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Abstract
Audio streaming services, on both voice assistants and in visual

apps, often field requests such as “play more like Foo Fighters.” The

service then returns a sequence of tracks that is both relevant to the

request and personalized to the requester. While it is natural to eval-

uate the policies that produce these sequences in terms of customer

engagement, such metrics do not assess their performance on other

key business goals. We present our work to implement a content
blending strategy to increase the prevalence of specific strategically-

important content in these sequences, while minimizing harm to

playback rates. In particular, we describe our efficient extension of

off-policy evaluation to evaluate how blending impacts both overall

engagement and the number of successful new release plays. We

demonstrate how we used this work to choose blend rates for new

policies so as to maximize overall engagement while preserving the

new release metric baseline set by the current production policy.

We also investigate the accuracy of these methods by comparing

our estimates to online results.
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1 Introduction
Amazon Music is an audio streaming service offering music, pod-

casts, and audiobooks. We focus here on seed-based music experi-

ences. These are sessions of radio station-like playback initiated

by a customer selecting a “seed” such as a song, artist, album, or

playlist. The customer expects to receive a sequence of tracks that

is both similar to the seed and reflective of their personal taste.

When evaluating the goodness of these experiences, we are often

interested in multiple, possibly competing business metrics. Of pri-

mary interest is the customer’s engagement with the stream, often

measured by total listening time or average track completion. We

also care about which types of music are consumed—and in partic-

ular, the prevalence of new releases (“NRs”). Promoting this content

may help to address cold-start bias in the experience algorithms,

since NRs tend to have less listening history. It also aids in music

discovery and the overall freshness of the experience, which have

been shown to promote long-term customer satisfaction [16]. In

addition to NRs, there may be other content types to promote, such

as less popular music or spoken audio. Thus, our goal is to increase

overall engagement while also increasing engagement with these

sub-categories.

We present a simple approach to increase the prevalence of a

specific content type in seed-based playback queues while maintain-

ing relevance as measured by average track playback length. Our

primary contribution is an efficient method to estimate and tune the

performance of the resulting algorithms offline, using the formalism

of off-policy evaluation (OPE) from the contextual bandit literature.

Additionally, we show how this method can be used to select blend

rates for new policies so as to (conversely) maximize overall en-

gagement while keeping content-specific engagement flat. Finally,

we demonstrate the effectiveness of our approach by comparing

these offline estimates to results from online experiments.

2 Model and Evaluation
At a high-level, Amazon Music produces station-based experiences

in two steps: Selection, to select a few hundred candidates from the

millions available in the catalog, followed by Sequencing (our focus

here), to identify the (next) best track to play from the eligible can-

didates. The following subsections describe the sequencing model,

and how we evaluate it, in greater detail.
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2.1 Scoring model
To select the track that is played at each sequencing step, we use a

model to score each candidate track, then pick the track with the

highest score. We distinguish the scoring model, which assigns a

score to each track, from the policy, which tells us how to select

the track given the scores. We train the scoring model to predict a

function of how long the customer will listen to the sequenced track.

For training data, we use a subset of listening sessions as sequenced

by (a slightly randomized version of) a production policy.

2.2 Offline policy evaluation
To measure the impact of modifying the scoring model (e.g., via

new features or model architectures) prior to online testing, we

use offline evaluation. This allows us to perform parameter tuning

and model selection without affecting the customer experience. Off-
policy evaluation (OPE) [1–4, 6–11, 13, 15, 17–23] is a methodology

designed to estimate the performance of a new policy using data

collected by a different policy (e.g., a randomized production policy).

We focus on importance weighting approaches, which reweight the

observed data to adapt to the distribution induced by a new policy.

The most straightforward example of this is the Inverse Propensity
Scoring (IPS) estimator [5], defined as IPS𝑟 (𝜋) := 1

𝑛

∑
𝑖 𝑤𝑖𝑟𝑖 , where

𝜋 is the new policy, 𝑟𝑖 is the 𝑖th logged instance of the reward 𝑟

(representing the goodness of the sequencing decision), and𝑤𝑖 is a

corresponding importance weight.

We focus on a variant of IPS called Self-Normalized Inverse
Propensity Scoring (SNIPS) [20], which offers a preferable balance

of bias and variance without requiring parameter tuning. The

SNIPS estimator is defined as SNIPS𝑟 (𝜋) := IPS𝑟 (𝜋)/CV(𝜋), where
CV(𝜋) := 1

𝑛

∑
𝑖 𝑤𝑖 is a multiplicative control variate [20]. Our pri-

mary reward is engagement, which we measure by the number of

seconds the customer listens to the track, denoted 𝑟sec. Each time

we run OPE to evaluate a new scoring model, we obtain an esti-

mate, 𝑟 sec, of the expected number of seconds each track will be

listened to when the model is deployed in a new production policy.

In general, we prefer policies with higher 𝑟 sec.

3 Multinomial blending
As mentioned in Section 1, it is not enough for us to optimize for

𝑟 sec; we are also tasked with increasing the number of successful
new release plays, where “success” is defined as 𝑟sec ≥ 30, and a

track is newly-released if its release date is within 30 days. We can

use OPE to evaluate new policies in terms of this metric by defining

a new reward function: 1 if the selected track is a NR AND the

customer listens to it for ≥ 30 seconds, and 0 otherwise. We refer

to this reward as 𝑟nrs and denote its average by 𝑟nrs.

To increase 𝑟nrs, given stringent time and resourcing constraints,

we implemented the stochastic blending approach detailed in Al-

gorithm 1. Dubbed multinomial blending by Lichtenberg et al. [12],

this approach has been used successfully at Amazon Music to com-

bine music and podcast recommendations. Our proposed method

(detailed below) can be viewed as an extension of this work in

which we present efficient hyper-parameter estimation.

For simplicity, we will assume a single content type of interest

(though the method can be extended to multiple types) and that all

Inputs: A model𝑀 , blend rate 𝑝;

for each sequencing decision with set of candidate tracks𝐶 do
Have𝑀 score the tracks in 𝐶;

Flip a weighted coin with probability 𝑝 of heads;

if coin flip is tails then
Return the track with the highest score in 𝐶;

else
if 𝐶 contains NRs then

Return highest-scoring NR track;

else
Return highest-scoring track;

end
Algorithm 1:Multinomial blending for seed-based sequencing

candidate tracks—both of the type and not of the type—are scored

by a single scoring model (see Section 2.1).

3.1 OPE for blended policies
Since we associate higher scores with higher playback rates, Algo-

rithm 1 presents a clear trade-off between policy optimality—where

we select the highest-scoring track, and selecting a NR—which may

have a lower score. If the scoring model is accurate, increasing 𝑝

will most likely result in an increase in 𝑟nrs but a decrease in 𝑟 sec.

Recall that wewant to use blending to increase 𝑟nrs. To determine

which value of 𝑝 to use, we can run OPE with different blend rates

towards finding an acceptable decrease in 𝑟 sec given the relative

increase to 𝑟nrs. The key advantage of our approach (presented

below) is that, unlike traditional methods requiring𝑂 (𝑁 ) OPE runs

to evaluate 𝑁 different blend rates, we can estimate the effect of any

blend rate using just a single OPE run, reducing the computational

cost to 𝑂 (1).
Let 𝜋eng represent an “engagement-based” policy determined

by selecting the highest-scoring track per a scoring model𝑀 (e.g.,

what we described in Section 2.1). Let 𝜋nr represent a policy that

always selects a NR when one is available, and when one is not,

agrees with the selection of 𝜋eng. (In other words, 𝜋nr always

selects tracks according to the “heads” scenario in Algorithm 1,

which is equivalent to setting 𝑝 = 1.) Finally, let 𝜋
mnb(𝑝 ) represent

the blended policy defined in Algorithm 1. Noting that the IPS

estimator and control variate are linear in the new policy, we can

write the SNIPS estimator for a blended policy, with any 𝑝 ∈ [0, 1],
as

SNIPS𝑟 (𝜋mnb(𝑝 ) ) =
(1 − 𝑝) · IPS𝑟 (𝜋eng) + 𝑝 · IPS𝑟 (𝜋nr)
(1 − 𝑝) · CV(𝜋eng) + 𝑝 · CV(𝜋nr)

. (1)

Because CV(𝜋) ≈ 1 when the data is suitable for OPE [14],

Eq. (1) shows a nearly linear relationship, controlled by 𝑝 , between

the estimated performance of the original policy and its “content

type-specific” variant. Further, with these two estimates and their

corresponding control variates, we can easily compute the esti-

mated performance of the blended policy for any value of 𝑝 . Eq. (1)

holds for any reward 𝑟 , and so we can use it to estimate 𝑟 sec and

𝑟nrs of a blended policy 𝜋
mnb(𝑝 ) .

To illustrate the trade-off in metrics using our technique, we plot

the results of Eq. (1) for an example policy, with 𝑝 ∈ [0, 1], and the

offline rewards 𝑟 sec (blue) and 𝑟nrs (orange) in Fig. 1. Since the two

rewards do not use the same units (and are therefore not on the
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Figure 1: An illustration of the metric trade-off with blend-
ing. The expected rewards are divided by their respective
maximum values (which happens when 𝑝 = 0 for 𝑟 sec and
when 𝑝 = 1 for 𝑟nrs) in order to show the relative change in
each reward as 𝑝 varies.

same scale), we show the relative change in each reward, rather

than their absolute values. As the blend rate 𝑝 increases from 0 to

1, 𝑟 sec slowly decreases from its maximum value (achieved without

blending) and 𝑟nrs quickly increases to its maximum value (achieved

with maximum blending).

3.2 Tuning the blend rate
The four quantities in Eq. (1) are model-dependent, i.e., they depend

on 𝑀 in Algorithm 1. If we try to improve or simply retrain the

current model, the resulting policy may produce different reward

estimates for the same blend rate. For example, if a new feature

improves the model’s ability to recognize favorable NRs (increasing

IPS𝑟nrs (𝜋)), then we may choose to use a smaller value of 𝑝 so that

we can maximize engagement while maintaining performance on

NRs.

Let 𝜋
prod

and �̃� denote the prod policy and a new policy, respec-

tively. The goal is to choose 𝑝 for the new blended policy �̃�
MNB(𝑝 )

so that its NR performance is no worse than that of the production

policy. We can use Eq. (1) to solve for a blend rate, 𝑝★, such that

SNIPS𝑟nrs (�̃�mnb(𝑝★) ) ≥ SNIPS𝑟nrs (𝜋prod). This is satisfied by

𝑝★ =
SNIPS𝑟nrs (𝜋prod) · CV(�̃�eng) − IPS𝑟nrs (�̃�eng)

SNIPS𝑟nrs (𝜋prod) · Δ(CV) − Δ(IPS𝑟nrs )
, (2)

where Δ(IPS𝑟nrs ) = IPS𝑟nrs (�̃�eng) − IPS𝑟nrs (�̃�nr) (3)

and Δ(CV) = CV(�̃�eng) − CV(�̃�nr). (4)

The resulting blended policy, �̃�
mnb(𝑝★) , will have the same NR

estimate as 𝜋
prod

. Further, we can use Eq. (1) (with 𝑟sec and 𝑝
★
) to

estimate the engagement of �̃�
mnb(𝑝★) .

Table 1: Estimated impact on 𝑟 sec and 𝑟nrs, and online met-
rics Σ(𝑟sec) and Σ(𝑟nrs), for policies with the same scoring
model at various MNB blend rates. All impact percentages
are relative to the policy without blending.

SNIPS estimates online

𝑝 𝑟 sec 𝑟nrs Σ(𝑟sec) Σ(𝑟nrs)
0.01 -0.05% 30.08% -0.05% 4.05%

0.03 -0.20% 88.72% -0.15% 11.53%

0.05 -0.36% 148.12% -0.20% 17.95%

0.10 -0.66% 294.74% -0.30% 31.49%

0.25 -1.63% 732.33% -0.71% 61.81%

4 Experiments
Our empirical study consists of two parts: first, we investigate the

accuracy of offline estimates w.r.t. predicting online outcomes; then,

we explore tuning the blend rate as described in Section 3.2.

4.1 Using OPE to find candidate blend rates
The first multi-column of Table 1 reports the estimated impact (via

SNIPS estimates) to 𝑟 sec and 𝑟nrs for several blend rates 𝑝 , relative

to the unblended policy. As expected, as 𝑝 increases, 𝑟 sec decreases

while 𝑟nrs increases. Further, 𝑟nrs increases relatively faster than

𝑟 sec—e.g., blending at 25% increases 𝑟nrs by 732% while reducing

𝑟 sec by only 1.63% (compared to no blending). While this might

seem like an obvious win, one must remember that these metrics

are of different value to the business, and even small changes to

𝑟 sec may be meaningful.

To assess the accuracy of the offline estimates, we ran a 14-day

online experiment with the unblended policy (𝑝 = 0) as the control

baseline, and the five blended variants as treatments. All treatments

use the same scoring model as in the offline results (following

the approach described in Section 2.1). The “online” columns of

Table 1 show the relative change in the average customer’s total
listening time (to the seed-based experience), denoted Σ(𝑟sec), and
the average customer’s successful NR play count, denoted Σ(𝑟nrs).
It is expected that the relative performance between treatments

differs from the offline results, given the different metrics (average

track-level engagement, 𝑟 , vs. average customer-level engagement,

Σ(𝑟 )). However, we do find that the online results are directionally
aligned with our offline estimates.

4.2 Effectiveness of tuning the blend rate
In this section, we demonstrate using Eq. (2) to find appropriate

blend rates for new policies. As discussed in Section 3.2, our goal is

to maximize overall engagement while maintaining performance

on NRs, relative to a production policy. More specifically, we be-

gin with four new (initially unblended) policies 𝜋1, . . . , �̃�4, each

derived from its own scoring model, and a blended production pol-

icy 𝜋
mnb(𝑝prod ) . Then for each �̃�𝑖 , we use Eq. (2) to find 𝑝★

𝑖
so that

the NR performance of each resulting blended policy �̃�𝑖,mnb(𝑝★
𝑖
) ,

𝑖 = 1 . . . 4, will be close to the NR performance of 𝜋
mnb(𝑝prod ) .

We present our results in in Table 2. The first multi-column

shows the offline performance of the unblended treatment policies
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Table 2: Estimated impact before and after blending, aswell as
online observed metrics, for candidate policies (treatments)
with 𝑝 tuned per Eq. (2) to match the control policy’s NR
performance. All results are relative to control.

offline �̃�𝑖 offline �̃�𝑖,mnb(𝑝★
𝑖
) online �̃�𝑖,mnb(𝑝★

𝑖
)

treat. 𝑟 sec 𝑟nrs 𝑟 sec 𝑟nrs Σ(𝑟sec ) Σ(𝑟nrs )
𝑖 = 1 -1.19% 268.62% -0.77% 4.55% -0.38% -2.75%

𝑖 = 2 -2.21% 280.46% -1.74% 0.00% -1.58% -6.48%

𝑖 = 3 -2.02% -1.03% -1.99% 2.27% -1.62% 0.95%

𝑖 = 4 -0.22% 41.06% -0.15% -2.44% 0.28% 0.08%

relative to an unblended version of the control policy, and the sec-

ond multi-column shows results after blending.
1
Before blending,

for example, �̃�1 is expected to slightly underperform the unblended

version of control in terms of 𝑟 sec (−1.19%), but we expect it to

excel in terms of 𝑟nrs (+268.62%). Per Eq. (1), this means we can

likely blend this policy less than we blend control, i.e., we can set

𝑝 < 𝑝
prod

, and still achieve (roughly) the same 𝑟nrs. However, even

though less blending means we can trade-off less overall engage-

ment (see Fig. 1), �̃�
1,mnb(𝑝★

1
) is still expected to have lower 𝑟 sec than

𝜋
mnb(𝑝prod ) (−0.77%). This is because the results of Eq. (1) depend

specifically on the given policy/scoring model (hence the need to

readjust the blend rate for new policies), and the fact that, for these

policies, 𝑟 sec increases much more slowly than 𝑟nrs decreases. We

can interpret this as the reward of the highest-scoring NR being

generally close to that of the overall highest-scoring item, and so se-

lecting a NR results in only a small deviation from optimal expected

engagement.

The “online” columns in Table 2 contain the resulting metrics

from a 14-day online experiment. While we tuned the blend rates

to produce similar 𝑟nrs across treatments (towards making Σ(𝑟nrs)
identically 0), this metric actually varies significantly. Though re-

sults for 𝑖 = 4 are as expected, the blend rates for 𝑖 = 1, 2 were too

small, and too big for 𝑖 = 3. There is also some directional misalign-

ment between the expected blended performance and the online

results—e.g., we expected 𝑖 = 4 to underperform the prod policy

in terms of both engagement and NRs, but online we see a small

increase in both metrics. We think it likely that both observations

are due to the high variance of SNIPS estimates for 𝑟nrs and/or the

difference between offline and online metrics.

5 Conclusions
In this paper, we proposed an efficient method for evaluating and

tuning recommendation policies that probabilistically blend ex-

posure of different content types. The method combines reward

estimates for the unblended and “max” blended policies originating

from the same scoring model, illustrating a clear trade-off between

the unblended policy’s original objective and an alternative objec-

tive (in our case, overall engagement vs. NR engagement). We also

derived a closed-form expression to tune the blend rate in order

to match a given baseline performance. Online experiments con-

firmed that the approach yields directionally accurate predictions

1
While our goal was to choose 𝑝 to make the values in the blended 𝑟nrs column all

zeroes, this was not fully achieved, due to truncating the blend rates found using Eq. (2)

to the nearest tenth.

but that they are sensitive to variance. To mitigate this, we can try

simply collecting more evaluation data for OPE (via longer time

windows and/or at higher sample rates). We can also modify our

randomized data collection pipeline, which currently branches off

the production policy before blending, to instead source from the

blended policy, thereby providing more instances of selected NRs

and hence more positive NR rewards to be leveraged by OPE.
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