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ABSTRACT

This work studies the threats of adversarial attack on multivariate probabilistic
forecasting models and viable defense mechanisms. Our studies discover a new
attack pattern that negatively impact the forecasting of a target time series via mak-
ing strategic, sparse (imperceptible) modifications to the past observations of a
random (small) number of other time series. To mitigate the impact of such attack,
we have developed two defense strategies. First, we extend a previously developed
randomized smoothing technique in classification to multivariate forecasting sce-
narios. Second, we develop an adversarial training algorithm that learns to create
adversarial examples and at the same time optimizes the forecasting model to im-
prove its robustness against such adversarial simulation. Extensive experiments on
real-world datasets confirm that our attack schemes are powerful and our defend
algorithms are more effective compared with baseline defense mechanisms.

1 INTRODUCTION

Analyzing and improving prediction robustness for time-series forecasting models is a long-standing
issue with broad applications in many disciplines such as climate change (Mudelsee, 2019), financial
market analysis (Andersen et al., 2005), down-stream decision systems in retail (Böse et al., 2017),
resource planning for cloud computing (Park et al., 2019), and optimal control of vehicles (Kim
et al., 2020). The robustness issue originally is stemmed from the fact that time-series data of-
ten contain measurement noises and the statistical forecasting model can be very sensitive against
such noises. Thus, developing forecasting models less sensitive to such noise while being able to
preserve performance are highly desirable. Most of previous works (Liu & Zhang, 2021b; Wang
& Tsay, 2021; Liu & Zhang, 2021a) in time series have therefore focused on (a) improving the
robustness of many traditional, well-known statistical models such as vector auto-regressive and
ARIMA (Brockwell & Davis, 2009), exponential smoothing (Brown, 1957) and Prophet (Taylor &
Letham, 2018); or (b) improving model stability against outliers (Connor et al., 1994; Gelper et al.,
2010). However, these approaches have not considered the possibility of adversarial noises which
are strategically created to mislead the model rather than being distributed by a known distribution.

As a matter of fact, vulnerabilities against adversarial noises have been previously pointed out
(Szegedy et al., 2013; Goodfellow et al., 2014b) in classification. For example, it has been demon-
strated that human-imperceptible adversarial perturbation can alter classification outcomes of a deep
neural net (DNN), revealing a severe threat to many safety-critical systems such as self-driving
cars (Zhang et al., 2021). As such risk is often associated with the high capability to fit complex
data pattern of DNN, it is possible that a similar threat can also occur in forecasting where traditional
statistical models are being replaced increasingly by modern DNN-based forecasting models Sali-
nas et al. (2019; 2020); Rangapuram et al. (2018); Lim et al. (2020); Wang et al. (2019); Park et al.
(2022). For another example, imagine a situation in cost-critical financial market where a financial
institute makes profits based on its prediction of its client’s stock price, which might be attacked by
adversaries who want to alter the financial institute’s prediction. To make the attack hard to detect,
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the adversaries might devise a scheme that invests and hence changes the prices adversely for a small
subset of stock indices, among a much larger pool of stock indices. Furthermore, the adversaries
may not directly invest in the client’s stock, which makes the attack even harder to detect as there is
no direct adverse investment into the target stock.

However, such potential threats and simulation of a seemingly plausible and imperceptible attack
to multivariate time-series forecasting (via an example of stock price prediction) are not straight-
forward to be formulated through the existing framework developed in classification settings. This
is due to several setting differences between forecasting and classification, particularly in terms of
unique characteristic of time series, e.g., time horizon, multiple items, and probabilistic predictions
of forecasters, e.g., quantiles. To the best of our knowledge, although there have been several recent
studies in this direction (Dang-Nhu et al., 2020; Yoon et al., 2022), they are all restricted to univari-
ate forecasting where any via attacks must happen on the same target time series, which, unlike the
threat in our stock prediction example above, are easier to detect.

Thus, it remains unclear under what settings and robustness requirements that adversarial pertur-
bations can be substantiated into an attack for multivariate time-series forecasting; and whether it
is defensible against such adversarial threats. Intuitively, under multivariate time-series scenarios,
there are new regimes of sparse and indirect cross time series attack, which can be more dominant
and effective than the direct attack substantiated in univariate case. Understanding whether such
new regimes of attack exists and can be defended against is the main goal of our paper, which is
achieved via addressing the following questions:

Indirectness. Can we mislead the forecasting of a time series via perturbations made to others?

Imperceptibility. Can the set of attacked time series be sparse and random to be less perceptible?

Defensibility. Can we defense against attacks with the above properties?

We address the above questions via the following technical contributions:

1. We devise a deterministic attack and show that adverse perturbations made to a subset of time
series (not including the target time series) as described above can significantly alter the prediction
outcome of the model. To be specific, we develop our deterministic attack (Section 3.2) based on the
DeepVAR (Salinas et al., 2019) model, which currently provides state-of-the-art (SOTA) result to
forecasting. Our attack is formulated as two-stage optimization task. The first phase finds an additive
perturbation series to the authentic data such that DeepVAR’s target statistics (e.g., prediction mean)
is maximally altered in expectation, within a space of low-energy (hence, supposedly imperceptible)
attacks. The second phase is then posed as a heuristic packing problem where all but k rows of the
perturbation matrix are zeroed out such that minimal amount of attack effect is lost.

2. We develop probabilistic attack that learns to strategically make adverse perturbation to different
(small) subsets of time series, making the attack much more stealth and harder to detect. Specifically,
we formulate a probabilistic attack (Section 3.3) that relaxes the above k-hot constraint into a softer
version that only requires the expectation of the attack vector rather than itself to be k-hot. Under
such relaxation, we found that there is a provably approach to construct a learnable distribution
over such k-hot attack space, with differentiable parameterization. This allows for the probabilistic
attack model to elegantly merge the two separate phases of the deterministic attack. It can be shown
empirically that an attack structured this way is often more effective (Section 5).

3. We propose two defense mechanisms. On the one hand, we adopt randomized smoothing tech-
nique (Cohen et al., 2019; Li et al., 2019) to our setting. On the other hand, we devise a defense
mechanism (Section 4.2) based on the differentiable formulation of the probabilistic attack above.
Our defense is generated as the optimal solution to a mini-max optimization task which minimizes
the maximum expected damage caused by the probabilistic attacker that continually updates the gen-
eration of its adverse perturbation in response to the model updates. We also show the non-trivial
effectiveness of our proposed defense against the aforementioned attacks (Section 5).

2 RELATED WORK AND BACKGROUND

Deep Forecasting Models. The idea of applying neural network to time series forecasting dates
back to Hu & Root (1964) and stayed relatively quiet for a few decades. Recently, with the growth
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of large dataset and improvement of computing resources, more DNN-based forecasting models are
investigated. Given the temporal dependency of time series data, RNN and CNN -based architectures
have been proved a success for time series forecasting tasks (Rangapuram et al., 2018; Lim et al.,
2020; Wang et al., 2019; Salinas et al., 2020) and Oord et al. (2016); Bai et al. (2018) respectively. In
order to model the uncertainty, various probabilistic models have been proposed from distributional
outputs Salinas et al. (2020); de Bézenac et al. (2020); Rangapuram et al. (2018) to distribution-free
quantile-based outputs (Park et al., 2022; Gasthaus et al., 2019; Kan et al., 2022). In multivariate
cases, Sen et al. (2019) leverages a global matrix factorization and a local temporal network . Salinas
et al. (2019) generalize DeepAR (Salinas et al., 2020) to multivariate cases and employs low-rank
Gaussian copula process to reduce problem complexity raised by high dimensionality. See Lim &
Zohren (2021) for more comprehensive reviews.

Adversarial Attack. Despite its success in various tasks, deep neural network is especially vulnera-
ble to adversarial attacks (Szegedy et al., 2013) in the sense that even imperceptible adversarial noise
can lead to completely different prediction. In computer vision, many adversarial attack schemes
have been proposed. See Goodfellow et al. (2014b); Madry et al. (2018) for attacking image clas-
sifiers and Dai et al. (2018) for attacking graph structured data. In the field of time series, there is
much less literature and even so, most existing studies on adversarial robustness of MTS models
(Mode & Hoque, 2020; Harford et al., 2020) are restricted to regression and classification settings .
Alternatively, Yoon et al. (2022) studied both adversarial attacks to probabilistic forecasting models,
which is only restricted to univariate settings.

Adversarial Robustness and Certification. Against adversarial attacks, an extensive body of work
has been devoted to quantify model robustness and defense mechanisms accordingly, among which
are Fast-Lin/Fast-Lip (Weng et al., 2018) recursively computing local Lipschitz constant of a neu-
ral network, PROVEN (Weng et al., 2019) certifying robustness in a probabilistic approach and
DeepZ (Singh et al., 2018) based on abstract interpretation. To enhance model robustness, adver-
sarial training and robust training are two popular techniques. In adversarial training (Madry et al.,
2018; Wong et al., 2020), a neural network is trained on the adversarial examples instead of the orig-
inal ones. As for robust training, one trains the model by simultaneously minimizing the loss and
maximizing certified robustness (Weng et al., 2018; Wong & Kolter, 2018). Recently, randomized
smoothing has gained increasing popularity as to enhance model robustness, which was proposed by
Cohen et al. (2019); Li et al. (2019) as a defense approach with certification guarantee with several
variants (Salman et al., 2019; Zhai et al., 2020; Kumar & Goldstein, 2021; Chiang et al., 2020) in
the image classification setting. To the time series setting, Yoon et al. (2022) adopted randomized
smoothing technique to univariate forecasting models and developed theory therein. However, to
the best of our knowledge, there is no prior work applying randomized smoothing into multivariate
probabilistic models.

3 ADVERSARIAL ATTACK STRATEGIES

This section provides a quick review of the multivariate probabilistic forecasting model with as-
sociated adversarial framework (Section 3.1). Then, we introduce two class of sparse and indirect
attacks. First, a deterministic approach is developed which optimizes for a deterministic set of
time series to be altered adversely in order to attack a target time series. This is achieved via a
two-stage optimization process (Section 3.2). Next, to equip the attack with uncertainty, a second
non-deterministic approach is developed to instead optimize the attack effect for a distribution over
such subset of time series, which (unlike the former approach) can be learned end-to-end in a single
stage (Section 3.3).

3.1 FRAMEWORK OF ADVERSARIAL ATTACK AGAINST MULTIVARIATE PROBABILISTIC
FORECASTING

Suppose a T -step history of a d-dimensional multivariate time series (MTS) x1,x2, . . . ,xT ∈ Rd

are given. Let xi,t ∈ R denote the observed value of i-th time series at time t. The forecasting task
is to predict the values xT+1,xT+2, . . . ,xT+τ of the MTS τ -step into the future. The prediction
is often based on the observed values of x1,x2, . . . ,xT ∈ Rd. A probabilistic forecasting model
pθ(z|x) is often characterized as an auto-regressive function mapping from the observed input x ∈
Rd×T to a distribution over future target values z ∈ Rd×τ . Its parameterization θ is often associated
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with a DNN in probabilistic deep forecasting models. Here, for notational convenience, we define
x = (x1,x2, . . . ,xT ) ∈ Rd×T and z = (xT+1,xT+2 . . . ,xT+τ ) ∈ Rd×τ . Also, for a matrix A, let
Ai,∗ denote the i-th row of A. We define the element-wise maximum norm and Frobenius norm of
A as ∥A∥max = maxi,j |Aij |, ∥A∥F = (

∑
i,j A

2
ij)

1/2. For a specific form of θ, we refer interested
readers to the DeepVAR paper (Salinas et al., 2019).

Sparse Adversarial Attack. We will now formally define an attack to the above forecasting model.
In particular, suppose we are interested in the statistic χ(z) ∈ Rm that is a function of the random
vector z. To stage an attack, we let δ denote an adverse perturbation to the input x such that the
Euclidean distance between the expected statistic Epθ(z|x+δ)[χ(z)] and an adversarial target t(x) ∈
Rm is minimized. Here, t(x) is the desired target specified by the adversaries, which is radically
different from the clean prediction Epθ(z|x)[χ(z)]. Thus, the optimal attack can be found via solving
the following constrained minimization task:

min
δ∈Rd×T

J(δ) :=
∥∥∥Epθ(z|x+δ) [χ(z)]− t(x)

∥∥∥2
2
, s.t. ∥δ∥max ≤ η, (3.1)

where η specifies the desired energy of the attack and the above expectation is over z ∼ pθ(z|x+δ).
Often, η is selected to be small to make the attack less perceptible. In the above, suppose that
we want to mislead the forecasting for a set of pre-specified time-series with indices I ∈ [d], our
interested statistic will then be χ(z) := χ(zI,∗) which abstractly defines the predictive statistic
corresponding to the rows of z with indices in I . Moreover, we can make the above attack sparse,
hence stealthy. We now define a stealth attack δ as a sparse matrix such that its row sparsity as
s(δ) = |{i : δi,∗ ̸= 0}| ≤ k where k is the desired level of sparsity. Intuitively, this means a stealth
attack is configured such that only a small subset of its row might be non-zero whereas the rest of it
is zero. A small value of k would therefore make the attack even less perceptible. Furthermore, since
the interested statistic χ(z) = χ(zI,∗) involves the indices of time series in I , setting δI,∗ = 0 can
make the attack more stealthy as there is no direct adverse alternation in the time series appearing in
χ. Therefore, an optimal stealth attack can be found by adding these constraints to Eq. (3.1),

min
δ∈Rd×T

J(δ) := q
∥∥∥Epθ(z|x+δ) [χ(z)]− t(x)

∥∥∥2
2
, s.t. ∥δ∥max ≤ η, s(δ) ≤ k, δI,∗ = 0. (3.2)

This however results in an intractable optimization task in general, so we provide two approxima-
tions in the subsequent sections.

3.2 DETERMINISTIC SPARSE ATTACK

We first present a deterministic approach to solving (3.2) approximately. Here, the difficulty in
optimizing (3.2) is due to the intractable constraint s(δ) ≤ k. To sidestep this, we use projected
gradient descent (PGD) to numerically update the values of δ,

δ(t+1) =
∏

B∞(0,η)

(
δ(t) −∇δJ

(
δ(t)

))
, (3.3)

where
∏

B∞(0,η) is the projection onto the ℓ∞-norm ball B∞(0, η) with a radius η centered around
the origin. Note that∇δJ(δ) involves the computation of the gradient of an expectation which is too
complex to be analytically integrated. To overcome this intractability, we adopt the re-parameterized
sampling approach used in Dang-Nhu et al. (2020) and Yoon et al. (2022). Suppose δ∗ denote the
converged value of δ following the iterative update in Eq. (3.3), we solve for its sparse approximation
via

δ̂ = argmin
δ

∥δ − δ∗∥F , s.t. s(δ) ≤ k, δI,∗ = 0. (3.4)

It is straightforward to see that (3.4) can be solved analytically. Given δ∗, we compute the absolute
row sum ci =

∑T
t=1 |δ∗i,t| for i ∈ Ic and sort them in descending order cπ(1) ≥ · · · ≥ cπ(d−1).

Rows from the top k index π(1), π(2), . . . , π(k) will be kept in δ̂ while the other will be zeroed out,
as described in Algorithm 1.

3.3 PROBABILISTIC SPARSE ATTACK

In this subsection, we further remove the two-stage heuristic approximation in Section 3.2, which is
non-differentiable and cannot be optimized end-to-end, making it unsuitable to be integrated into a
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differentiable defense mechanism as described later in Section 4.2. The key issues here are in fact
the non-convex and non-differentiable constraint in (3.2) which disables differentiable optimization
via gradient descent. To sidestep this, we instead view the sparse attack vector as a random vector
drawn from a distribution with differentiable parameterization which can be learned via gradient
updates.

The core challenge here is how to configure such distribution whose support is guaranteed to be
within the space of sparse vectors. To achieve this, we configure this distribution as a learnable
combination of a normal standard and a Dirac density, whose samples can be interpreted as
differentiable transformation of samples drawn from a parameter-free normal standard – see
Theorem 3.1. As we can update the parameters of the transformation via its gradient, we can learn
the attack distribution with sparse support – see Theorem 3.2. Key to this parameterization is the
ability to sample from a combination between Dirac and Gaussian densities, which is substantiated
via the construction of a sparse layer as detailed below.

Sparse Layer. A sparse layer is configured as a conditional distribution qΘ(δ|x) such that E[s(δ)] ≤
k and δI,∗ = 0 where δ ∼ qΘ(δ|x), I is the set of target time-series which are not to be altered, and
k is the user-specified level of sparsity as defined before. Let Θ = (β, γ). We treat each row δi,∗ of
δ as an independent sample drawn from qi(δi,∗|x;β, γ) parameterized by β and γ, as defined below:

qi

(
δi,∗|x;β, γ

)
:= ri (γ) · q′i

(
δi,∗|x;β

)
+

(
1− ri(γ)

)
·D

(
δi,∗

)
, (3.5)

where ri(γ) := (kγ
1/2
i /
√
d)/(

∑d
i=1 γi)

1/2 are the combination weights, D(δi,∗) is the Dirac den-
sity concentrated at δi,∗ = 0 and q′i(δi,∗|x;β) is a Gaussian density whose mean and variance are
functions of x which are parameterized by β that can be weights of a DNN. The combination weight
ri(γ) on the other hand denotes the probability mass of the event δi,∗ = 0, which is parameterized
by γ. Intuitively, this means the choice of {ri(γ)}ni=1 controls the row sparsity of the random matrix
δ, which can be calibrated to enforce that E[s(δ)] ≤ k. We will show in Theorem 3.1 how samples
can be drawn from the combined density in (3.5). Then, Theorem 3.2 to show why sample δ drawn
from (3.5) would meet the constraint E[s(δ)] ≤ k. Put together, Theorem 3.1 and Theorem 3.2
enables differentiable optimization of a sparse attack distribution as desired.
Lemma 3.1. Let δ′i,∗ ∼ q′i(·|x, β) and ui ∼ N (0, 1) for i = 1, . . . , d. Define δi,∗ = δ′i,∗ ∗
I(ui ≤ Φ−1(ri(γ))). Then, δi,∗ ∼ qi(δi,∗|x;β, γ).

Here, qi(·|x;β, γ) is given in (3.5) and Φ−1 is the inverse cumulative of the standard normal
distribution. We provide the proof in the appendix.

For implementation, observing that the second property δI,∗ = 0 can always be satisfied by
zeroing out the I rows of δ. Thus, for simplicity, we ignore this constraint. Let q′i(·|x;β) be dense
distributions, e.g. N (µ(β), σ2(β)I), over RT and ui ∼ N (0, 1) for i ∈ [d]. We can construct
a binary mask as maski = I(ui ≤ Φ−1(ri(γ))), i ∈ [d], where ri(γ) = (kγ

1/2
i /
√
d)/(

∑d
i=1 γi)

1/2.

Next, for each i ∈ [d], we draw δ′i,∗ from q′i(·|x, β) and obtain δi,∗ by δi,∗ = δ′i,∗ ∗ maski, where
∗ is element-wise multiplication . Finally, we set δI,∗ = 0. Theorem 3.2 below then verifies the
required sparsity property in expectation, thus completing our differentiable sparse attack.
Lemma 3.2. Let δ ∼ qΘ(·|x). Then, E[s(δ)] ≤ k.

We provide the proof in the appendix.

Optimizing Sparse Layer. The differentiable parameterization of the above sparse layer can be
optimized (for maximum attack impact) via minimizing the expected distance between the attacked
statistic and adversarial target:

min
Θ

Eδ∼qΘ(.|x)

∥∥∥Ez∼pθ(z|x+δ)[χ(z)]− t(x)
∥∥∥2
2
, (3.6)

This attack is probabilistic in two ways: First, the magnitude of the perturbation δ is a random
variable from distribution q(·|x). Second, the non-zero components of the mask depend on the
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random Gaussian samples, which brings another degree of non-determinism into the design, making
the attack more stealth and harder to detect.

Discussion. There are three important advantages of the above probabilistic sparse attack. First,
by viewing the attack vector as random variable drawn from a learnable distribution instead of
fixed parameter to be optimized, we are able to avoid solving the NP-hard problem (3.2) as usually
approached in previous literature (Croce & Hein, 2019). Second, our approach introduces multiple
degree of non-determinism to the attack vector, apparently making it more stealth and powerful (see
the experiments in Section 5). Last, as the attack model is entirely differentiable, it can be directly
integrated as part of a differentiable defense mechanism that can be optimized via gradient descent
in an end-to-end fashion – see Section 4.2 for more details.

4 DEFENSE MECHANISM AGAINST ADVERSARIAL ATTACKS

The adversarial attack on probabilistic forecasting models was investigated in Dang-Nhu et al.
(2020); Yoon et al. (2022) under univariate time series setting. Many efforts have been made to
defend against adversarial attack. Data augmentation has been widely applied in forecasting (Wen
et al., 2020) and can improve model robustness. In the following section, we go beyond data aug-
mentation and introduce more advanced techniques to enhance model robustness via randomized
smoothing (Cohen et al., 2019) and mini-max defense using sparse layer.

4.1 RANDOMIZED SMOOTHING

Randomized smoothing is a post-training process and can be applied to any forecasting model fθ(x),
or f(x) if the context is clear. Mathematically, let f be a random function that maps x ∈ Rd×T to a
random vector f(x) in Rd and denote the CDF of f(x) as Fx(r) = P(f(x) ⪯ r), where ⪯ denotes
element-wise inequality. Let gσ(x) be the randomized smoothing version of f(x) with noise level
σ and gσ(x) is also a random vector in Rd whose CDF is defined as

Gx,σ(r) = Ez∼Nd×T (0,σ2I)

[
P
(
f(x+ z) ⪯ r

)]
,

As will be shown later in Theorem 4.1, the smoothed forecaster gσ(x) has robustness certification.
Different from Yoon et al. (2022), the gσ(x) here is a random vector rather than variable. Therefore,
Gx,σ : Rd → [0, 1] is a multivariate CDF.

Robust Certificate. The next theorem certifies a Lipschitz continuity in terms of function L∞-
norm. Theorem 4.1 indicates that although the original CDF Fx(r) might not even be continuous,
the smoothed CDF Gσ,x(r) is guaranteed to be Lipschitz continuous in x, with Lipschitz constant
scaling proportional to

√
d and inverse-proportional to noise level σ.

Theorem 4.1. Let f be a random function that maps x ∈ Rd×T to a random vector f(x) in Rd and
denote the CDF of f(x) as Fx(r) = P(f(x) ⪯ r). Let gσ(x) be the randomized smoothed version of
f(x), which is also a random vector in Rd whose CDF is defined as Gx,σ(r) = Ez∼N (0,σI)P(f(x+
z) ⪯ r). Then for any x ∈ Rd×T and δ ∈ Rd×T , we have

sup
r∈Rd

|Gx,σ(r)−Gx+δ,σ(r)| ≤
√
d

σ
∥δ∥F

Implementation. To get n future samples from randomized smoothing forecaster, we independently
draw n isotropic Gaussian noises ϵ1, . . . , ϵn ∼ Nd×T (0, σ

2I) and compute the predicted distribution
fθ(x(1 + ϵi)) for future time series. For each fθ(x(1 + ϵi)), draw a sample ẑ(i) ∼ fθ(x(1 + ϵi))
and collect ŷ(i) for i = 1, . . . , n. These will be the sample paths under randomized smoothing.

4.2 MINI-MAX DEFENSE

We notice that our sparse layer can not only be used as an attacker, but is also helpful as a defense
procedure.
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(a) (b)
Figure 1: Plots of (a) averaged wQL under sparse indirect attack against the sparsity level on electricity
dataset. The underlying model is a clean DeepVAR without defense. Target time series I = {1} and attacked
time stamp H = {τ}; and (b) average wQL under different defense mechanisms on electricity dataset. The
attack type is deterministic attack. Target time series I = {1} and attacked time stamp H = {τ}.
Formulation. We randomly initialize a sparse layer gΘ with sparsity k as a hyper-parameter and a
forecasting model fθ from scratch. For each data point x in the training set, the sparse layer gΘ is
used to generate a sparse adversarial example x̂, which is then fed into fθ to complete training phase.
Specifically, in each epoch, the first step is to update the parameters of the sparse layer by maximiz-
ing the model’s deviation from the true prediction ℓg =

∑n
i=1 Eδ∼gΘ(xi;k)Ezi∼fθ(xi+δ)∥zi− ztrue

i ∥,
where ytrue

i is the ground truth prediction. In the second step, we train the model fθ on the cor-
rupted examples generated by the current gΘ. In other words, we update θ to maximize the model
likelihood: ℓf =

∑n
i=1 Eδi∼gΘ(xi;k) log pθ(z

true
i |xi + δi). Note that gΘ and fθ compete over one

another in the sense that in each epoch, gΘ is trained to generate effective attack that could harm fθ
and fθ is then trained to defend the attack from gΘ. We call this defense mechanism a mini-max
defense. Similar ideas have been exploited in deep generative models, such as GAN (Goodfellow
et al., 2014a) and WGAN (Arjovsky et al., 2017). See Algorithm 2 for a detailed description.

Different from the sparse layer used in attack, this sparse layer in defense does not have access
to the attack sparsity or the set of target time series I . Hence, we need to set the sparsity k as a
hyper-parameter and skip the last step of the sparse layer described in Section 3.3 where we set
δI,∗ = 0.

5 EXPERIMENTS

We conduct numerical experiments to demonstrate the effect of our proposed indirect sparse attack
on a probabilistic DeepVAR model (Salinas et al., 2019) and compare various defense mechanisms
including data augmentation, randomized smoothing and mini-max defense. The experiments are
performed on standard real datasets for time series forecasting including Taxi (Taxi & Commission,
2015) and UCI Electricity (Asuncion & Newman, 2007) datasets preprocessed as in Salinas et al.
(2020).

5.1 EXPERIMENT SETUPS

In empirical experiments, we target the prediction of the first time series at the last prediction time
step, i.e. target time series I = {1} and time horizon to attack H = {τ}, the last time step, i.e.,
χ(z) = x1,T+τ . For the adversarial target t(x), we first draw a prediction x̂ from un-attacked model
pθ(·|x) and choose t = c1x̂1,T+τ for some c1 > 0. Note that c1 should be away from 1 to reflect
adversarial target. The attack energy η = c2 max |x|, is proportional to the largest element of the
past observation in magnitude. Unless otherwise stated, the number of sample paths drawn from the
prediction distribution n = 100 to quantify quantiles q(α)i,t .

Dataset. Datasets for experiments include Electricity (Asuncion & Newman, 2007), Taxi (Taxi &
Commission, 2015), Traffic (Asuncion & Newman, 2007), Solar (Lai et al., 2018), Wiki (Gasthaus
et al., 2019). Check for more details on the datasets.

Forecaster For Electricity and Taxi datasets, we train a DeepVAR model implemented by pytorch-
ts (Rasul, 2021) with target dimension 10 and rank 5. We choose τ = 24 and T = 4τ = 96, sparsity
k = 1, 3, 5, 7, 9. In t = c1x̂1,T+τ and η = c2 max |x|, we select c1 = 0.5, 2.0 and c2 = 0.5
respectively and report the largest error produced by these choices of constants. We set attacking
configuration I = {1} and H = {τ}.
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Data augmentation and randomized smoothing Following the convention in Dang-Nhu et al.
(2020); Yoon et al. (2022), we use relative noises in both data augmentation and randomized smooth-
ing. That is, given a sequence of observation x = (xi,t)i,t ∈ Rd×T , we draw i.i.d. noise samples
ξi,t ∼ N (0, σ2) and produce noisy input as x̃i,t ← xi,t(1 + ξi,t). In data augmentation, we train
model with noisy input x̃i,t. In randomized smoothing, the base model is still trained on noisy input
x̃i,t with noise level σ. The noise level σ in the inference phase of randomized smoothing is chosen
to be the same as that in data augmentation so there is no need to distinguish the σ used in the two
processes. In all experiments, σ is set to 0.1.

Metrics We adopt weighted quantile loss (wQL) to measure the performance. (See Appendix E.)

5.2 EXPERIMENT RESULTS

Electricity. The metrics under deterministic attack given by Algorithm 1 and probabilistic attack
using sparse layer are reported in Table 1 and Table 2 respectively. Besides, we plot wQL under both
attacks against sparsity level to better visualize the effect of different types of attack. See Figure 1a
and Figure 1b.

Taxi. We report the performance of deterministic attack and probabilistic attack in Table 6 and
Table 7 respectively in Appendix G. On taxi dataset, it can be observed that in most of the cases
under both attacks, our mini-max defense mechanism achieves the best averaged wQL loss.

Message 1: Sparse and indirect attack is effective (as k increases) In the experiment, we can
verify the effectiveness of sparse indirect attack, that is, one can attack the prediction of one time
series without directly attacking the history of this time series. For example in Table 1, under deter-
ministic attack, the average wQL is increased by 20% by only attacking one out of nine remaining
time series (totally ten but the target time series is excluded). Moreover, attacking half of the time
series can increase average wQL by 102%! This observation is even more noticeable under prob-
abilistic attack: average wQL can be increased by 215% with 50% of the time series attacked.
Besides, wQL loss increases as attack sparsity k increases, which is also an evidence that sparse
indirect attack is effective.

Message 2: Prob. attack is more effective than det. one In general, average wQL increases as
sparsity level increases and probabilistic attack appears to be more effective than deterministic one,
see Figure 1a and Table 1. For example, under no defense when k = 7, probabilistic attack causes
50% larger wQL loss than deterministic one.

Message 3: RS and Minmax are more robust than data augmentation As can be seen in
Figure 1b, Table 1 and Table 2, all three defense methods can bring robustness to the forecasting
model. Data augmentation and randomized smoothing works well under small sparsity and mini-
max defense achieves comparable performance as data augmentation and randomized smoothing
under small sparsity and outperforms them under large sparsity.

Table 1: Average wQL on electricity dataset under deterministic attack. Target time series I = {1}
and attacked time stamp H = {τ}. Smaller is better.

Sparsity no defense data augmentation randomized smoothing mini-max defense
no attack 0.2853±0.0825 0.2288±0.0792 0.2176±0.0700 0.2154±0.0705

1 0.3410±0.0946 0.2949±0.0716 0.2826±0.0718 0.2990±0.0772
3 0.4559±0.1344 0.3655±0.1097 0.3757±0.1012 0.3775±0.0923
5 0.5770±0.1772 0.5554±0.1636 0.5560±0.1751 0.5273±0.1558
7 0.6687±0.2131 0.7076±0.2321 0.7072±0.2308 0.6506±0.2111
9 0.8282±0.2847 0.8412±0.2896 0.8327±0.2786 0.7503±0.2588

5.3 NON-TRANSFERRABLITY OF ATTACKS BETWEEN UNIVARAITE AND MULTIVARIATE
FORECASTERS

From the above Section 5.2, we verify the effectiveness of sparse indirect attack of multivariate
forecasting models. In this subsection, we investigate the transferrability from univariate attack to
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Table 2: Metrics on electricity dataset under probabilistic attack using sparse layer. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity no defense data augmentation randomized smoothing mini-max defense
no attack 0.2909±0.0748 0.2374±0.0764 0.2237±0.0750 0.2342±0.0710

1 0.4364±0.1296 0.5923±0.0913 0.5940±0.1142 0.4935±0.1450
3 0.7245±0.2434 0.5738±0.1759 0.4581±0.1301 0.8079±0.2838
5 0.9143±0.3235 0.8422±0.2945 0.9276±0.3208 0.5265±0.1611
7 0.9991±0.3505 0.8267±0.2823 1.0100±0.3554 0.6161±0.1986
9 1.0317±0.3707 0.8139±0.2827 0.8919±0.3072 0.6466±0.2054

multivariate attack. To be specific, we study the question that if an attack is generated on the same
subset (excluding target time series) of time series using a univariate model and then fed into a
multivariate model, can it indirectly harm the prediction of target time series. We choose sparsity
level k = 1 and other parameters are the same as what is described in Section 5.1. Algorithm 1
shows that the prediction of time series 1 is most sensitive to the history of time series 5. Thus, we
use the technique in Dang-Nhu et al. (2020); Yoon et al. (2022) to generate univariate attack on time
series 5 from DeepAR. Note that only the history of time series 5 has been adversely altered. The
attacked time series is further fed into the same DeepVAR model.

Experiment result. The averaged wQL loss is reported in Table 3. For a better visualization,
the history of time series 5 and prediction of time series 1 are plotted in Figure 4a and Figure 4b
respectively. From the experiment results, attack transferred from univariate model doesn’t serve
as an effective indirect attack on multivariate model, which is also a reason why multivariate attack
worth investigation.

Table 3: Transfer the attack from DeepAR to DeepVAR. Target items I = {1} and time horizon to
attack H = {τ}. Clean DeepAR and DeepVAR models are used. Averaged wQL is reported below

No attack Univariate attack Multivariate attack
0.288 0.322 0.390

5.4 ADDITIONAL EXPERIMENTS STUDY

More datasets. We conduct additional experiments on Solar, Traffic and Wiki datasets. See Ap-
pendix for more details.

Ablation study. We also study the effect of hyper-parameters in our experiments. In this section,
we investigate the effect of H by setting H = {τ/2} and H = {2τ/3}. We also set I = {5} and
I = {10} for targeting at different time series. We also choose the noise level σ in data augmentation
and randomized smoothing from {0.2, 0.3}. Experiments details can be found in Appendix.

6 CONCLUSION

In this work, we investigate the existence of sparse indirect attack for multivariate time series fore-
casting models. We propose both deterministic approach and a novel probabilistic approach to find-
ing effective adversarial attack. Besides, we adopt the randomized smoothing technique from image
classification and univariate time series to our framework and design another mini-max optimiza-
tion to effectively defend the attack delivered by our attackers. To the best of our knowledge, this is
the first work to study sparse indirect attack on multivariate time series and develop corresponding
defense mechanisms, which could inspire a future research direction.
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A ILLUSTRATION OF ATTACK ON FINANCIAL INSTITUTE

Figure 2: Illustration of indirect stealth attack to financial institute. The attacker targets at adversely
altering the prediction of company A’s stock price. To perform indirect attack, the attacker selected
to attack company B and company Z.

B ADVERSARIAL ATTACK EXAMPLES

(a) (b)
Figure 3: Plots of (a) authentic (orange) and perturbed (blue) versions of time-series (TS) 5, which is selected
by an attacker to mount an indirect attack on TS 1; and (b) ground-truth (orange), no-attack (blue) and under-
attack (green) predictions for TS 1. No alteration was made to TS 1 but the value of TS 1 at the attack time
step (t = 288) were adversely altered in the under-attack (green) setting, which can set the prediction of TS 1
significantly away from the ground truth.

C ALGORITHMS

C.1 DETERMINISTIC ATTACKING ALGORITHM

C.2 MINI-MAX DEFENSE ALGORITHM

D DATASETS

• Electricity: consists of hourly electricity consumption time series from 370 customers.
• Taxi: traffic time series of New York taxi rides taken at 1214 locations for every 30 minutes

from January 2015 to January 2016 and considered to be heterogeneous. We use the taxi-
30min dataset provided by GluonTS.

• Traffic: hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes.
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Algorithm 1 Deterministic sparse attack algorithm

Input: x = (x1,x2, . . . ,xT ) ∈ Rd×T , fθ(x), back-test target z = (xT+1, . . . ,xT+τ ). Future
time horizon H ⊆ [τ ]. Target time series I ⊆ [d]. Attack budget η. Sparsity k. Number of
iteration N .
Output: Sparse attack δ ∈ Rd×T with row sparsity k and δI,∗ = 0.
1. Initialize δ = 0 ∈ Rd×T

2. Draw a predicted sample ẑ from pθ(z|x). Get adversarial target value t = χ(cẑ).
for iteration = 1, . . . , N do

3. Compute predicted distribution for z: p(z|x+ δ).
4. Compute expected loss under targeted attack:

ℓ =
∑

h∈H,i∈I

Ez∼pθ(z|x+δ)(zi,T+h − ti,T+h)
2.

5. Use any first order method to update δ so as to minimize ℓ.
6. Clip δ with threshold η: δi,t = δi,t min{1, η/|δi,t|}

end for
7. For each time series i /∈ I , compute cumulative perturbation over all time: ci =

∑T
t=1 δit and

sort ci in descending order: cπ(1) ≥ cπ(2) ≥ · · · ≥ cπ(d).
8. Keep δπ(1),∗, . . . , δπ(k),∗ and set δπ(k+1),∗, . . . , δπ(d),∗ = 0.
9. Output δ.

Algorithm 2 Mini-max defense algorithm

Input: X = (x1,x2, . . . ,xT ) ∈ Rd×T . Forecasting dataset D = {Xi, z
true
i }ni=1, where Xi ∈

Rd×T and ztrue
i ∈ Rd×τ is obtained from back-test window. Sparsity k in the sparse layer gΘ(x; k)

Output: A forecasting model fθ(x).
for epoch = 1, . . . , N do

3. Compute loss for the sparse layer gΘ(x; k):

ℓg = −
n∑

i=1

Eδ∼gΘ(Xi;k)Ezi∼fθ(Xi+δ)∥zi − ztrue
i ∥.

4. Update Θ in the sparse layer to minimize ℓg .
5. Let p(·|x) be the output distribution of fθ(x). Compute likelihood for model fθ(x):

ℓf =

n∑
i=1

Eδi∼gΘ(Xi;k) log pθ(z
true
i |Xi + δi).

6. Update θ in forecasting model to maximize ℓf .
end for

• Solar: hourly photo-voltaic production of 137 stations in Alabama State used in Lai et al.
(2018).

• Wiki: daily page views of 2000 Wikipedia pages used in Gasthaus et al. (2019).

E METRICS

We measure the performance of model under attacks by the popular metric especially for probabilis-
tic forecasting models: weighted quantile loss (wQL), which is defined as

wQL(α) = 2

∑
i,t[αmax(xi,t − q

(α)
i,t , 0) + (1− α)max(q

(α)
i,t − xi,t, 0)]∑

i,t |xi,t|
,

where α ∈ (0, 1) is a quantile level. In practical application, under-prediction and over-prediction
may cost differently, suggesting wQL should be one’s main consideration especially for probabilistic
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forecasting models. In the subsequent sections, we calculate average wQL over a range of α =
[0.1, 0.2, . . . , 0.9] and evaluate the performance in terms of averaged wQL.

F MORE METRICS ON ELECTRICITY DATASET

To measure the performance of a forecasting model, other metrics like Weighted Absolute Per-
centage Error (WAPE) or Weighted Squared Error (WSE) are also considered by a large body of
literature. For completeness, we present the definition of WAPE and WSE:

WAPE =
∑∣∣∣∣predicted value

true value
− 1

∣∣∣∣ = 1

|I||H|
∑

i∈I,h∈H

∣∣∣∣ 1
n

∑n
j=1 x̂

j
T+h,i

xT+h,i
− 1

∣∣∣∣
WSE =

∑(
predicted value

true value
− 1

)2

=
1

|I||H|
∑

i∈I,h∈H

( 1
n

∑n
j=1 x̂

j
T+h,i

xT+h,i
− 1

)2

We report WAPE, WSE and wQL under deterministic and probabilistic attacks on electricity dataset
in Table 4 and Table 5.

Table 4: Metrics on electricity dataset under deterministic attack. Target time series I = {1} and
attacked time stamp H = {τ}. Smaller is better.

no defense data augmentation randomized smoothing mini-max defense
Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL
no attack 0.4005±0.2036 0.2360±0.2525 0.2991±0.1684 0.4241±0.2092 0.2596±0.2625 0.3280±0.1497 0.3501±0.1630 0.1710±0.1486 0.2751±0.1068 0.3237±0.1379 0.1394±0.0913 0.2342±0.0917

1 0.4900±0.2488 0.3529±0.3769 0.3745±0.2106 0.4123±0.1829 0.2310±0.1934 0.3019±0.1138 0.4209±0.1700 0.2298±0.1683 0.2965±0.1003 0.4498±0.2253 0.2949±0.2276 0.3511±0.1825
3 0.6382±0.3434 0.6222±0.5886 0.5043±0.2917 0.5654±0.2475 0.4313±0.3707 0.3919±0.1876 0.5887±0.2543 0.4644±0.3784 0.3965±0.1797 0.7447±0.3758 0.8120±0.6684 0.6038±0.3358
5 0.7524±0.3675 0.8123±0.6218 0.6097±0.3218 0.7460±0.3803 0.8201±0.6628 0.5379±0.2833 0.7504±0.3607 0.8002±0.5999 0.5619±0.2779 0.9603±0.4190 1.2419±0.8369 0.8182±0.3845
7 0.8786±0.4171 1.0889±0.7785 0.7432±0.3702 0.8465±0.4014 1.0102±0.6389 0.6425±0.2985 0.8353±0.4315 1.0369±0.7496 0.6311±0.3152 1.1056±0.4847 1.6504±1.0591 0.9689±0.4350
9 1.0134±0.4541 1.4028±0.9685 0.8851±0.4023 0.9093±0.4454 1.1883±0.7720 0.7007±0.3395 0.9986±0.5026 1.4574±0.9998 0.7700±0.3717 1.2476±0.4860 1.9870±1.0815 1.1133±0.4306

full attack 1.2449±0.5522 2.1055±1.4686 1.1031±0.5002 1.0609±0.4661 1.5214±0.8815 0.8188±0.3650 1.1221±0.5100 1.7331±0.9988 0.8959±0.3988 1.2587±0.4989 2.0380±1.1256 1.1246±0.4471

Table 5: Metrics on electricity dataset under probabilistic attack using sparse layer. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

No defense data augmentation randomized smoothing mini-max defense
Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL
no attack 0.3842±0.2620 0.2162±0.3044 0.2909±0.0748 0.3074±0.1746 0.1250±0.0946 0.2374±0.0764 0.2858±0.1547 0.1056±0.0761 0.2237±0.0750 0.3218±0.1429 0.1240±0.0830 0.2342±0.0710

1 0.6230±0.6324 0.7881±1.1864 0.4364±0.1296 0.7476±0.7240 1.0830±1.8593 0.5923±0.0913 0.7683±0.8771 1.3596±2.7290 0.5940±0.1142 0.6990±0.6957 0.9726±1.7182 0.4935±0.1450
3 1.0540±0.7522 1.6768±1.4810 0.7245±0.2434 0.8484±0.6809 1.1834±1.3998 0.5738±0.1759 0.6784±0.5230 0.7337±0.7698 0.4581±0.1301 0.9909±0.7564 1.5540±1.8925 0.8079±0.2838
5 1.2078±0.7451 2.0139±2.0667 0.9143±0.3235 1.1444±0.6665 1.7538±1.4318 0.8422±0.2945 1.2310±0.7025 2.0090±1.6609 0.9276±0.3208 0.6966±0.4554 0.6927±0.8752 0.5265±0.1611
7 1.3236±0.7310 2.2863±1.8336 0.9991±0.3505 1.1304±0.6522 1.7031±1.4053 0.8267±0.2823 1.3496±0.6777 2.2809±1.7240 1.0100±0.3554 0.8424±0.7803 1.3186±1.7286 0.6161±0.1986
9 1.3656±0.8671 2.6166±2.6679 1.0317±0.3707 1.0912±0.6181 1.5727±1.2081 0.8139±0.2827 1.1978±0.6742 1.8894±1.5309 0.8919±0.3072 0.8691±0.7410 1.3043±2.0663 0.6466±0.2054

G ADDITIONAL EXPERIMENTS ON TAXI DATASET

In this section, we report experiment results on Taxi dataset.

Table 6: Metrics on taxi dataset under deterministic attack. Target time series I = {1} and attacked
time stamp H = {τ}. Smaller is better.

no defense data augmentation randomized smoothing mini-max defense
Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL
no attack 3.1753±0.6548 16.3328±6.8222 1.2135±0.4050 3.4020±0.6503 17.7390±7.2134 1.2137±0.4091 3.4214±0.6501 17.8661±7.0561 1.2574±0.4281 2.9366±0.6305 14.4184±6.3800 1.0447±0.3607

1 3.2884±0.6591 17.1469±6.6485 1.3152±0.4580 3.5884±0.6577 19.1832±7.1234 1.3455±0.4666 3.6060±0.6559 19.2739±7.1416 1.3455±0.4627 2.9776±0.6453 14.9359±6.4447 1.1222±0.3960
3 3.8517±0.7110 22.2038±7.4880 1.6389±0.5810 4.1630±0.7086 24.6490±8.2418 1.6805±0.5982 4.1148±0.6872 23.8149±7.6266 1.6503±0.5756 3.3441±0.6346 17.0547±6.1900 1.3624±0.4956
5 4.5853±0.8062 30.5002±9.4037 2.0317±0.7161 4.8419±0.7837 32.3970±9.5921 2.0625±0.7290 4.7912±0.7643 31.4706±9.2416 2.0123±0.7059 3.9484±0.6981 22.6945±7.6123 1.6830±0.6206
7 5.2952±0.8884 39.5429±10.9774 2.3695±0.8064 5.5116±0.9026 42.2533±11.8199 2.3712±0.8028 5.3876±0.8831 40.3946±11.2429 2.3450±0.7978 4.5162±0.8019 29.7695±9.1968 1.9750±0.7033
9 5.7671±0.9517 46.4608±12.3892 2.5605±0.8531 5.8631±0.9769 48.2877±13.5654 2.5525±0.8616 5.8490±0.9610 47.6729±13.2402 2.5422±0.8619 5.0564±0.8885 37.0739±10.9550 2.2374±0.7785

full attack 5.7407±0.9536 46.2118±12.1696 2.6222±0.8798 5.7618±0.9307 45.8250±12.4133 2.5579±0.8795 5.6389±0.9092 43.8469±11.5653 2.5403±0.8761 4.4621±0.8612 30.7219±9.7170 2.0377±0.7526
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Table 7: Metrics on taxi dataset under probabilistic attack. Target time series I = {1} and attacked
time stamp H = {τ}. Smaller is better.

no defense data augmentation randomized smoothing mini-max defense
Sparsity WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL WAPE WSE wQL
no attack 3.2019±0.6620 16.6407±7.0108 1.2118±0.4412 3.4348±0.6568 18.0856±7.3327 1.2526±0.4733 3.3940±0.6477 17.6348±7.0878 1.2241±0.4531 2.9964±0.6383 14.9179±6.7198 1.0481±0.3840

1 3.5098±0.7117 19.7020±7.1520 1.4598±0.5315 3.5353±0.6450 18.5629±6.7227 1.3539±0.5199 3.5961±0.6397 18.8968±6.6969 1.3512±0.5100 3.0503±0.6183 14.8761±6.0088 1.1528±0.4345
3 3.5043±0.7429 20.3267±8.1305 1.5659±0.6589 3.7547±0.7278 21.8185±7.6430 1.5446±0.6197 3.8490±0.7015 21.9873±7.0132 1.5567±0.5784 2.9650±0.6868 15.6679±6.3028 1.3940±0.5472
5 4.2285±0.7365 25.7872±7.6545 1.9123±0.7513 3.9991±0.7031 23.1989±6.9567 1.7824±0.6962 4.1910±0.7303 25.3399±7.4696 1.8857±0.7441 2.9543±0.5872 13.7538±4.4577 1.6897±0.6829
7 4.7813±0.8095 32.4134±9.1638 2.2915±0.8954 3.8031±0.7747 23.2123±8.9699 1.7340±0.7638 4.3014±0.7394 26.4713±9.5438 1.8370±0.7597 3.1284±0.7122 17.1805±6.8163 1.5865±0.6191
9 5.3666±0.8732 39.9142±10.3507 2.4815±0.9286 5.0260±0.7627 33.7399±8.1455 2.1159±0.7515 5.3652±0.8100 38.3500±9.4049 2.2400±0.7860 3.1476±0.6961 16.9713±6.2469 1.4921±0.5551

H DETAILED PROOFS

Proof of Theorem 3.1. We can compute

P(δi,∗ = 0) = 1 − P
(
ui ≤ Φ−1

(
ri(γ)

))
= 1− ri(γ) (H.1)

That is, with probability 1− ri(γ), δi,∗ = 0. Equivalently, δi,∗ is distributed by a degenerated prob-
ability measure with Dirac density D(δi,∗) concentrated at 0. On the other hand, with probability
ri(γ), δi,∗ is distributed as q′i(·|x;β). Combining the two cases, it follows that δi,∗ is distributed by
a mixture of q′i(·|x;β) and D(δi,∗) with weights ri(γ) and 1− ri(γ) respectively.

Proof of Theorem 3.2. By the construction of ri(γ),

E
[
s(δ)

]
=

d∑
i=1

E
[
I
(
ui ≤ Φ−1 (ri(γ))

)]
=

d∑
i=1

P
(
ui ≤ Φ−1 (ri(γ))

)
=

d∑
i=1

ri(γ) =
k√
d
·

∑d
i=1 γ

1/2
i(∑d

i=1 γi

)1/2
≤ k

Proof of Theorem 4.1. Denote pσ(·) as the density ofN (0, σId) and p(·) as the density ofN (0, Id).
Consider

sup
r∈Rd

|Gx,σ(r)−Gx+δ,σ(r)| = sup
r∈Rd

∣∣∣ ∫
z∈Rd×T

(
Fx+z(r)− Fx+δ+z(r)

)
pσ(z) dz

∣∣∣
= sup

r∈Rd

∣∣∣ ∫
z∈Rd×T

Fz(r)
(
pσ(z− x)− pσ(z− x− δ)

)
dz

∣∣∣
= sup

r∈Rd

∣∣∣ ∫
z∈Rd×T

∫ 1

0

Fz(r)∇pσ(z− x− tδ)δ dtdz
∣∣∣

= sup
r∈Rd

∣∣∣ ∫ 1

0

∫
z∈Rd×T

Fz(r)
(
δ · z− x− tδ

σ2

)
pσ(z− x− tδ) dz dt

∣∣∣
=

1

σ
sup
r∈Rd

∣∣∣ ∫ 1

0

∫
z∈Rd×T

Fx+tδ+z(r) (δ · z)p(z) dzdt
∣∣∣

≤ 1

σ

∫
z∈Rd×T

|δ · z|p(z) dz

≤ ∥δ∥2
σ

(
Ez∼N (0,Id)∥z∥

2
2

)1/2
=

√
d

σ
∥δ∥2,

which completes the proof.
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(a) (b)
Figure 4: Plots of (a) authentic (orange), DeepAR-attacked (blue) and DeepVAR-attacked (green) versions
of time-series (TS) 5; and (b) ground-truth (orange), no-attack (blue), under-DeepAR-attack (red) and under-
DeepVAR-attack (green) predictions for TS 1. Compared to clean prediction, the value of TS 1 at the attack
time step (t = 288) were adversely altered by DeepVAR-attack (green) but only slightly altered by DeepAR-
attack (red).

I NON-TRANSFERRABILITY OF ATTACKS BETWEEN UNIVARIATE AND
MULTIVARIATE FORECASTERS

In this section, we present the figure that illustrates the experiment results of univariate attack and
multivaraite attack.

17


	Introduction
	Related Work and background
	Adversarial Attack Strategies
	 Framework of Adversarial Attack against Multivariate Probabilistic Forecasting
	Deterministic Sparse Attack
	Probabilistic Sparse Attack

	Defense Mechanism against Adversarial Attacks
	Randomized Smoothing
	Mini-max Defense

	Experiments
	Experiment Setups
	Experiment Results
	 Non-transferrablity of Attacks between Univaraite and Multivariate Forecasters 
	Additional Experiments Study

	Conclusion
	Illustration of Attack on Financial Institute
	Adversarial Attack Examples
	Algorithms
	Deterministic attacking algorithm
	Mini-max defense algorithm

	Datasets
	Metrics
	More metrics on electricity dataset
	Additional experiments on taxi dataset
	Detailed proofs
	Non-transferrability of attacks between univariate and multivariate forecasters

