. Theoretically,
the aforementioned imperfections can be simply modeled as
photon loss, and there have been many theoretical studies
to address the hardness of lossy boson sampling [9,41–44].
Particularly, it is proven that when the input photon number
is N and only a constant number of photons n is lost in the
system so that we detect Nout = N − n number of photons,
the hardness of boson sampling is maintained [9]. On the
other hand, it can be easily shown that if only Nout ∝ log2 N
number of photons remain in the measurement, an efficient
classical simulation is possible [9,45]. Recently, it has been
shown that when Nout ∝ √

N number of photons survive be-
fore measurement [41,42], the lossy boson sampling can be
efficiently simulated with a constant error. The basic idea of
such algorithms is that an input state of boson sampling after
a large amount of loss can be approximated by thermal states
or so-called particle-separable states, which can be employed
to simulate the boson sampling efficiently as an input photon
number grows.

Meanwhile, a limitation of the algorithms presented above
is apparent that once a system’s parameters are given, the
closest thermal state and particle-separable state are deter-
mined. Thus, the simulation’s accuracy is fixed and cannot be
improved by using more computational time. For this reason,
the algorithms may not be applicable to an intermediate size
of lossy boson sampling where a loss rate is not large enough
to approximate an input state by thermal states or particle-
separable states accurately. Another algorithm to simulate
lossy boson sampling employs the fact that outcomes of a
large degree of multiphoton interference are suppressed by
photon loss, which allows us to control the approximation
error by setting a threshold of the degree according to a target
error [43]. In this work, we employ a different approach to
simulate lossy boson sampling to overcome the limitation

of fixed accuracy by using MPOs [46,47]. Specifically, an
approximation error of MPO simulation can be manipulated
to achieve a target error ε in polynomial time in 1/ε [46].
Therefore, MPO simulation enables us to simulate an interme-
diate size of boson sampling and achieve a tunable accuracy
in an efficient way. In addition, MPO allows us to compute
probabilities approximately.

We characterize how computational cost changes as an in-
put photon number grows using the so-called MPS and MPO
entanglement entropy (EE) [46,48]. In fact, MPO has been
used to simulate an intermediate size of boson sampling [19],
where lossy boson sampling was simulated for fixed system
size with different loss rates and it was numerically shown
that boson sampling with a large amount of photon loss re-
quires only a small amount of computational cost using MPO
EE. In this paper, using MPO simulation and MPO EE, we
demonstrate how the computational cost of a classical simu-
lation changes as the system size varies, namely, input photon
number, for various loss scalings.

We first investigate lossless boson sampling with an MPS
method for a different number of input photons and modes to
compare with lossy boson sampling. We obtain a consistent
numerical result with the theoretical hardness result of ideal
boson sampling that the maximum MPS EE over all possible
bipartitions linearly increases as the number of input photons
grows, suggesting that MPS simulations of ideal boson sam-
pling necessitate an exponential time cost. More importantly,
we investigate classical simulability of lossy boson sampling
using MPO simulations. Particularly, we consider a power-
law scaling, i.e., Nout ∝ Nγ (0 < γ � 1). In this scaling, a
simple procedure using binomial sampling of a pure input
state followed by the Clifford-Clifford algorithm [45,49], the
fastest known boson sampling algorithm, does not allow an
efficient simulation (see Sec. IV B). Our numerical results
show that for a constant loss rate, i.e., γ = 1, the MPO sim-
ulation requires an exponential computational time in input
photon numbers. We also analytically show that for γ > 1

2 , the
required computational cost grows exponentially in an asymp-
totic regime. Moreover, we show that for some power-law loss
scaling, such as γ = 1

4 , 1
2 , an MPO EE drops or increases

only logarithmically even if the number of output photons
increases in the system. Such a behavior of MPO EE might
allow an efficient classical simulation, while the scaling of
computational cost cannot be determined solely by MPO EE
in this regime.

Our paper is organized as follows. In Sec. II we intro-
duce basic concepts of ideal boson sampling and lossy boson
sampling, taking into account photon loss. In Sec. III, we
introduce MPS and MPO methods to simulate boson sam-
pling and MPS and MPO EE, which determines the classical
simulability from MPS and MPO methods in Sec. III C.
Using the provided simulation procedure, we show our nu-
merical simulation results in Sec. IV. We first demonstrate
that MPS simulation for lossless boson sampling is inef-
ficient using MPS in Sec. IV A. We then show different
behaviors of simulability in the simulation of lossy bo-
son sampling using MPO depending on the loss scaling in
Sec. IV B. We also show that the simulation errors can be
controlled efficiently. Finally, we summarize our results in
Sec. V.
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FIG. 1. Lossy boson sampling circuit. (a) We start with N single photons as an input state and measure the output state by photon-
number-resolving detectors (or single-photon detectors) after an M-mode Haar-random unitary circuit composed of D layers of beam splitters.
Imperfection, which are modeled as photon loss described by (c), occurs in preparation of single photons, beam-splitter circuits, and detectors.
(b) Assuming a uniform photon-loss rate for different modes, photon-loss channels and beam splitter commute, as shown in (d), so that all the
photon loss can be moved to the preparation step

II. LOSSY BOSON SAMPLING

Let us consider boson sampling circuits consisting of D
layers of beam splitters in M bosonic modes {â j}M

j=1 with
N indistinguishable single photons as an input state |ψin〉 =
|1〉N |0〉M−N . Each layer of the circuit is composed of beam
splitters with a random transmissivity and phase shift as illus-
trated in Fig. 1(a). More explicitly, a beam splitter between
two adjacent modes â† and b̂† transforms the mode operators
as (

â†

b̂†

)
→

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)(
â†

b̂†

)
, (1)

where cos θ and sin θ correspond to the transmittance and
reflectance of the beam splitter, and φ is a relative phase shift.
After applying D layers of beam-splitter operations, we get
a passive unitary circuit Û which transforms mode operators
as

â†
j →

M∑
k=1

Ujkâ†
k, (2)

where Ujk’s are the matrix elements of an M × M uni-
tary matrix U . We choose the circuit depth D, random
transmissivities (cos θ ), and phase shifts (φ) such that the
resulting unitary matrix U is given by a Haar-random M ×
M unitary matrix. In particular, it was shown in Ref. [50]
that a circuit depth D = M suffices to generate an M ×
M Haar-random unitary matrix U . The transmissivities
and phase shifts are chosen randomly following the sam-
pling procedure in Ref. [50]. See Appendix A for more
details.

After going through all the beam splitters, output modes
are measured by photon-number detectors. Surprisingly, the
output probability of the seemingly simple structure of linear
optical circuits is hard to compute on average, which is for-
mally written as

|〈t1, . . . , tM |Û |s1, . . . , sM〉|2 = |Per(US,T )|2
t1! . . . tM!s1! . . . sM!

. (3)

Here, we assumed |s1, . . . , sM〉 an input state and |t1, . . . , tM〉
as an output state with s j and t j being the photon number at
jth mode, and

Per(X ) ≡
∑
σ∈SN

N∏
i=1

Xi,σ (i) (4)

is the permanent of a matrix X , and SN represents a permu-
tation group. The matrix US,T is obtained from the unitary
matrix U by repeating t j copies of the jth column of U to
construct a matrix UT and then by repeating s j copies of
the jth row of UT . In general, calculating the probability of
an outcome is hard because computing permanent is No. P
complete [51]. On the other hand, if a system has a num-
ber of multiphoton events at each mode (collision), one can
expect that the computation of the corresponding permanent
becomes easier because the relevant matrix has a simpler
structure. Based on the difficulty of calculating permanent
when multiphoton events are suppressed by assuming M �
N6, it has been proven that the existence of a classical com-
puter that is able to efficiently simulate the boson sampling
leads to collapse of the polynomial hierarchy (PH) under some
conjectures [5].
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While the hardness proof of classical simulation of bo-
son sampling assumes an ideal bosonic quantum device,
there are various inevitable imperfections in boson sampling
experiments [38]. Photon loss is one of the most critical
imperfections in quantum optics experiments, which can be
described by the transformation of a mode operator as shown
in Fig. 1(c),

â → √
μâ +

√
1 − μê, (5)

where ê denotes the mode operator of the environment, and
μ denotes the transmissivity. We assume the environment’s
quantum state to be in a vacuum state, which is a reasonable
assumption in optical frequency. The photon-loss model can
describe imperfect preparation of single photons and ineffi-
ciency of single-photon detectors as well as photon loss in the
circuits. In addition, it is natural to assume that the photon-loss
rate is the same on each mode in practice. Note that our MPO
algorithm is also applicable to nonuniform loss [52] although
it requires more computational time (see Appendix B 2).

Especially in the uniform loss case, one can easily verify
that photon-loss channels commute with arbitrary beam-
splitter circuits as shown in Fig. 1(d). Thus, denoting μp,
μu, and μm as the transmissivity for each photon loss on
preparation, unitary circuits, and measurement, the total trans-
missivity is given by their product μ = μpμuμm. As a result,
the uniform photon loss can be captured by combining all the
photon loss into photon loss only on the preparation step such
that each single-photon state is replaced by

|1〉〈1| → σ̂ = (1 − μ)|0〉〈0| + μ|1〉〈1|. (6)

Thus, we now assume that the rest of the process, such
as beam splitters and measurement, is perfect as shown in
Fig. 1(b).

It is worth emphasizing that the use of one-dimensional
(1D) architecture in this work is only for simulation purposes.
That is, while we use 1D architecture, we choose a sufficiently
large circuit depth D ≈ M so that it generates a passive unitary
circuit Û that mixes mode operators via a global M × M
Haar-random unitary matrix. Hence, our results apply to any
architecture [including two-dimensional (2D) architectures,
e.g., used in Ref. [38], and the ones with more complex con-
nectivity] that aims to realize a global Haar-random unitary
matrix. In particular, our result is independent of the choice of
architecture because we are only interested in how many pho-
tons go into a Haar-random passive circuit (i.e., N) and how
many photons are detected by the photon-number detectors
(i.e., Nout). Lastly, we remark that while we arbitrarily put N
input photons to the first N modes, our results are independent
of this arbitrary choice because of the Haar-random nature of
the unitary matrix U .

III. METHOD

A. MPS simulation

In this section, we introduce an MPS method to simulate
boson sampling [18]. MPS is a useful tool to represent a
quantum state of a many-body system. The canonical form

of an MPS representation [53] is written as

|ψ〉 =
d−1∑

i1,...,iM=0

ci1...iM |i1, . . . , iM〉

=
d−1∑

i1,...,iM=0

χ−1∑
α0,...,αM=0


[1]i1
α0α1

λ[1]
α1


[2]i2
α1α2

λ[2]
α2

× . . . λ[M−1]
αM−1


[M]iM
αM−1αM

|i1, . . . , iM〉, (7)

where d is the dimension of a local Hilbert space and χ

is the bond dimension. Here, the vectors λ[k]
αk

represent the
singular values in a spectral decomposition for bipartitions,
|ψ〉 = ∑χ−1

αk=0 λ[k]
αk

|ψ [1,...,k]
αk

〉|ψ [(k+1),...,M]
αk

〉. Also, bond dimen-
sion can be understood as the maximum Schmidt rank over
all bipartitions [18]. Thus, we need a large number of bond
dimensions when a quantum state is more entangled. We
provide details of the standard MPS representation and how to
update the MPS after applying two-site gates in Appendix B 1.

While an arbitrary quantum state can be described by an
MPS, the time and memory cost for an MPS depends on its
bond dimension χ . More precisely, the memory cost of an
MPS is O[χ2dM + χ (M − 1)] for tensors 
 and λ. More
importantly, when we apply a unitary operation on a state,
the standard update of an MPS requires matrix multiplications
and a singular value decomposition, which takes computa-
tional time O(d4χ3) and O(d3χ3), respectively. Thus, by
restricting a bond dimension and approximating a given quan-
tum state by choosing the largest χ singular values for each
partition, one can reduce the computational complexity (see
Appendix B 1 for details).

Since boson sampling circuits are composed of passive
transformations, the total system has global U(1) symmetry
(photon-number preserving), which can be exploited to im-
prove the MPS simulation more efficiently [19,54,55]. The
basic idea is that when the system has U(1) symmetry, MPS
tensors can be decomposed into blocks having different pho-
ton numbers. Then, a matrix multiplication and a singular
value decomposition can be performed for each block with
different photon numbers. Thus, the matrix size for a singu-
lar value decomposition is reduced. We provide the details
of how U(1) symmetry reduces the computation time in
Appendix B 2.

B. MPO simulation

An MPS representation can be generalized to describe
mixed states [46,47]. Basically, we exploit a similar represen-
tation to MPS by vectorization of a given density matrix ρ̂

such that

ρ̂ =
d−1∑

i1,i′1,...,iM ,i′M=0

ρi1,i′1,...,iM ,i′M |i1, . . . , iM〉〈i′1, . . . , i′M |

→ |ρ̂〉〉 =
d−1∑

i1,ī′1,...,iM ,ī′M=0

χ−1∑
α0,...,αM=0



[1]i1 ī′1
α0α1 λ[1]

α1

[2]i2 ī2

α1α2
λ[2]

α2

× . . . λ[M−1]
αM−1



[M]iM ī′M
αM−1αM |i1, ī′1, . . . , iM, ī′M〉〉. (8)
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Here, we have vectorized |i j〉〈i′j | to |i j, i′j〉〉 for each site.
Note that after the vectorization, an effective local dimension
increases from d to d2, which increases the time and memory
cost of simulation. We provide more details of the standard
MPO method in Appendix B 1. Similarly to MPS simulation,
the bond dimension χ determines the computation cost. The
memory requirement is O[χ2d2M + χ (M − 1)] for the ten-
sors 
 and λ, where the local dimension is changed from d to
d2. The time cost for a unitary update is O(d8χ3). Again, we
can employ U(1) symmetry for MPO simulation to reduce the
computational cost [55] (see Appendix B 2 for details).

C. MPS and MPO approximability

As shown in the previous sections, dominant computa-
tional time is spent for a singular value decomposition, so
that the computational time cost of MPS and MPO simulation
is determined by their bond dimension χ . More precisely,
the computational time cost is written as T = O(MDd4χ3)
for an MPS simulation and T = O(MDd8χ3) for an MPO
simulation. In this section, we introduce a way to determine
how the bond dimension scales for a given problem. Let us
focus on an MPS first. In general, for the exact description
of an arbitrary pure quantum state, χ = d�M/2� number of
bond dimension is required, which necessitates an exponential
time cost. In order to avoid exponential computational cost
as a system size increases, we fix the bond dimension χ and
approximate a given quantum state by keeping the largest χ

singular values only after the update for unitary operations
and discarding the smallest singular values. When a quantum
state’s entanglement is limited, the required bond dimension
does not increase exponentially [18]. More precisely, whether
an exponential number of bond dimension χ is necessary to
approximate a given quantum state is determined by MPS and
MPO EE, which is introduced as follows.

First of all, an MPS can efficiently approximate a quantum
state if the entanglement of the quantum state is not large
enough [18,46,48]. Formally, if for a family of quantum states
of interest {|ψN 〉} there exist c, c′ > 0 and 0 � α < 1 such
that Sα (ρ̂k

N ) � c log2 N + c′ for all reduced density matrices
ρ̂k

N = Tr[1,...,k][|ψN 〉〈ψN |], then it can be efficiently approxi-
mated by an MPS in the sense that the trace distance between
an ideal state and an approximate state by an MPS can
be made arbitrarily small using χ = poly(N ) [46,48]. Here,
Sα (ρ̂) is the Rényi entropy of a density matrix ρ̂,

Sα (ρ̂ ) ≡ log2(Trρ̂α )

1 − α
, 0 � α < ∞ (9)

and limα→1 Sα (ρ̂ ) ≡ S1(ρ̂) = −Tr[ρ̂ log2 ρ̂], is von Neu-
mann entropy. Note that trace distance is an upper bound of
total variance distance,

1

2

∑
x

|P(x) − Pa(x)| � 1

2
‖ρ̂ − ρ̂a‖1, (10)

where ρ̂ and P(x) [ρ̂a and Pa(x)] represent an ideal (ap-
proximate) density matrix and probability distribution of an
outcome x after measurement, respectively. Thus, when the
Rényi entropy satisfies the above condition, an MPS with
χ = poly(χ ) allows an efficient description of the state and
sampling (see Appendix B 3). On the contrary, if S1(ρ̂k

N )

linearly increases or there exists α > 1 and κ > 0 such that
Sα (ρ̂k

N ) increases as Sα (ρ̂k
N ) ∝ cNκ , an MPS cannot efficiently

describe the quantum state, i.e., we need an exponential num-
ber of bond dimension χ = O[exp(Nκ )] [48] to approximate
the quantum states.

Therefore, the computational cost of an MPS simulation
can be quantified by using MPS EE. Based on the relation
between MPS EE and MPS approximablity, in this work,
we investigate the maximum MPS EE over all possible
bipartitions,

Smax
α (|ψ〉) ≡ max

1�k�M−1
Sα

(
ρ̂k = Tr[1,...,k][|ψ〉〈ψ |])

= log2

[ ∑χ−1
β=0

(
λ

[k]
β

)2α]
1 − α

, (11)

and its behavior as a system size increases.
One can find the same relation for MPO approximability

with a minor modification. The difference of MPO approxi-
mation from MPS approximation is that singular value vectors
are not necessarily normalized even if the bond dimension χ

is large enough:
∑χ−1

αk=0(λ[k]
αk

)2 �= 1. Thus, we first normalize
singular value vectors when we initialize an MPO for an input
state. Since the rest of the quantum circuits are unitary op-
erations, the singular value vectors are normalized even after
updating for quantum circuits as long as a bond dimension is
chosen large enough (see Appendix B 1). Therefore, the same
relation between MPO EE and MPO approximability holds
for MPO simulation by defining the maximum MPO EE as

Smax
α (|ρ̂〉〉) ≡ max

1�k�M−1
Sα (Tr[1,...,k][|ρ̂〉〉〈〈ρ̂|]). (12)

Note that for pure states, MPO EE is equal to twice MPS
EE because a vectorized pure state simply represents two
equivalent pure states, increasing the local dimension from d
to d2. It is worth emphasizing that because of vectorization,
approximation accuracy is defined as the vector 2-norm be-
tween vectorized ideal and approximate states, which is equal
to matrix 2-norm between ideal and approximate density ma-
trices rather than trace distance [56]. Because of the relation
between matrix 1-norm and 2-norm, K‖A‖2 � ‖A‖1, where
K is the dimension of the matrix A, MPO EE may decrease
even if a larger bond dimension is required to bound matrix
1-norm between an ideal quantum state and an approximated
state of an MPO. On the other hand, it is guaranteed that an
MPO is inefficient if Rényi (von Neumann) entropy of α > 1
algebraically (linearly) increases.

IV. RESULTS

A. Lossless boson sampling

First, we numerically simulate lossless boson sampling
with an input state |ψin〉 = |1〉N |0〉M−N using MPS. Since we
use N single photons, the dimension of local Hilbert spaces
is d = N + 1. We first initialize an MPS, update the MPS
according to a unitary circuit composed of Haar-random beam
splitters, and finally obtain the output state before measure-
ment and calculate the maximum MPS EE over bipartitions.
We repeat the procedure with different circuits to obtain the
average of the maximum MPS EE.
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FIG. 2. Maximum MPS EE (α = 1) for different number of photons from N = 1 to 11 from the bottom to the top with different circuit
depths. The number of modes is M = 32. (a) An input state is N single photons in different modes. (b) An input state is N photons in the first
mode. Note that the bipartition that leads to the maximum MPS EE at the last step is always [1 . . . 16] : [17 . . . 32] and that the circuit depth is
defined as in Appendix A.

In order to minimize the depth of a Haar-random cir-
cuit, we have used the fact that any M-mode passive unitary
transformation can be decomposed into M(M − 1) number
of beam splitters [57,58] and that a Haar-random circuit can
be obtained by sampling the transmissivities of the beam
splitters in a structured manner [50] with a depth D ≈ M (see
Appendix B for details).

Using an MPS simulation procedure as introduced in
Sec. III A, we first simulate the boson sampling with a fixed
number of modes M = 32 and different input photon numbers
from N = 1 to 11. We take the average of the maximum MPS
EE over 200 different circuit configurations for 1 � N � 9
and 10 different circuits for N = 10, 11. One can show that
the optimal bond dimension needed to implement an MPS
simulation without truncation error is given by χ = 2N and
that typical random circuits make MPS EE close to N for
large M (see Appendix C). Furthermore, when N and M are
sufficiently large, we show that MPS EE increases linearly
in N in Appendix C. The underlying principle is that for a
given bipartition [1 . . . l] : [(l + 1) . . . M], since each single
photon occupies either partition after beam-splitter arrays, we
need the bond dimension χ = 2N to describe an output state
without any truncation error.

Figure 2(a) indeed shows that the maximum MPS EE with
α = 1 linearly increases as the number of photons in the
system. The linearly increasing maximum MPS EE implies
that an exponential number of bond dimension is necessary
to simulate the boson sampling within a desired accuracy as
the number of single photons increases. Notice that in this
simulation, the number of input photons N is not much smaller
than the number of modes M, whereas in the original proposal
of boson sampling [5], the number of modes is assumed to be
much larger than the number of photons, namely, M � N6,
to prove the hardness of boson sampling. Nevertheless, we
obtain a constant difference of maximum MPS EE between
a successive number of input photons. Therefore, it suggests
that the MPS simulation is inefficient even if the number of
modes is not large enough compared to the number of input
photons. We note that circuit depth in Fig. 2 is defined slightly
differently than a standard way (see Appendix A).

We compare the MPS simulation of the standard boson
sampling [5] with the one with a different type of an input state
|ψin〉 = |N〉|0〉M−1 (note that more general input states are

analyzed in Ref. [52] and Appendix C.). It can be easily shown
that the computation of the probability of an outcome in this
case is not difficult because the corresponding permanent is
constructed by repeating N times of the same column [5]. In
the simulation, we take the average of the maximum MPS
EE over 200 different circuit configurations for 1 � N � 11.
Again, we have shown that the bond dimension needed to
implement MPS simulation without truncation error is χ =
N + 1, which already implies that an efficient simulation is
possible (see Appendix C). In this case, in contrast to the pre-
vious case, the photons do not behave independently, so that
an exponential number of bond dimensions is not required.
Indeed, we show that MPS EE increases logarithmically as the
number of photons grows in the same mode in Appendix C.
Figure 2(b) shows a different behavior of the maximum MPS
EE from the previous standard boson sampling. As expected,
in contrast to the previous case, the maximum MPS EE does
not increase linearly and the gap of the maximum MPS EE
between a successive number of photons decreases as the
input photon number increases.

Finally, we analyze the maximum MPS EE for a fixed
number of input photons and different number of modes,
which is shown in Fig. 3. We average over 50 different circuit
configurations. Interestingly, as we increase the number of

Number of Modes
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E

N = 2

N = 3

N = 4

N = 5

N = 6

N = 1

FIG. 3. Maximum MPS EE (α = 1) for different number of
modes M and photons N . We averaged 50 different circuits to obtain
each point. Note that the bipartition that leads to the maximum MPS
EE is always the center.
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modes in the circuit for a fixed input photon number N , the
maximum MPS EE converges to N . Thus, if the number of
modes is large enough, increasing the number of modes no
longer makes the MPS simulation hard, which is consistent
with the Clifford-Clifford algorithm where the time cost for
simulation is T = O[N2N + poly(M, N )]; the complexity in
terms of the number of modes M is polynomial [45]. In addi-
tion, recently it was shown that when the number of modes is
proportional to the number of photons, M ∝ N , the classical
simulation can be faster than when the number of modes is
much larger than the number of photons [49]. Especially when
M = N , the computational cost of boson sampling is T =
O(NρN + N3) with ρ = 27

16 ≈ 1.69. Our MPS simulation also
shows a similar tendency that the difference of the maximum
MPS EE of two successive input photon numbers gets smaller
when the number of modes is small.

B. Lossy boson sampling

In this section, we analyze the effect of photon loss in
boson sampling circuits by investigating maximum MPO EE.
As previously mentioned in Sec. II, we introduce photon loss
by using imperfect single-photon sources σ̂ :

ρ̂ = σ̂ N ⊗ |0〉〈0|M−N . (13)

We denote Nout = μN as a total mean photon number after
loss channel, where the transmission rate μ = μ(N ) is a func-
tion of the number of input photons N . In other words, we
study the relation between hardness of the simulation and a
loss rate depending on the input photon number. Before we
present our main results, we show why classically simulating
lossy boson sampling is nontrivial.

1. Complexity of lossy boson sampling

First, we note that exact simulation of lossy boson sam-
pling is hard unless the PH collapses: suppose that we have
a classical simulator that can efficiently and exactly simulate
lossy boson sampling. Then, with this simulator, one can
exactly simulate a lossless boson sampling as well by post-
selecting the case where no photon is lost. However, since an
exact boson sampling with a postselection allows a universal
quantum computation, the existence of an efficient and ex-
act lossy boson sampler implies that PH ⊆ PPP = Ppost-BQP =
Ppost-BPP [59], which contradicts the fact that Ppost-BPP is in the
PH [60] assuming that the PH is infinite. Therefore, we focus
on an approximate simulation of lossy boson sampling.

We emphasize that using a classical algorithm ideal bo-
son sampling in a trivial way does not significantly reduce
the complexity and that a potentially efficient classical lossy
boson sampler should systematically employ the fact that
loss makes the entanglement grow slower. We now explicitly
present an algorithm that employs a classical boson sampler
to simulate a lossy boson sampling in a naive way. Assume
that we have a classical boson sampler that takes an exponen-
tial computational time cn(c > 1) to simulate the ideal boson
sampling with n single photons (e.g., the Clifford-Clifford al-
gorithm [45]). Since a single-photon state after a loss channel
is a mixture of vacuum |0〉 and a single-photon state |1〉 with a
probability 1 − μ and μ, respectively, one may sample a pure
input photon configuration from a binomial distribution for

the first N input modes with a transmission rate μ and execute
a classical boson sampler using the sampled input state. If the
procedure is iterated for a number of samples, the average
time cost can be given by

T =
N∑

n=0

(
N

n

)
μn(1 − μ)N−ncn = [1 + μ(c − 1)]N . (14)

Especially when the loss scaling follows a power law such
that Nout = βNγ (0 < γ < 1), the time cost in an asymptotic
regime is simplified as

T =
[(

1 + β
c − 1

N1−γ

)N1−γ
]Nγ

→ e(c−1)Nout . (15)

Thus, such a simple procedure using binomial sampling and
a classical boson sampler requires an exponential time cost
because it pursues exact simulation of a lossy boson sampling.

On the other hand, one may choose only dominant bi-
nomial coefficients in binomial sampling for approximate
sampling. Since the dominant binomial coefficients are
around Nout, the computational cost to run the classical boson
sampler is given by O(cNout ) = O(cNγ

), which is still ineffi-
cient for 0 < γ < 1. Even though it decreases the complexity,
such an approach does not fully exploit the fact that the system
is lossy because it still samples a pure state to run an ideal clas-
sical boson sampler. By contrast, a potentially more efficient
classical algorithm for lossy boson sampling should properly
employ the fact that the output state from which we sample
is a mixture of pure quantum states. The mixedness makes
the output state less entangled than an output state in lossless
boson sampling, which is the key to reduce the complexity of
lossy boson sampling. For this reason, an MPO simulation that
we propose has a major advantage for lossy boson sampling
since it systematically exploits the fact that loss in the system
makes the entanglement grow slower.

Indeed, there have been many proposals of an efficient
approximate classical algorithm for lossy boson sampling
using the mixedness of the output state. Particularly, an effi-
cient approximate classical simulation algorithm for a scaling
Nout ∝ √

N has been proposed when a loss rate is large or in
an asymptotic regime in Refs. [41,42]. The proposed simula-
tion is based on finding the closest thermal state [42] or the
closest particle-separable state [41], which can be used for an
efficient simulation. However, because the simulations rely on
a particular state determined by given parameters, providing
more time for the simulation does not improve its accuracy.
Unlike the previous studies, one can efficiently control our
MPO simulation’s accuracy by adjusting the bond dimension
in the simulation. Also, our MPO simulation focuses on the
behavior of classical simulation of lossy boson sampling a
nonasymptotic regime where a loss rate is not very large
so that thermal states fail to approximate the output state
properly.

We remark that another way to approximately simulate
lossy boson sampling is to discard the probability of outcomes
corresponding to a large degree of multiphoton interference,
which is highly suppressed when the system is lossy [43].
Thus, choosing a threshold of the degree of multiphoton inter-
ference allows one to control an approximation error. On the
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FIG. 4. Maximum MPO EE obtained by simulation for M = 32 and different input photons numbers N = 1–6 and different loss scales
of (a) Nout = βN1/4, (b) Nout = β

√
N , (c) Nout = βN3/4, and (d) Nout = βN . Empty circles represent the maximum MPO EE for lossless case.

(d) Nout = βN . Maximum MPO EE directly computed for M = 128 and different input photon numbers N = 1–32 and different loss scales
of (e) Nout = βN1/4, (f) Nout = β

√
N , (g) Nout = βN1/4, and (h) Nout = βN . Empty circles represent the maximum MPO EE for lossless case.

Note that the difference of MPO EEs between the upper panel and the lower panel for the same parameters is present because we simulated
with U(1) symmetry to obtain MPO EE for (a)–(d) and computed MPO EE without the symmetry for (e)–(h).

other hand, our MPO simulation controls a simulation error
by keeping dominant singular values and discarding small
singular values.

2. MPO EE for various loss scalings

We first simulate the case where a loss rate is constant in
the number of input photons, i.e., Nout = μN (γ = 1) with a
constant 0 < μ < 1. Figure 4(d) shows that in this case, a
maximum MPO EE (α = 1) linearly increases as N . It in-
dicates that boson sampling for a constant loss rate cannot
be efficiently simulated using MPO because a bond dimen-
sion for an accurate approximation is required to increase
exponentially as an input photon number increases. To the
best of our knowledge, a constant loss case has not been
investigated yet, and our numerical result provides evidence
that hardness of boson sampling might persist in this regime.
Here, the average of the maximum MPO EE is taken over 100
different circuits for 1 � N � 5 and 10 different circuits for
N = 6. The maximum bond dimension we used is χ = 4000.
Note that even though we fix the number of modes to be
M = 32 throughout the simulation, we have checked for MPO
simulation that increasing the number of modes further does
not change the MPO EE much, similarly to Fig. 3.

A constant loss scaling is particularly important from an
experimental perspective although it is a rather optimistic
scaling. First, when one increases the number of single pho-
tons with fixing number of modes, the loss rate for the whole
optical circuits can be assumed to be constant because we
assume a uniform loss on each mode. However, experimen-
tally various factors will degrade the performance of boson
sampling such as diminishing of distinguishability of single
photons and a coincidence detection rate. In addition, when
the number of modes increases as the number of photons
as the original proposal [5] and the depth of the circuit to

implement a Haar-random unitary matrix accordingly, it
becomes more difficult to maintain the same loss rate. Nev-
ertheless, our numerical results indicate that if one can
manipulate the loss rate for the entire circuit to be constant
with increasing the number of photons, classical simulations
for the loss scaling might be inefficient. We emphasize that
more rigorous complexity-theoretical proof is required.

Since the above scaling is somewhat optimistic in prac-
tice, we analyze a scaling where a loss rate increases as
the number of single photons (γ < 1). If the depth of a cir-
cuit increases as the number of input photons following the
original proposal [5], the loss rate of the entire circuit will
increase accordingly. An interesting scaling is Nout = μN =
β
√

N , where an efficient simulation with a constant error has
been proposed [41,42]. Remarkably in this scaling, one can
observe that for a small coefficient β, the maximum MPO
EE (α = 1) saturates or even decreases when Nout increases,
which is shown in Fig. 4(b). One can observe that the behavior
is clearly different from lossless cases or γ = 1 cases. The
simulation result suggests that the computational cost of an
MPO simulation for lossy boson sampling does not increase
as fast as lossless boson sampling. The tendency is more
apparent when γ < 1

2 . For example, when γ = 1
4 as shown in

Fig. 4(a), the maximum MPO EE decreases for a broad range
of β. On the other hand, when γ = 3

4 , although it is slower
than linear, the MPO EE increases fast enough to be hard to
simulate using polynomial number of a bond dimension as
shown in Fig. 4(c). We emphasize again that even if MPO EE
decreases, it does not imply that the computational cost, or
the bond dimension, to achieve a desired accuracy for total
variance distance reduces because MPO EE is relevant to
the vector 2-norm of ideal and approximate vectorized states,
while total variance distance may have an extra multiplicative
prefactor to the vector 2-norm increasing with the Hilbert
space’s dimension [56]. Nevertheless, the behavior of MPO
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EE for different loss scalings shows that lossy boson sampling
leads to a different tendency of MPO EE from lossless boson
sampling.

To analyze MPO EEs of large system size circuits, we use
a different approach. Instead of simulating the circuit using
MPO, we directly calculate MPO EE. Note that in this case,
U(1) symmetry is not applied; thus, the values of MPO EE
are different from those from simulations. Figures 4(e)–4(h)
present MPO EEs for different loss scalings and photon num-
bers for a bipartition [1 . . . M/2 : (M/2 + 1) . . . M], which
gives the maximum over other bipartitions. MPO EEs are ob-
tained by averaging over 100 different circuit configurations.
Specifically, we first sample a Haar-random unitary matrix
and compute MPO EE, assuming a collision-free case (see
Appendix C for details). Notice that collision-free cases give
a larger MPO EE than when there are collision events in gen-
eral. As expected, when γ < 1

2 , the MPO EE decreases as the
input photon number increases, which indicates a possibility
of an efficient simulation. In contrast, when γ � 1

2 , the MPO
EE increases as the input photon number increases, while
the increase is slow for γ = 1

2 . Thus, the MPO EE increases
extensively for γ > 1

2 so that the entanglement is large enough
to simulate efficiently using MPO methods. Moreover, in a
large system size of N and M and for collision-free cases, an
asymptotic expression of MPO EEs can be obtained, which is
given by (see Appendix C)

SM/2
α (|ρ̂〉〉) = O(N1−2(1−γ )α ) when α �= 1, (16)

SM/2
1 (|ρ̂〉〉) = O(N2γ−1 log2 N ). (17)

It shows that when γ < 1
2 , MPO EE with α → 1 converges

to zero in an asymptotic limit, while there exists α such that
MPO EE decreases. On the other hand, when γ > 1

2 , one
can find α > 1 such that MPO EE increases algebraically
and conclude that an MPO simulation requires an exponential
computational time [48].

3. Relation between simulation accuracy and running time

We now show that our simulation can effectively improve
its accuracy by increasing the bond dimension. Figure 5
presents the distributions of singular values for the case
of M = 32, N = 5, μ = 0.5, χ = 500, and the bipartition
[1 . . . 16] : [17 . . . 32] as an example. It shows that the tail
of the singular value distribution decreases superpolynomially
for the two extreme instances of the largest and smallest MPO
EE. Thus, the bond dimension truncation’s impact on the sim-
ulation is negligible as long as the bond dimension is chosen
such that log2 χ is much larger than the MPO EE. More
explicitly, the superpolynomially decaying tail indicates that
the required bond dimension χ and the simulation time cost
would increase slower than poly(1/ε) with ε being the sum
of discarded singular values. We have checked for different
parameters and observed the same behavior. We note that a
previously proposed algorithm [42], approximating a lossy
single-photon state by a thermal state, has an upper bound
of total variance distance to be β2 for Nout = β

√
N with an

arbitrary N , while an MPO simulation’s accuracy can be easily
controlled. Especially when β � 1, the former algorithm’s
total variance distance becomes larger than 1, which indicates
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FIG. 5. Singular value distributions in the descending order for
M = 32 modes, N = 5 input photons, and bipartition [1, . . . , 16] :
[17, . . . , 32] with loss rate μ = 0.5. The singular value vectors are
chosen by the circuits that render the largest and smallest MPO EE
among 100 different circuits. Since the singular values decay super-
polynomially, the required bond dimension of poly(1/ε) is enough
to achieve an error ε.

that its simulation error might not be bounded properly and
shows an MPO simulation’s advantage over the algorithm.

More explicitly, we compare how an MPO simulation’s
accuracy changes as a bond dimension χ increase for dif-
ferent loss scalings in Fig. 6. We have used M = 32 modes
with two different loss scales Nout = 0.3N in Fig. 6(a) and
Nout = 0.6

√
N in Fig. 6(b). We have already checked in Fig. 4

that MPO EE linearly increases in the former case, whereas
it decreases in the latter case as N increases. In this figure,
we measure the error of the simulation as 1 − Trρ̂ instead of
total variance distance because total variance distance requires
very large computational time for large photon numbers. We
have checked that 1 − Trρ̂ and total variance distance present
a very similar behavior in a small size. Therefore, we quan-
tify an error here by the amount of lost probabilities from
truncation.

First of all, Figs. 6(a)–6(c) show that for a given input
photon number N , a simulation error can be effectively re-
duced by increasing a bond dimension. Moreover, one can
observe by comparing between Figs. 6(a)–6(c) that when Nout

grows slowly as N , the increment of the required bond di-
mension becomes smaller, the behavior of which is elaborated
in Figs. 6(d)–6(f). Also, we present the running time of sim-
ulating lossy boson sampling in Figs 6(g)–6(i). Figure 6(g)
clearly shows that when the simulation accuracy is smaller,
the running time can be significantly reduced. Thus, one can
more efficiently simulate a lossy boson sampling when Nout

increases slowly and when a target accuracy is smaller.
In Figs. 6(h) and 6(i), the difference of running time for

different errors is not significant because the dimension of a
matrix for which we perform matrix multiplication and sin-
gular value decomposition is small due to U(1) symmetry, so
that most of time is spent to employ U(1) symmetry. We note
that the computational overhead to employ U(1) symmetry is
poly(N ), which is shown in Appendix B 2. On the other hand,
in Fig. 6(g), the difference becomes substantial because bond
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FIG. 6. MPO simulation errors 1 − Trρ̂ with different bond dimensions for (a) Nout = 0.3N , (b) Nout = 0.6
√

N , and (c) Nout = 0.6N1/4. The
number of modes is M = 32 and the number of input photons is N = 2, 3, 4, 5, 6, 7 (from left to right). Bond dimension to achieve errors 1 −
Trρ̂ = 0.01, 0.02, 0.05 for (d) Nout = 0.3N , (e) Nout = 0.6

√
N , (f) Nout = 0.6N1/4. Running time to attain errors 1 − Trρ̂ = 0.01, 0.02, 0.05

for (g) Nout = 0.3N , (h) Nout = 0.6
√

N , and (i) Nout = 0.6N1/4. The curves are guides for dots. The running time for N = 10 in (g) is 35 000 s.

dimension for each charge gets larger, so that matrix multi-
plication and singular value decomposition are dominant than
the overhead for U(1) symmetry. We note that even if MPO EE
decreases for the cases of Nout = 0.6N1/4 and Nout = 0.6

√
N

as shown in Figs. 4(a) and 4(b), a bond dimension and running
time to attain a target accuracy can increase, which stems
from the fact that MPO EE quantifies a distance between
an MPO and an exact state in a vectorized form. Here, we
have used 28 cores of Intel E5-2680v4 2.4 GHz to attain the
running time in Figs. 6(g)–6(i). We note that the size of a
matrix that we perform singular value decomposition without
using U(1) symmetry is d2χ × d2χ with d = N + 1, which
becomes almost intractable quickly as χ and N increase.

Lastly, we briefly compare our analysis of boson sampling
with a related previous work on 1D noisy RCS [22]. Both
studies build on an observation that noise tends to reduce
nontrivial correlation in quantum systems and use MPOs to
more efficiently simulate such noisy systems than the brute
force methods. However, while the previous work on RCS
is applicable only to 1D architectures, our boson sampling
results are not limited to 1D architectures. In our work, the use
of 1D architecture is only for the simulation purpose, i.e., for
generating a Haar-random boson sampling interferometer (see
Appendix A). Since all boson sampling experiments are set up

to realize a Haar-random passive interferometer, our results
apply to all such setups regardless of the geometric connec-
tivity of the system. We also remark that unlike the previous
work where each gate was assumed to fail with a nonzero gate
error rate, we only consider how many photons remain in the
system (i.e., Nout) at the end of the entire process, compared
to the input photon number N . Note that input photon loss
and detection loss rates (analogous to state preparation and
measurement error rates) are expected to not depend on the
system size. Photon loss within the interferometer (analogous
to gate error rates) is in principle also taken into account in
our model as they will reduce the output photon number Nout.
Unlike input and detection loss rates, however, such loss rate
will be enhanced as the system size increases since then larger
interferometer is needed to reach Haar randomness and thus
more photons will be lost along the way.

V. DISCUSSION AND CONCLUSION

As experimental scales of boson sampling have been
increasing, characterizing the computational cost of a clas-
sical simulation of lossy boson sampling becomes more
crucial. Typically, quantum optics experiments suffer from
various imperfections, and critical ones in boson sampling are
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impurity of single-photon sources, photon loss in the circuit,
and inefficiency of photodetectors. Due to the aforementioned
imperfections, a state-of-the-art boson sampling experi-
ment [38] has used N = 20 input photons but the largest
number of photons they detected is only 14, and the sampling
rate was not large enough. The most recent Gaussian boson
sampling experiment also suffers from about 70% of photon
loss [39]. On the other hand, except for a recently proposed
classical algorithm [43] employing a fact that photon loss
reduces quantum interference, many classical algorithms pro-
posed for lossy boson sampling are not designed to simulate
an intermediate-sized lossy boson sampling where photon loss
is not extremely large [41,42]. To overcome this limitation,
we have employed MPOs, which enable us to simulate lossy
boson sampling with a moderate amount of photon loss. An
important advantage of the MPO algorithm compared to other
classical algorithms is that it can improve its accuracy ef-
ficiently. We have numerically shown that a computational
time cost as well as a required bond dimension increases at
most polynomially in the simulation error. We note that, in
principle, our MPO scheme can also be used to simulate Gaus-
sian boson sampling by truncating the total photon number
properly, which determines the dimension of local Hilbert
spaces and the total charge of an MPO representation. In
practice, since MPO for Gaussian boson sampling requires a
larger local Hilbert space dimension than single-photon boson
sampling, its running time would be larger than the latter.

We have studied the effect of photon loss on MPO’s com-
putational cost of simulating lossy boson sampling as input
photon number grows for various loss scalings using MPO
EE. We first show that if a loss rate can be fixed as the
number of photons in boson sampling experiments increases,
the computational cost of an MPO simulation exponentially
increases. Since our numerical simulation results rely on a
particular simulation method, it does not rule out existence of
a more efficient classical simulator that can possibly simulate
a constant loss scaling of boson sampling. Nevertheless, our
results will motivate further rigorous studies for the effect
of loss on boson sampling. We have also demonstrated that
an exponential cost is required for MPO simulation for loss
scalings Nout ∝ Nγ with γ > 1

2 in an asymptotic limit. On
the other hand, when loss is more severe such that γ � 1

2 ,
the complexity of MPO simulation might not increase expo-
nentially because MPO EE increases at most logarithmically.
Although the same scaling has been studied in Refs. [41,42],
an important distinctive feature is that our simulation can
control the simulation accuracy by increasing its running time.
Therefore, our MPO algorithm can be useful to simulate an
intermediate scale of lossy boson sampling with achieving a
high accuracy.

We emphasize that a sampling task does not require the
full description of an output density matrix as an MPO al-
gorithm does. Therefore, our MPO algorithm inevitably has
a computational overhead than direct sampling algorithms,
while it provides more information. The crucial difference
between our MPO algorithm and direct sampling algorithms
is that the former takes a lot of time to get the descrip-
tion but sampling from it is very efficient, whereas the
latter takes much time cost to obtain each sample. Also,

the full description allows computing output probabilities
efficiently, whereas direct sampling algorithms generally do
not.

On the other hand, the proof of hardness of boson sam-
pling assumes the number of modes M of a circuit to be
much larger than the number of single photons N such that
M � N6 [5]. Although the assumption is expected to be com-
promised to a less demanding condition M � N2 [5], it is
still far beyond a current technology. For example, the largest
scale of boson sampling experiment so far employed N = 20
input photons with M = 60 modes [38] and that of Gaussian
boson sampling used N = 50 and M = 100 [39], where N
is understood as a number of squeezed states. Clearly, the
number of modes used in the experiment is far smaller than
the proposed scale M � N2. In fact, the fastest known clas-
sical algorithm shows that the computational cost to simulate
boson sampling can be significantly reduced when the number
of modes is linear in the number of photons N , although
an exponential time cost is still required [45,49]. Our nu-
merical simulation using an MPS shows a similar tendency
to the fastest classical algorithm in the sense that MPS EE
increases linearly as an input photon number grows while the
increment gets smaller when the number of modes is small.
Considering that the requirement of large number of modes
is another critical obstacle to hinder one from demonstrating
quantum supremacy using boson sampling, complexity-
theoretical studies to reduce the condition will be an important
task.
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APPENDIX A: HAAR-RANDOM UNITARY CIRCUIT

In this Appendix, we present a procedure to implement a
Haar-random unitary circuit represented by U for boson sam-
pling. More details of the procedure can be found in Ref. [50].
Here, the unitary matrix U characterizes the transformation of
the mode operators

â j →
M∑

k=1

Ujkâk . (A1)

We assume the number of modes M to be even for simplicity.
First of all, any M × M unitary matrix U can be written as a
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product of blocks Rn such that [58]

U =
M/2∏
j=1

R2 j−1

M/2−1∏
i=0

RM−2i, (A2)

where each block Rn consists of beam splitters

Rn =
∏
k∈Sn

Bn,k . (A3)

Here, Sn = (s1, . . . , sn−1) is a sequence of n − 1 indices with
odd numbers arranged in descending order and followed by
even numbers arranged in ascending order. For example,
for n = 4, S4 = (3, 1, 2), and for n = 5, S5 = (3, 1, 2, 4), as
shown in Fig. 7. The beam splitter of a reflectivity r and a
relative phase shift φ transform two input modes as(

â†

b̂†

)
=

(√
1 − r −eiφ√

r

e−iφ√
r

√
1 − r

)(
â†

b̂†

)
, (A4)

Note that the circuit depth in Fig. 2 is defined as in Fig. 7.
Most importantly, in order to implement Haar-random uni-

tary circuits, the reflectivity rn,i of the beam splitter Bn,si is

FIG. 7. Boson sampling circuit with M = 6. The dashed lines
separate different blocks Rn, which consist of beam splitters Bn,k (see
the main text for details.)

sampled from a distribution

Prn,i (r) = (n − si )(1 − r)n−si−1. (A5)

Each relative phase shift φ is independently sampled from
a uniform distribution on [0, 2π ). Using this procedure, we
have implemented a Haar-random unitary circuit for MPS and
MPO simulations.

APPENDIX B: MATRIX PRODUCT STATES (MPS) AND MATRIX PRODUCT OPERATORS (MPO)

1. Standard MPS and MPO methods

In this Appendix, we provide the basic concept of MPS and MPO [18]. In principle, any pure quantum states can be
represented by an MPS exactly by choosing an appropriate bond dimension 0 < χ � d�M/2� such that

|ψ〉 =
d−1∑

i1,...,iM=0

ci1,...,iM |i1, . . . , iM〉 =
d−1∑

i1,...,iM=0

χ−1∑
α0,...,αM=0

A[1]i1
α0α1

A[2]i2
α1α2

. . . A[M]iM
αM−1αM

|i1, . . . , iM〉, (B1)

where d is the dimension of a local Hilbert space. The latter representation is not unique and has a gauge freedom. Thus, we
canonicalize the MPS to fix the gauge as [53]

|ψ〉 =
d−1∑

i1,...,iM=0

χ−1∑
α0,...,αM=0


[1]i1
α0α1

λ[1]
α1


[2]i2
α1α2

λ[2]
α2

. . . λ[M−1]
αM−1


[M]iM
αM−1αM

|i1, . . . , iM〉. (B2)

Here, the vectors λ[k]
αk

represent the singular values in a spectral decomposition for bipartitions, |ψ〉 =∑χ−1
αk=0 λ[k]

αk
|ψαk

[1,...,k]〉|ψαk
[k+1,...,M]〉 with the orthogonality condition on each partition,

〈
ψ

αk
[1,...,k]

∣∣ψα′
k

[1,...,k]

〉 = δαk ,α
′
k
,

〈
ψ

αk
[k+1,...,M]

∣∣ψα′
k

[k+1,...,M]

〉 = δαk ,α
′
k
. (B3)

The singular value vectors λ[k]
αk

enable one to easily calculate the entanglement entropy (EE) between two partitions. Also, one of
the advantages of the MPS method is that the transformation of a quantum state by a two-site unitary operation acting on k and
k + 1 sites can be efficiently described by updating only the following three relevant tensors with a singular value decomposition:


[k]ik
αk−1αk

, λ[k]
αk

, 
[k+1]ik+1
αkαk+1

. (B4)

Specifically, we first write the quantum state in the MPS form as

|ψ〉 =
d−1∑

ik ,ik+1=0

χ−1∑
αk−1,αk ,αk+1=0

λ[k−1]
αk−1


[k]ik
αk−1αk

λ[k]
αk


[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

∣∣ψαk−1

[1,...,k−1]

〉|ik〉|ik+1〉
∣∣ψαk+2

[k+2,...,M]

〉
. (B5)
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After the unitary operation acting on k and k + 1 sites, the state evolves to

Ûk,k+1|ψ〉 =
d−1∑

ik ,ik+1=0

χ−1∑
αk−1,αk ,αk+1=0

λ[k−1]
αk−1


[k]ik
αk−1αk

λ[k]
αk


[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

∣∣ψαk−1

[1,...,k−1]

〉
Ûk,k+1(|ik〉|ik+1〉)

∣∣ψαk+2

[k+2,...,M]

〉
(B6)

=
d−1∑

jk , jk+1,ik ,ik+1=0

χ−1∑
αk−1,αk ,αk+1=0

λ[k−1]
αk−1


[k]ik
αk−1αk

λ[k]
αk


[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

U ikik+1
jk jk+1

∣∣ψαk−1

[1,...,k−1]

〉| jk〉| jk+1〉
∣∣ψαk+2

[k+2,...,M]

〉
(B7)

=
d−1∑

jk , jk+1=0

χ−1∑
αk−1,αk+1=0

� jk , jk+1
αk−1,αk+1

∣∣ψαk−1

[1,...,k−1]

〉| jk〉| jk+1〉
∣∣ψαk+2

[k+2,...,M]

〉
, (B8)

where we defined

� jk jk+1
αk−1αk+1

=
d−1∑

ik ,ik+1=0

χ−1∑
αk=0

U jk jk+1
ik ik+1

λ[k−1]
αk−1


[k]ik
αk−1αk

λ[k]
αk


[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

, U jk jk+1
ik ik+1

= 〈 jk, jk+1|Ûk,k+1|ik, ik+1〉. (B9)

Note that the complexity of obtaining � is O(d4χ3). We now perform singular value decomposition of � to recover the MPS
representation of the evolved state

� jk jk+1
αk−1αk+1

=
dχ−1∑
βk=0

V( jk ,αk−1 ),βk λ̃
[k]
βk

Wβk ,( jk+1,αk+1 ) ≈
χ−1∑
αk=0

λ[k−1]
αk−1


̃[k]ik
αk−1αk

λ̃[k]
αk


̃[k+1]ik+1
αkαk+1

λ[k+1]
αk+1

. (B10)

In the approximation, we keep the largest χ singular values λ̃
[k]
βk

. Also, we defined


̃[k]ik
αk−1αk

= V( jk ,αk−1 ),βk /λ
[k−1]
αk−1

, 
̃[k+1]ik+1
αkαk+1

= Wβk ,( jk+1,αk+1 )/λ
[k+1]
αk+1

. (B11)

Thus, we obtain the MPS representation after two-site unitary operation. We note that one can increase the accuracy of the
simulation by transforming the MPO into an orthogonal form by performing QR decomposition after the truncation [21].

Consequently, since the dominant time cost comes from matrix multiplications and singular value decomposition, the
computational time cost for a two-site unitary update is T = O(d4χ3) which accounts for matrix multiplications and singular
value decomposition of a dχ × dχ matrix. It implies that the computational cost for MPS simulations depends on the bond
dimension χ we choose. As a result, the computational cost to implement MPS simulation for boson sampling circuits is given
by

T = O(DMd4χ3), (B12)

where D and M account for the number of beam-splitter layers and the number of two-site unitary operators in each layer,
respectively.

From now on, let us consider MPO representation and a two-site unitary operator on k and k + 1 sites to describe mixed
states. Similarly, the MPO representation can be updated easily. We first vectorize a density matrix ρ̂ as

ρ̂ =
d−1∑

i1,i′1,...,iM ,i′M=0

ρi1,i′1,...,iM ,i′M |i1, . . . , iM〉〈i′1, . . . , i′M |

→ |ρ̂〉〉 =
d−1∑

i1,ī′1,...,iM ,ī′M=0

χ−1∑
α0,...,αM=0



[1]i1 ī′1
α0α1 λ[1]

α1

[2]i2 ī2

α1α2
λ[2]

α2
. . . λ[M−1]

αM−1



[M]iM ī′M
αM−1αM |i1, ī′1, . . . , iM , ī′M〉〉. (B13)

The MPO can be rewritten as

|ρ̂〉〉 =
d2−1∑

Ik ,Ik+1=0

χ−1∑
αk−1,αk ,αk+1=0

λ[k−1]
αk−1


[k]Ik
αk−1αk

λ[k]
αk


[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

∣∣ψαk−1

[1,...,k−1]

〉〉|Ik〉〉|Ik+1〉〉
∣∣ψαk+2

[k+2,...,M]

〉〉
, (B14)

where Ik ≡ ik + dīk and |Ik〉〉 ≡ |ik, īk〉〉. After the two-site unitary operation, the vectorized density matrix is transformed to

|ρ̂ ′〉〉 =
d2−1∑

Jk ,Jk+1,Ik ,Ik+1=0

χ−1∑
αk−1,αk ,αk+1=0

λ[k−1]
αk−1


[k]Ik
αk−1αk

λ[k]
αk


[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

U Ik Ik+1
JkJk+1

∣∣ψαk−1

[1,...,k−1]

〉〉|Jk〉〉|Jk+1〉〉
∣∣ψαk+2

[k+2,...,M]

〉〉
(B15)

=
d2−1∑

Jk ,Jk+1=0

χ−1∑
αk−1,αk+1=0

�Jk ,Jk+1
αk−1,αk+1

∣∣ψαk−1

[1,...,k−1]

〉〉|Jk〉〉|Jk+1〉〉
∣∣ψαk+2

[k+2,...,M]

〉〉
, (B16)
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where

U Ik Ik+1
JkJk+1

≡ 〈 jk jk+1|Û |ikik+1〉〈īk īk+1|Û †| j̄k j̄k+1〉, (B17)

�JkJk+1
αk−1αk+1

≡
d2−1∑

Ik ,Ik+1=0

χ−1∑
αk=0

U JkJk+1
Ik Ik+1

λ[k−1]
αk−1


[k]Ik
αk−1αk

λ[k]
αk


[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

. (B18)

The time complexity of obtaining � is given by O(d8χ3). Again, we perform singular value decomposition and keep the χ

largest singular values only,

�JkJk+1
αk−1αk+1

=
d2−1∑

Ik ,Ik+1=0

d2χ−1∑
βk=0

Ṽ(Jk ,αk−1 ),βk λ̃
[k]
βk

W̃βk ,(Jk+1,αk+1 ) ≈
χ−1∑
αk=0

λ[k−1]
αk−1


̃[k]Ik
αk−1αk

λ̃[k]
αk


̃[k+1]Ik+1
αkαk+1

λ[k+1]
αk+1

, (B19)

which is the updated MPO representation after the unitary operation. Thus, the total computational time cost for boson sampling
circuits is given by

T = O(DMd8χ3). (B20)

One can easily check that normalization of
∑χ−1

αk=0 λ2
αk

is conserved for unitary updates if there is no truncation error. Note

that for an arbitrary n by m matrix A,
∑min(n,m)

α=1 λ2
α = ∑n,m

i, j=1 |Ai, j |2, where λα is singular values. Using the unitarity ÛÛ † =
Û †Û = 1,

d2−1∑
Jk ,Jk+1=0

U JkJk+1
Ik Ik+1

U∗JkJk+1

I ′
k I ′

k+1
=

d2−1∑
Jk ,Jk+1=0

〈 jk jk+1|Û |ikik+1〉〈īk īk+1|Û †| j̄k j̄k+1〉〈i′ki′k+1|Û †| jk jk+1〉〈 j̄k j̄k+1|Û †|īk īk+1〉

= δik ,i′k δik+1,i′k+1
δīk ,ī′k

δīk+1,ī′k+1
= δIk ,I ′

k
δIk+1,I ′

k+1
, (B21)

and for some unitary matrix V and W ,

χ−1∑
αk−1=0

d2−1∑
Ik=0

(
λ[k−1]

αk−1

)2

[k]Ik

αk−1αk



∗[k]Ik

αk−1α
′
k
=

χ−1∑
αk−1=0

d2−1∑
Ik=0

V(Ik ,αk−1 ),αkV
∗

(Ik ,αk−1 ),α′
k
= δαk ,α

′
k
, (B22)

χ−1∑
αk+1=0

d2−1∑
Ik+1=0

(
λ[k]

αk+1

)2

[k]Ik+1

αkαk+1



∗[k]Ik+1

α′
kαk+1

=
χ−1∑

αk+1=0

d2−1∑
Ik+1=0

Wαk ,(Ik+1,αk+1 )W
∗
α′

k ,(Ik+1,αk+1 ) = δαk ,α
′
k
, (B23)

one can show that

χ−1∑
βk=0

λ̃2
βk

=
d2−1∑

Jk ,Jk+1=0

χ−1∑
αk−1,αk+1=0

∣∣�Jk ,Jk+1
αk−1,αk+1

∣∣2 =
χ−1∑
αk=0

λ2
αk

. (B24)

2. MPS and MPO simulations using U(1) symmetry

In this Appendix, we introduce a method to simulate boson sampling using an MPS representation with U(1) symmetry,
which can be used to improve an MPS simulation more efficiently [19,54,55]. Basically, we enforce the global U(1) symmetry
by introducing a charge vector c[k]

αk
on each bond index αk . Here, a charge c[k]

αk
accounts for the photon number occupied by the

right-hand side of the bipartition of [1 . . . k] : [(k + 1) . . . M] for a given bond index αk . Since the total photon number N is fixed
in the system, the charges on each end are set as c[0]

α0=0 = N and c[M]
αM=0 = 0. For example, consider the following state:

|ψ〉 = |1100〉, (B25)

which is an initial state when M = 4 and N = 2. Since the total photon number is N = 2, we initialize c[0]
0 = 2 and c[4]

0 = 0.
Charge vectors for different bipartitions can be easily determined by counting how many photons the right-hand side of a
bipartition occupies. For bipartition [1] : [2, 3, 4], the charge vector becomes c[1]

0 = 1 because the partition [2,3,4] is occupied
by a single photon, and for bipartition [1, 2] : [3, 4] and [1, 2, 3] : [4], the charge vectors become c[2]

0 = 0 and c[3]
0 = 0 because

there is no photon for the right-hand side partition. As a result of the charge conservation, only tensor elements 

[k]ik+1
αkαk+1 that

satisfy the constraint c[k]
αk

− c[k+1]
αk+1

= ik+1 are nonvanishing [19,54,55]. Thus, each tensor 

[k]ik+1
αkαk+1 for different ik+1 is compressed

by a tensor 
[k]
αkαk+1

with charge vectors c[k]
αk

and c[k+1]
αk+1

. Consequently, in contrast to a typical MPS without U(1) symmetry where
tensors {
[k]ik

αk ,αk+1
, λ[k]

αk
} constitute an MPS, here, charge vector c[k]

αk
has to be added as {
[k]

αk ,αk+1
, λ[k]

αk
, c[k]

αk
} to fully describe a given

quantum state.
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Notably, the memory usage of an MPS simulation is significantly reduced because local indices ik+1 are dropped. Specifically,
whereas an original tensor 


[k]ik+1
αk ,αk+1 without U(1) symmetry requires O(dχ2) memories for the local index d and two bond indices

χ , since local indices are dropped, we only need O(χ2) for a single tensor and O(χ ) for a charge vector. Thus, taking into
account singular value vectors and charge vectors, a total memory cost is given by O[Mχ2 + (M − 1)χ + (M + 1)χ ], which is
significantly reduced from a memory cost O[Mdχ2 + (M − 1)χ ] required without U(1) symmetry. In principle, the probability
amplitude ci1,...,iM in Eq. (B1) can be reproduced by

ci1,...,iM =
χ−1∑

α0,...,αM=0


[1]
α0α1

λ[1]
α1


[2]
α1α2

. . . λ[M−1]
αM−1


[M]
αM−1αM

M∏
k=1

δ
(
c[k−1]
αk−1

− c[k]
αk

− ik
)
, (B26)

where the delta function indicates the constraint c[k−1]
αk−1

− c[k]
αk

= ik for 1 � k � M. The delta function is defined as δ(0) = 1 and
zero otherwise.

In addition, a computational time cost of a canonical update for a two-site unitary can also be reduced as follows. Let us
consider a two-site unitary acting on k and k + 1 sites, where the relevant tensors for the update are

λ[k−1]
αk−1

, 
[k]
αk−1αk

, λ[k]
αk

, 
[k+1]
αkαk+1

, λ[k+1]
αk+1

. (B27)

For all 0 � c[k] � N , we multiply the unitary matrix and obtain

�ik ,ik+1
αk−1,αk+1

(c[k] ) =
d−1∑

jk , jk+1=0

χ−1∑
αk=0

U ik ,ik+1
jk , jk+1

λ[k−1]
αk−1


[k]
αk−1αk

λ[k]
αk


[k+1]
αkαk+1

λ[k+1]
αk+1

(B28)

× δ
(
c[k−1]
αk−1

− c[k]
αk

− jk
)
δ
(
c[k]
αk

− c[k+1]
αk+1

− jk+1
)
δ
(
c[k−1]
αk−1

− c[k] − ik
)
δ
(
c[k] − c[k+1]

αk+1
− ik+1

)
, (B29)

where the first two delta functions correspond to the constraints of the input photon numbers and the last two delta functions to
the constraints of the output photon numbers. Thus, the complexity of computing � is given as O(d5χ3). We note that such a
scaling is conservative in the sense that the bond dimension χ is partitioned according to different charges so that a partitioned
bond dimension is much smaller than χ and the scaling is smaller in practice. Hence, U(1) symmetry highly decreases the
computational cost in practice. Since the scaling from d is polynomial, the bond dimension χ is the important parameter that
determines if an efficient simulation is possible.

In order to obtain the updated tensors, we perform singular value decompositions,

�ik ,ik+1
αk−1,αk+1

(c[k] ) =
∑
βk

V(ik ,αk−1 ),βk λ̃
[k]
βk

Wβk ,(ik+1,αk+1 ), (B30)

where we assign the charge c[k] for each βk . After iterating the same procedure for all 0 � c[k] � N , we update a singular value
vector by choosing the largest χ singular values only among all singular values of βk and relabeling them as 0 � αk � χ − 1. A
charge vector c[k]

αk
is updated by c[k] that corresponds to αk . Finally, tensors are accordingly updated:


[k]
αk−1αk

= V(ik ,αk−1 ),αk /λ
[k−1]
αk−1

, 
[k+1]
αkαk+1

= Wαk ,(ik+1,αk+1 )/λ
[k+1]
αk+1

. (B31)

For example, let us consider a beam-splitter operation on the first and second mode, which transforms a state as follows:

|100〉 → 1√
2

(|100〉 + |010〉). (B32)

After multiplying the unitary matrix as Eq. (B28) and performing a singular value decomposition, we obtain tensors correspond-
ing to |100〉/√2 for c[1] = 0 and tensors corresponding to |010〉/√2 for c[1] = 1 due to the charge constraints in Eq. (B28).
As a result, the elements of the initial charge vector c[1]

0 = 0 are updated to c[1]
0 = 0 and c[1]

1 = 1 after the beam splitter. Since
a singular value decomposition is performed for different charges, the matrix size for each singular value decomposition is
significantly reduced, which results in a reduction of the computation time.

Even when a given quantum state is a superposition of different photon-number states, one can still use the U(1) symmetry
in such a way that a charge on the left edge c[1]

α0
has different conserved charges [55], which will be elaborated below. We

can employ U(1) symmetry for an MPO simulation with a slight modification of an MPS simulation [55]. As a by-product of
vectorization, we have two different conserved charges corresponding to indices ik and ī′k . Thus, charge vectors now save two
different charges (n, m). Since initial states for lossy boson sampling do not have a definite photon number as shown in Eq. (6), a
straightforward extension of MPS simulation with U(1) symmetry to MPO simulation is to decompose an initial state depending
on the total charge and execute unitary updates separately. In other words, we constitute N + 1 different MPOs having a different
total charge by setting conserved charges (n, n) on the left end c[0]

α0=0 for the nth MPO and on the right end as c[M]
αM=0 = (0, 0). For

example, consider the following bipartite state:

1
2 (|00〉〉 + |11〉〉) ⊗ 1

2 (|00〉〉 + |11〉〉). (B33)
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Without using U(1) symmetry, the singular values of the state are given by λ
[1]
α1=0 = 1 and λ

[1]
α1>0 = 0 because it is a product state.

However, since we are using U(1) symmetry, the state is decomposed as

1
4 |00〉〉 ⊗ |00〉〉, 1

4 |11〉〉 ⊗ |11〉〉, 1
4 (|00〉〉 ⊗ |11〉〉 + |11〉〉 ⊗ |00〉〉). (B34)

Here, conserved charges for each element are the sum of the first elements in the vector form and that of the second elements.
In this example, we have three subspaces whose conserved charges are (0, 0), (2, 2), and (1, 1), respectively. Thus, one may
constitute MPOs for each conserved charge separately. In addition, if one wants to simulate a postselected total photon number
as done in Ref. [38], this procedure can be used to simulate the dynamics by selecting a desired total charge.

However, one can improve the simulation more efficiently by combining all the MPOs by assigning charges on the left end as
c[0]
α0=n = (n, n) for 0 � n � N . The unitary update of the latter method is more consistent since the truncation of singular values

is performed at the same time. For this reason, we use the latter method for MPO simulation. The procedure of unitary updates is
similar to MPS simulation. The only difference is that the charge vector now consists of two components, so we iterate d2 times
singular value decompositions. Thus, the time cost to compute � in Eq. (B28) for MPO is given by O(d10χ3). Again, this scaling
is conservative and the practical complexity is much smaller because the bond dimension is partitioned according to charges so
that a bond dimension in each partition is reduced. Thus, in practice, U(1) symmetry highly reduces the computational cost.
Also, since the scaling from d is polynomial, the bond dimension χ is the parameter that determines if an efficient simulation is
possible. Memory saving from U(1) symmetry is more significant in MPO simulation because the local indices up to d2 can be
dropped.

As a remark, in the case of nonuniform loss [52], we cannot simplify the problem by merging all loss channels as we did for
uniform loss because nonuniform loss channels do not commute with beam splitters in general. Therefore, one needs to update
an MPO by a completely positive trace-preserving map for a loss channel for each step, which requires more computational
time [22]. In addition, we may not be able to take advantage from symmetry because loss channels do not preserve global U(1)
symmetry.

3. Computing outcome probabilities and sampling outcomes from MPS and MPO

Now, we present how to compute outcome probabilities and sample outcomes according to the probability distribution using
MPS and MPO [22]. The probability of obtaining a given outcome �n is written as

P|ψ〉(�n) ≡ |〈ψ |�n〉|2 (B35)

for pure states, and

Pρ̂ (�n) ≡ Tr[ρ̂|�n〉〈�n]] = 〈〈�n|ρ̂〉〉 (B36)

for mixed states. Here, |�n〉 = |n1, . . . , nM〉 corresponds to the outcome �n. First of all, a marginal probability can be efficiently
computed. For example, a probability to detect (n1, . . . , nl ) on the first l modes is given by

P[1,...,l]
ρ̂ (n1, . . . , nl ) =

∣∣∣∣∣
χ−1∑

α0,...,αM=0


[1]
α0α1

λ[1]
α1

. . . 
[M]
αM−1αM

l∏
k=1

δ
(
c[k−1]
αk−1

− c[k]
αk

− nk
)∣∣∣∣∣

2

(B37)

for an MPS and

P[1,...,l]
ρ̂ (n1, . . . , nl ) =

χ−1∑
α0,...,αM=0


[1]
α0α1

λ[1]
α1

. . . 
[M]
αM−1αM

l∏
k=1

δ
[
c[k−1]
αk−1

− c[k]
αk

− (nk, nk )
]

(B38)

for an MPO. Using the above equations, one can easily find that an outcome probability for �n can be obtained by setting l = M.
Now, we present a procedure to sample an outcome from MPS and MPO representations. First, one computes a marginal

probability to detect n1 at the first mode P[1](n1) using Eq. (B37) or (B38). After obtaining the first outcome n∗
1, we sample n2

from the conditional probability distribution which can be efficiently found by using

P[2|1](n2|n∗
1 ) = P[1,2](n∗

1, n2)

P[1](n∗
1 )

. (B39)

We sample the remaining measurement outcomes following the same rule as

P[k+1|1...k](nk+1|n∗
1, . . . , n∗

k ) = P[1...(k+1)](n∗
1, . . . , nk+1)

P[1...k](n∗
1, . . . , n∗

k )
. (B40)

We finally obtain �n = (n∗
1, . . . , n∗

M ) that follows Born’s rule as in Eqs. (B35) and (B36), which can be efficiently performed.
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APPENDIX C: ENTANGLEMENT ENTROPY OF MATRIX PRODUCT STATES AND MATRIX PRODUCT OPERATORS

Let us consider a beam-splitter array, which transforms the creation operators of input modes â†
j into the creation operators

of output modes b̂†
j as

â†
j → b̂†

j = Û †â†
jÛ =

M∑
k=1

Ujkâ†
k . (C1)

To obtain entanglement entropy between partitions [1, . . . , l] and [(l + 1), . . . , M], we rewrite the output mode operators as

b̂†
j = cos θ j B̂

†
up, j + sin θ j B̂

†
down, j, (C2)

where we defined normalized creation operators for each partition as

cos θ j B̂
†
up, j =

l∑
k=1

Ujkâ†
k, sin θ j B̂

†
down, j =

M∑
k=l+1

Ujkâ†
k, (C3)

and their normalization as

cos2 θ j ≡
∑l

k=1 |Ujk|2∑M
k=1 |Ujk|2

=
l∑

k=1

|Ujk|2, sin2 θ j ≡
∑M

k=l+1 |Ujk|2∑M
k=1 |Ujk|2

=
M∑

k=l+1

|Ujk|2. (C4)

Note that assuming collision-free cases M � N2 [5], the creation operators B̂†
up, j, B̂†

down, j satisfy the canonical commutation
relations

[B̂up, j, B̂†
up,k] = δ jk, [B̂down, j, B̂†

down,k] = δ jk, [B̂up, j, B̂down,k] = 0, [B̂up, j, B̂†
down,k] = 0. (C5)

For typical random beam-splitter arrays with a large number of modes M � 1, we will have cos2 θ j ≈ sin2 θ j ≈ 1
2 for l = M/2.

Let us first consider the input state occupied by Nj photons for jth modes

|ψin〉 =
(

M∏
j=1

â
†Nj

j√
Nj!

)
|0〉 → |ψout〉 =

M∏
j=1

1√
Nj!

(cos θ j B̂
†
up, j + sin θ j B̂

†
down, j )

Nj |0〉 (C6)

= ⊗M
j=1

⎛
⎝ Nj∑

k j=0

√
k j!(Nj − k j )!

Nj!

(
Nj

k j

)
cosk j θ j sinNj−k j θ j |k j〉up, j |Nj − k j〉down, j

⎞
⎠. (C7)

The reduced density matrix of the output state for a partition [1, . . . , l] is then written as

ρ̂up ≡ Tr[(l+1),...,M]|ψout〉〈ψout| = ⊗M
j=1

⎛
⎝ Nj∑

k j=0

(
Nj

k j

)
cos2k j θ j sin2(Nj−k j ) θ j |k j〉〈k j |up, j

⎞
⎠. (C8)

Now, assuming M � 1, we can approximate cos2 θ j ≈ sin2 θ j ≈ 1
2 for l = M/2, and thus the density matrix becomes

ρ̂up ≈ ⊗M
j=1

⎛
⎝ Nj∑

k j=0

1

2Nj

(
Nj

k j

)
|k j〉〈k j |up, j

⎞
⎠, (C9)

which is a product of states whose eigenvalues follow a binomial distribution. Thus, the entanglement entropy is given by the
sum of the entanglement entropy of each state. It indicates that if we add more modes occupied by at least a single photon, the
entanglement entropy increases linearly. In contrast, if we increase the number of photons in each mode and assume that Nj � 1,
then the entanglement entropy can be approximated as

S(ρ̂up) ≈ 1

2

M∑
j=1

log2

(πeNj

2

)
, (C10)

where we have used a Gaussian approximation of binomial distribution. Thus, the entanglement entropy increases logarithmically
of Nj , which suggests that the MPS simulation can be efficiently performed for Nj . Here, note that when Nj is zero for some
modes, we treat the entropy to be zero for the modes in the summation.

Particularly, let us first consider the input state of the standard boson sampling, where Nj = 1 for 1 � j � N and otherwise
Nj = 0. One can immediately see that for large M, the reduced density matrix is written as

ρ̂up ≈ ⊗N
j=1

1
2 (|0〉〈0|up, j + |1〉〈1|up, j ), (C11)
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which leads to the entanglement entropy S(ρ̂up) = N . Since the entanglement entropy increases linearly, an MPS simulation is
inefficient.

For the second case in the main text, we consider an input state, where N1 = N , and Nj = 0 for 2 � j � M. In this case, from
the analysis above, the reduced density matrix of the output state is written as

ρ̂up ≈
N∑

k=0

1

2N

(
N

k

)
|k〉〈k|up,1, (C12)

and the entanglement entropy is given by

S(ρ̂up) ≈ 1

2
log2

(πeN

2

)
. (C13)

Since the entanglement entropy increases logarithmically, its MPS simulation can be efficiently performed. Particularly, using
χ = N + 1, the time complexity of a MPS simulation is O(DMd3χ3) = O[M2(N + 1)6].

In the case of lossy standard boson sampling, we can write the quantum state as

ρ̂out =
N∏

j=1

[μ cos2 θ j |10〉〈10| j + μ sin2 θ j |01〉〈01| j + μ sin θ j cos θ j (|10〉〈01| j + |01〉〈10| j ) + (1 − μ)|00〉〈00| j] (C14)

→ |ρ̂〉〉 =
N∏

j=1

[μ cos2 θ j |30〉〉 j + μ sin2 θ j |03〉〉 j + μ sin θ j cos θ j (|21〉〉 j + |12〉〉 j ) + (1 − μ)|00〉〉 j]. (C15)

Here, the index j represents up, j and down, j in order, and for the vectorization, we merged the indices on each party as
|0〉〈0| → |0〉〉, |0〉〈1| → |1〉〉, |1〉〈0| → |2〉〉, and |1〉〈1| → |3〉〉. To obtain the matrix product operator (MPO) entanglement
entropy (EE), we find the reduced density matrix for the vectorized state

|ρ̂〉〉〈〈ρ̂|up =
N∏

j=1

{[μ cos2 θ j |3〉〉 + (1 − μ)|0〉〉][μ cos2 θ j〈〈3| + (1 − μ)〈〈0|]up, j + μ2 sin4 θ j |0〉〉〈〈0|up, j

+ μ2 sin2 θ j cos2 θ j (|2〉〉〈〈2|up, j + |1〉〉〈〈1|up, j )}. (C16)

Since MPO EE is additive, it is straightforward to obtain MPO EE. For Fig. 4, we first generate a global Haar-random
unitary matrix and find θ j corresponding to the matrix. We then use Eq. (C16) to compute the MPO EE. Especially when
μ = βNγ /N (Nout = βNγ ), assuming M � N2 (collision free) and an asymptotic limit N � 1, the average MPO EE for a
bipartition [1 . . . M/2] : [M/2 . . . M] can be approximated as

SM/2
α (|ρ̂〉〉) = O(N1−2(1−γ )α ) when α �= 1, (C17)

SM/2
1 (|ρ̂〉〉) = O(N2γ−1 log2 N ). (C18)
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