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Abstract
Motivated by applications to efficient secure computation, we con-

sider the following problem of encrypted matrix-vector product
(EMVP). Let F be a finite field. In an offline phase, a client up-

loads an encryption of a matrixM ∈ F𝑚×ℓ to a server, keeping only
a short secret key. The server stores the encrypted matrix M̂. In

the online phase, the client may repeatedly send encryptions q̂𝑖 of
query vectors q𝑖 ∈ Fℓ , which enables the client and the server to

locally compute compact shares of the matrix-vector product Mq𝑖 .
The server learns nothing about M or q𝑖 . The shared output can

either be revealed to the client or processed by another protocol.

We present efficient EMVP protocols based on variants of the

learning parity with noise (LPN) assumption and the related learn-
ing subspace with noise (LSN) assumption. Our EMVP protocols are

field-agnostic in the sense that the parties only perform arithmetic

operations over F, and are close to optimal with respect to both

communication and computation. In fact, for sufficiently large ℓ

(typically a few hundreds), the online computation and communi-

cation costs of our LSN-based EMVP can be less than twice the costs
of computing Mq𝑖 in the clear.

Combined with suitable secure post-processing protocols on the

secret-shared output, our EMVP protocols are useful for a variety

of secure computation tasks, including encrypted fuzzy search and

secure ML.

Our technical approach builds on recent techniques for private

information retrieval in the secret-key setting. The core idea is to

encode the matrix M and the queries q𝑖 using a pair of secret dual

linear codes, while defeating algebraic attacks by adding noise.
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1 Introduction
Secure multiplication of a secret matrix by a secret vector is a useful

primitive in many cryptographic applications. For example, recent

systems for identifying uniqueness of humans use this primitive to

find an approximate match between a new applicant and a database

of existing users [7, 36]. Here each row of the matrix is a feature

vector of an existing user and the matrix-vector product computes

the similarity between the applicant and each existing user. Since

the feature vectors may include highly sensitive information such as

biometric data, both thematrix and the vector should remain hidden.

The shared matrix-vector product is then used by a secure post-

processing protocol to extract some short digest, such as whether

the new applicant is similar to an existing user. However, since the

matrix-vector product is much smaller than the matrix, the cost

of this post-processing step is often dominated by computing the

matrix-vector product.

To practically support large-scale instances of the problem, with

matrices containing thousands of columns and millions of rows, a

recent solution adopted by World ID [7] opted for a 3-server archi-

tecture where both the matrix and the query vectors are distributed

using a 2-out-of-3 secret-sharing scheme. While offering impressive

performance, it relies on a weaker trust model that assumes no two

servers can collude. Increasing the resilience of this solution (which

is desirable given the sensitive nature of biometric information)

incurs a high cost in storage and performance.
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Another approach is to use homomorphic encryption (HE), as

done for example in the Janus system [36]. An HE-based solution

enjoys a better trust model, as the large encrypted matrix can be

stored and processed by a single untrusted server. One may still

want to distribute the homomorphic decryption function in order to

enable queries by multiple parties or simply to avoid a single point

of failure. Since the decryption function is relatively simple, the

latter distributed computation can be made quite efficient and offer

flexibility in the decryption threshold. However, the analysis in [7]

indicates that the concrete costs of standard HE-based solutions

are impractical for use in these large instances.

Can we provide a solution to matrix-vector multiplication that

achieves the best of both worlds: the performance of the 3-server

solution and the trust model and flexibility of HE-based solutions?

Encrypted matrix-vector products. To answer the above question,

we initiate a systematic study of Encrypted Matrix-Vector Product

(EMVP) protocols in a client-server model, where the client can

preprocess and upload an encrypted matrix and then securely query

the server to obtain the product of that matrix by any number of

vectors. Our goal is to provide lightweight solutions that perform

as close as possible to the insecure baseline.

To frame the EMVP problem more formally, let F be a finite

field. A client holds a matrix M ∈ F𝑚×ℓ and wants to outsource

its storage and computation to a server. In an offline phase, the

client uploads an encryption M̂ of M to the server and retains only

a short secret key. Later, in the online phase, the client repeatedly

sends encrypted queries q̂𝑖 corresponding to vectors q𝑖 ∈ Fℓ , and
both parties locally compute compact shares of the product Mq𝑖 .
The server’s share can either be sent to the client to recover the

answer to the query, or post-processed using HE or another secure

computation protocol. Crucially, the server learns nothing about

the matrix M or the queries q𝑖 . How efficient can such an EMVP

protocol be?

1.1 Our Results
We propose EMVP protocols that rely on the better trust model of

the HE-based solutions while matching or even outperforming the

concrete costs of the 3-server solution from [7]. Our protocols build

on recent techniques for private information retrieval (PIR) in the

secret-key setting from [16, 22, 24], and are based on “LPN-style”

cryptographic assumptions that are not known to imply public-key

encryption or even collision-resistant hashing.

A qualitative advantage of our protocols over existing HE-based

solutions is that they are field-agnostic in the sense of only mak-

ing a black-box use of the underlying field F [1, 48, 56]. This fea-

ture strongly correlates with concrete efficiency, and makes it eas-

ier to distribute both the client’s query generation
1
and the post-

processing of the output. We will further discuss this below.

Our efficient EMVP protocols can serve as a lightweight alter-

native to homomorphic encryption in the context of matrix-vector

products, making them a useful building block in a wide array of

cryptographic applications. In particular, the special case where the

1
The only operational advantage of HE with distributed decryption over our schemes

is the ability of parties to encrypt queries without going through the distributed client.

In some cases, however, sending encrypted shares of a query to one of the parties

could be more efficient than encrypting the query with HE.

q𝑖 ’s are standard basis vectors can be used to implement PIR [26, 50].

More broadly, EMVP protocols enable secure delegation of en-

crypted fuzzy search, machine learning inference, and other linear

algebra tasks over encrypted data. See Section 1.3.

More concretely, our EMVP protocols have the following fea-

tures:

• Support matrix-vector products over arbitrary fields F (or

even other useful rings), while being field-agnostic in the

above sense.

• Require only a short client-side secret key and no additional

state beyond a static encoding ofM stored by the server. The

client’s key does not depend onM and can be reused.

• The communication and client computation are close to ℓ+𝑚,

the cost of an insecure solution.

• The total computational cost is close to ℓ𝑚, the cost of an

insecure solution.

This near-optimality holds concretely for some of our EMVP

protocols, and asymptotically for all of them. In concrete terms, our

EMVP solutions have much better costs than HE-based approaches.

To give just a couple of data points, based on our security analysis:

with the moderate row length ℓ = 1024, we can compress the

communication by a factor of 14 (vs. sending the entire matrix)

while increasing the server’s storage and computational work by a

mere factor of 1.25 over the insecure solution where everything is

done in the clear. With longer rows, setting ℓ = 10000 as in [7], we

get a compression ratio of 177× with the same overhead factor.

This level of efficiency is based on a new variant of previous

assumptions, discussed below, which we introduce and analyze

in this work. The communication can be further compressed by

composing our EMVP protocols with high-rate HE schemes, im-

proving the communication cost without a significant impact on

computation. See discussion at the end of Section 4.

Beyond a designated client. Our basic EMVP protocols operate in

a setting where we have a single data owner (client), who stores the

encrypted matrix in the cloud and is the only one querying it. In

this setting, which is the standard setting for searchable symmetric

encryption [57], the client has a secret key which is used to encrypt

the matrix and the queries and to decrypt the responses. However,

one would like to also consider more general settings in which

the matrix is not owned by a single client, and multiple parties

may want to query or update the encrypted matrix. One option

is to distribute the client, and this is where field-agnostic proto-

cols really shine. This property of our EMVP protocols makes the

query generation and output decoding very easy to distribute using

standard secure computation techniques that only natively support

arithmetic operations over F. We present lightweight protocols for

this distributed setting in the full version [4].

A different approach for accommodating multiple clients, with-

out making non-collusion assumptions or increasing the server

storage, is by allowing the server to learn the matrix M (but not

the queries q𝑖 ) and allowing each client to store a small amount of

information, or a “hint,” aboutM. This is similar to prior hint-based

protocols for PIR and private semantic search [30, 42, 43], with

the difference that the latter protocols can use a single global hint,

whereas our approach requires each client to generate its own hint
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and keep it private. We elaborate on this flavor of EMVP in the full

version [4].

1.2 The Underlying Assumptions
Our protocols rely on different flavors of “learning subspace with

noise” (LSN) assumptions that were first introduced by Dodis et

al. [33] in the context of leakage-resilient cryptography and revis-

ited by Chen et al. [24] in the context of PIR with preprocessing.

These can be seen as less structured variants of the ad-hoc as-

sumption underlying previous constructions of doubly efficient

secret-key PIR from permuted Reed-Muller codes [16, 22]. In LSN

assumptions, we have a secret linear code 𝐶 ⊆ F𝑛 , and the assump-

tions assert that polynomially many “noisy” random codewords

are pseudorandom, where the noise can either replace a codeword

by a different vector or plant it in a low-dimensional subspace.

This can be compared to the classic Learning Parity with Noise

(LPN) assumption [8], asserting that a single noisy codeword in a

random public code is pseudorandom. The different flavors of LSN

vary mainly in the type of noise applied to codewords. As shown

in [23, 24, 33], there are relations between LSN and LPN, where

some LSN variants are implied by LPN, and most imply LPN.

Unlike standard homomorphic encryption or PIR in the plain

model [31, 45], LSN-style assumptions are not known to imply

public-key encryption or even collision-resistant hashing. We ex-

plore both previous and new variants of LSN, describing crypt-

analytical results and various trade-offs between communication,

computation, and assumptions.

The most efficient instances of our EMVP protocol rely on a

new variant of LSN, dubbed 1-dimensional split-LSN (1D-SLSN),
in which noise is added by splitting each sampled codeword into

a small number of blocks and multiplying each block by a secret

nonzero scalar. Unlike the original flavor of LSN from [33], which

can be broken in quasi-polynomial time (when the code rate is any

constant 𝜌 < 1), we conjecture our new variant to be secure against

sub-exponential time attacks. This and other variants of LSN cer-

tainly require further study, and in section 6 we have made an initial

cryptanalysis effort that guides our proposed parameters. While

making new assumptions is always risky, in this case there seems

to be substantial evidence supporting the hardness assumptions

that we use:

First, we can use the same blueprint to get an efficient EMVP

protocol that relies on just the standard LPN assumption (over

general fields) in a well-studied parameter regime. That protocol

has the same qualitative features as our most efficient protocols:

it is field-agnostic while achieving near-optimal asymptotic (but
not concrete) communication, storage and computation. A similar

result was recently obtained in the context of secret-key PIR with

preprocessing [24]. A key difference is that the PIR server’s com-

putational cost (in the RAM model) can be dramatically improved

using a lattice-based approach [51]. In contrast, our LPN-based

solution for EMVP seems
2
close to optimal even under this metric.

Second, the basic LSN problem, where the noise consists of re-

placing a sampled codeword by a random vector with probability

2
Strong unconditional lower bounds for data structure problems are notoriously hard.

However, it is known that, for sufficiently large F, when preprocessingM ∈ Fℓ×ℓ into
a polynomial-size M̂ ∈ F𝐿 , the server needs to read Ω̃ (ℓ2 ) entries from M̂ to answer

a general queryMq even without any security requirements [27].

𝜇 < 1, was already studied in [33]. It is an instance of the well-

studied problem of learning mixtures of simple distributions, which

in many cases is conjectured to be intractable. The search version of

the basic variant of LSN was studied in [23] and further progress on

this problem may be of interest to the learning theory community.

Finally, the LSN-style assumptions we employ for our concretely

efficient protocols, including 1D-SLSN, can be viewed as less struc-

tured variants of the assumptions underlying previous construc-

tions of PIR from secretly permuted Reed-Muller codes [16, 22].

The latter have already withstood some analysis [6, 14, 15]. We

hope that the combination of compelling practical motivation and

clean theory-oriented questions will encourage future analysis of

LSN-style assumptions.

Security fallbacks. There are two ways to make our security

assumptions even more conservative without significantly hurt-

ing efficiency. First, when a client can batch multiple queries q𝑖 ,
shuffling different sub-queries together is expected to enhance se-

curity [37, 46]. Second, adding a small amount of Gaussian noise

to the query vectors can serve as an extra security measure, espe-

cially in fuzzy search applications where noise is inherent. This is

reminiscent of modern approaches for approximate homomorphic

encryption [25].

1.3 Related Work
Secret-key PIR with preprocessing. Our work heavily builds on

the technical approach of prior works on PIR with preprocessing

in the secret-key setting [16, 22, 24], and in particular the split-LSN

assumption recently put forward in [24]. Beyond adapting their

technique to the EMVP setting, our work contains many new opti-

mizations. These include new variants of the split LSN assumption

tailored to the case of EMVP over big fields, new techniques for

minimizing the complexity of EMVP clients and servers, efficient

protocols for distributing EMVP clients, and a concrete analysis

of the underlying assumptions with respect to relevant classes of

algebraic attacks. In fact, by using a standard reduction of PIR to

matrix-vector product [26], our optimized EMVP protocols and

concrete analysis of LSN-type assumptions are directly relevant

also to this use case of EMVP.

In the full version, we apply EMVP over F4 to improve the

Boolean circuit complexity of secret-key PIR. Concretely, the most

efficient construction from [24], on an 𝑁 -bit database, requires a

server circuit of size (4 + 𝑜 (1))𝑁 , with (1 + 𝑜 (1))𝑁 bits of server

storage, under an LSN-style assumption over F2. Here we use our
new 1D-SLSN assumption over F4 to improve the Boolean circuit

size to (3.5+𝑜 (1))𝑁 , or alternatively to (3+𝑜 (1))𝑁 with 50% extra

server storage.

Trapdoored matrices. Two recent independent works [18, 59]

propose the idea of generating pseudorandom matrices R such

that the linear map v ↦→ Rv can be computed in near-linear time

given a suitable trapdoor.
3
The motivation in [18] is similar to ours:

allowing a weak client to delegate a linear algebra computation

(such as matrix product) to a semi-honest server without revealing

the input. However, the solution from [18] inherently requires the

3
A similar idea appears in an earlier work by Sotiraki [58], where a weaker security

notion is considered.



CCS ’25, October 13–17, 2025, Taipei, Taiwan Fabrice Benhamouda et al.

client to store the input matrices, whereas the EMVP client only

needs to store a short secret key. Low-communication EMVP is

nontrivial even without imposing any computational restrictions

on the client, whereas the delegation problem considered in [18] is

only meaningful with such restrictions. Still, trapdoored matrices

are a useful building block for EMVP. In fact, by masking M with a

trapdoored matrix, one can convert any EMVP protocol that only

protects the privacy of the queries q𝑖 but not the matrix M, such

as one based on additively homomorphic encryption, to a fully

secure EMVP with an efficient client. In section 5 we propose new

candidate constructions of trapdoored matrices that offer simplicity

or efficiency advantages over the ones from [18, 59] and that are

easier to implement in a distributed client setting. In particular, we

give the first linear-time TDM candidates.

Searchable symmetric encryption. The basic scenario we address

in this paper, namely, data that is encrypted with a symmetric

key and outsourced to the cloud for later querying, can be seen

as analogous to the setting of searchable symmetric encryption

(SSE) [29, 57]. However, while SSE has mostly focused on lexical

search (such as keyword, Boolean, and range queries), EMVP can

support semantic queries that often provide better insights. In par-

ticular, fuzzy search on vector embeddings can be used to query

unstructured data such as images and biometrics. Another key

difference is that SSE trades efficiency for leakage, for example

achieving sublinear server time while leaking the access patterns of
queries and results. Our EMVP-based solutions require linear work

at the server (which is sometimes also the case for the insecure

baseline) but avoid the above leakage and apply to a much wider

set of applications. As examples, we can support private remote

biometrics (as in [7, 36]) or provide efficient semantic search func-

tionality (as in [42]) on encrypted documents while dispensing with

homomorphic encryption.

Homomorphic encryption. As discussed above, our techniques

can be easily extended to support the delegation and decentraliza-

tion of query issuing and data storage via efficient distributed clients

(as we show in the full version [4]). In this case, our EMVP protocols

can realize much of the benefits of homomorphic encryption, par-

ticularly when noting that many of the (F)HE applications require

a distributed client for the decryption of query results (except if

only the owner of the data and the queries receives the results).

In use cases of HE in which the EMVP functionality suffices, our

solutions may offer orders of magnitude speedup compared to HE

techniques. Even in the easier case of multiplying an unencrypted

matrix by an encrypted vector, recent HE-based solutions (see [41]

and references therein) are significantly slower than our EMVP

protocol and require much wider matrices to attain their maximal

level of efficiency.

1.4 Brief Technical Overview
At the heart of our construction is a simple but powerful technique

that was previously used for PIR in a secret-key setting [16, 22, 24]:

represent matrix rows as codewords in a secret linear code, and

construct encrypted queries using “noisy” shifted dual codewords.

Unlike standard noisy linear algebra techniques in cryptography,

here the noise is typically in the form of planting the shifted dual

codeword in a low-dimensional space. The server’s response is a

highly compressed matrix, which together with decoding infor-

mation generated by the client can be used to recoverMq𝑖 either
by the client or by a secure post-processing protocol. Our careful

noise design is intended to defeat known algebraic attacks while

preserving correctness and decoding efficiency. The security of

this approach reduces to different flavors of the LSN assumption

discussed above.

We analyze several variants of the LSN assumption, including

ones previously put forward in [24, 33] and new variants that are

tailored to the case of large fields or rings. We provide evidence for

their plausibility by analyzing security against natural classes of

algebraic attacks, and demonstrate how to instantiate our protocols

under each. The main algebraic attack that we analyze is one that

tries to find a nonzero low-degree polynomial that vanishes on all

of the noisy LSN samples. This attack, attributed in [33] to Ran Raz,

breaks in quasi-polynomial time the basic variant of LSN (with con-

stant code rate 𝑘/𝑛 < 1), where each sampled codeword is replaced

by a random vector with some probability 𝜇 < 1 such that 1 − 𝜇 is

noticeable. Our analysis shows that by planting each codeword in a

low-dimensional linear space, we can get security against algebraic

attacks of this kind that run in sub-exponential time. The latter

flavor of LSN serves as the basis for our most efficient construc-

tions. To maximize efficiency, we plant each codeword in a product
space. Concretely, we split each codeword into a small number of

blocks and multiply each block by a secret nonzero scalar. The

above algebraic attack is the best attack we are aware of in most pa-

rameter regimes, assuming there are no restrictions on the number

of samples available to the attacker.

We also show that, using only the standard LPN assumption

(over general fields), EMVP can be realized without requiring ad-

ditively homomorphic encryption while retaining the qualitative

advantage of being field-agnostic. This conservative EMVP pro-

tocol has near-optimal asymptotic efficiency, but is much worse

in terms of concrete efficiency than our LSN-based solutions. Our

LPN-based EMVP protocol follows the technical approach of the

recent LPN-based secret-key PIR construction from [24], using LSN

with a special noise distribution. We further attempt to optimize

the concrete efficiency of this construction, and provide some data

points in the full version [4].

In the sections that follow, we formalize the EMVP model, define

and analyze the relevant assumptions, and present our construc-

tions and optimizations in detail.

2 Preliminaries
Linear algebra. We will use F to denote a finite field, typically

F = F𝑝 for a large prime 𝑝 . We use boldface letters for matrices

and vectors and capital letters for linear spaces. We use (𝑎 | 𝑏) and
[𝐴 | 𝐵] for horizontal concatenation of vectors and matrices and

(𝑎 // 𝑏) and [𝐴 // 𝐵] for vertical concatenation.

Probability. We use 𝑥 ← 𝑋 to denote a uniformly random choice

of 𝑥 from a set𝑋 . We denote by Ber(𝜇) a Bernoulli random variable

which takes the value 1 with probability 𝜇 and 0 with probability

1 − 𝜇. More generally, for a finite field F, the Bernoulli variable

BerF (𝜇) takes the value 0 with probability 1 − 𝜇 and is otherwise

uniformly random in F \ {0}.
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Cryptography. We use the standard notions of negligible func-

tions, computational indistinguishability (denoted 𝑋 ≈𝑐 𝑌 ), and

pseudorandom functions (PRFs) [39].

2.1 Encrypted Matrix-Vector Product
An EMVP protocol starts with an offline preprocessing phase, in

which a client encrypts a matrixM ∈ F𝑚×ℓ using a secret key sk,
and sends the encrypted matrix𝑀 to a server. In the online phase,

which can be invoked many times, the client can securely compute

matrix-vector products Mq for any chosen q, where the outputs
are split between the client and the server. This is done by having

the client map (sk, q) to a pair (𝑞, 𝑞′) and send the encrypted query
𝑞 to the server. The server, on inputs (𝑀,𝑞) computes a compact

encoded matrix 𝑀′. The output 𝑎 = Mq can be decoded from

(𝑀′, 𝑞′) using a low-complexity decoding algorithm that can either

be performed locally by the client or distributed by a higher-level

application.

We say that the EMVP protocol is field-agnostic if it only makes

a black-box use of the field, in the sense that field elements are

labeled arbitrarily and all algorithms have oracle access to the field

operations [1, 48]. In fact, most of our protocols can be cast in

the stricter black-box model from [1] that does not even allow the

protocol to know an upper bound on the field size. In particular, the

number of field operations required by our protocols is independent

of the field size. Our default set of field operations include addition,

subtraction, multiplication, unit, inverse, zero-test, and sampling

of random field elements.

In the following definition, adapted from earlier definitions of

secret-key PIR [16, 22, 24], we consider both a general version and a

field-agnostic version. In the latter we view the field F as an implicit

parameter and assume all algorithms have oracle access to basic

field operations. In fact, some instances of our protocols do not

require zero-test and inverse, and can apply over rings such as Z
2
𝑘 .

Definition 2.1 (Encrypted Matrix-Vector Product). An encrypted

matrix-vector product (EMVP) protocol is a tuple of PPT algorithms
EMVP = (G, E,Q,A,D) with the following syntax:

• G(F, 1𝜆, 1𝑚, 1ℓ ): The key generation algorithm takes a de-
scription of a field F, security parameter 𝜆 and matrix dimen-
sions 𝑚, ℓ , and returns a secret key sk. We assume that sk
contains F, 𝜆,𝑚, ℓ . In the field-agnostic case, F is not given as
input and is not part of sk.
• E(sk,M): The matrix encryption algorithm takes a secret key
sk and a matrixM ∈ F𝑚×ℓ and returns an encrypted matrix
𝑀 . In the field-agnostic case, 𝑀 ∈ F𝑚×ℓ̂ . In this case we will
use boldface font for M̂.
• Q (sk, q): The query algorithm takes a secret key sk and a
query vector q ∈ Fℓ , and returns a pair (𝑞, 𝑞′), where 𝑞 is the
encrypted query and 𝑞′ is a (short) decoding key. In the field-
agnostic case we have q̂ ∈ Fℓ̂ and q′ ∈ Fℓ

′
(where typically

ℓ′ ≪ ℓ).
• A(𝑀,𝑞): The answer algorithm takes an encrypted matrix𝑀
and an encrypted query 𝑞 and returns a (compact) encoded
output𝑀′. In the field-agnostic case we haveM′ ∈ F𝑚′×ℓ ′ .

• D(sk, 𝑀′, 𝑞′): The decoding algorithm takes secret key sk,
encoded output 𝑀′ and decoding vector 𝑞′, and returns an
output vector a ∈ F𝑚 .

Correctness. For any field F, 𝜆,𝑚, ℓ ∈ N, sk ∈ G(F, 1𝜆, 1𝑚, 1ℓ ),
M ∈ F𝑚×ℓ , 𝑀 ∈ E(sk, 𝑀), q ∈ Fℓ , (𝑞, 𝑞′) ← Q (sk, q), and 𝑀′ ∈
A(𝑀,𝑞), we have D(sk, 𝑀′, 𝑞′) = Mq.

Security. For any non-uniform polynomial-time algorithmA that
makes queries to its oracle, and any polynomials 𝑚 := 𝑚(𝜆) and
ℓ := ℓ (𝜆) and field F := F(𝜆), there is a negligible function 𝛿 such
that for any 𝜆 ∈ N and M ∈ F𝑚×ℓ , it holds that���Pr[AQ (sk,· ) (1𝜆, 𝑀)=1] − Pr[AQ0 (sk,· ) (1𝜆, 𝑀0)=1]

��� ≤ 𝛿 (𝜆),

where sk ← G(F, 1𝜆, 1𝑚, 1ℓ ), 𝑀 ← E(sk,M), 𝑀0 ← E(sk, 0), and
Q0 (sk, ·) is an oracle that ignores its input and outputs Q (sk, 0ℓ )
(with fresh randomness).

Field-agnostic EMVP. We say that EMVP is field-agnostic if all
of the above algorithms only require oracle access to F, where field
elements have arbitrary labels and the field oracle is used to perform
field operations.

Given the security requirement of EMVP, we can view the inter-

mediate values (𝑀′, 𝑞′) generated by the protocol as a 2-out-of-2

(nonlinear and compact) secret-sharing of the output Mq between

the server and the client. In our main instantiation, we will have

M′ ∈ F𝑚×𝑠 for 𝑠 ≪ ℓ and q′ = (p′, r′) with p′ ∈ F𝑠 and r′ ∈ F𝑚 ,

whereMq = M′p′ − r′. Decoding the output from the shares can ei-

ther be done locally by the client, or performed by a post-processing

protocol that has better efficiency or different functionality.

2.2 Trapdoored Matrices
To minimize the computational overhead of the EMVP client, we

will rely on variants of the recent notion of trapdoored matrices
from [18, 59]. A trapdooredmatrix (TDM) is a pseudorandommatrix

R which is generated together with a trapdoor that enables fast

computation of the linear map v ↦→ Rv.

TDM and EMVP. As discussed in section 1.3, a TDM can be

used to upgrade a relaxed EMVP protocol 𝑃 ′, which only hides the

client’s vectors q𝑖 but not the matrixM, into a full-fledged EMVP

protocol 𝑃 that also hides M. The protocol 𝑃 proceeds in the fol-

lowing natural way: The client applies the offline phase of 𝑃 ′ to
the masked matrix M′ = M + R. In the online phase, whenever the

client wants to query Mq𝑖 , it uses 𝑃 ′ to query M′q𝑖 , from which

Mq𝑖 can be computed by subtracting Rq𝑖 . The latter can be com-

puted efficiently by the client given the trapdoor. In particular, the

above transformation implies an EMVP protocol from any linearly

homomorphic encryption scheme and a TDM.

Centralized vs. distributed TDM. In the centralized client setting,

we can interpret a “fast” trapdoored computation of the linear map

v ↦→ Rv as having a near-linear size evaluation circuit EC that

may depend on the trapdoor. However, for the distributed-client

variant of our EMVP protocols considered in the full version [4], it is

helpful to have a near-linear size public EC that computes Rv given

v together with a random trapdoor td that was used to generate

R. We refer to the latter variant as a universal trapdoored matrix.
To capture both variants, we consider the trapdoor to be a random



CCS ’25, October 13–17, 2025, Taipei, Taiwan Fabrice Benhamouda et al.

vector td ∈ F𝜅1 ×{0, 1}𝜅2 given as an input to the trapdoored matrix

generator. The separation between field elements and bits enables

us to support field-agnostic constructions. In our universal TDM

candidates, we will have 𝜅2 = 0.

We formalize both the basic and universal variants of TDM below.

Definition 2.2 (Trapdoored Matrix). A trapdoored matrix with
trapdoor size (𝜅1, 𝜅2) is a polynomial time algorithm TDM with the
following syntax: TDM(1𝜆, 1𝑚, 1𝑛, td) takes 𝜆,𝑚,𝑛 and a trapdoor
td ∈ F𝜅1 × {0, 1}𝜅2 for 𝜅𝑏 = 𝜅𝑏 (𝜆,𝑚,𝑛), and outputs (R, EC), where
R ∈ F𝑚×𝑛 and EC : F𝑛 → F𝑚 is an arithmetic evaluation circuit

over F. The algorithm TDM should satisfy the following requirements.
• Correctness: For every 𝜆,𝑚,𝑛, td ∈ F𝜅1×{0, 1}𝜅2 and (R, EC) ∈
TDM(1𝜆, 1𝑚, 1𝑛, td), we have EC(v) = Rv for every v ∈ F𝑛 .
• Pseudorandomness: For every polynomials𝑚 :=𝑚(𝜆) and
𝑛 := 𝑛(𝜆), we have R𝜆 ≈𝑐 U𝜆 , where R𝜆 is the first output
of TDM(1𝜆, 1𝑚, 1𝑛, td) for td ← F𝜅1 × {0, 1}𝜅2 , and U𝜆 ←
F𝑚×𝑛 .

A universal trapdoored matrix is defined similarly to the above, ex-
cept that EC is given td as an additional input and pseudorandomness
is strengthened to require that (R, EC)𝜆 ≈𝑐 (U, EC)𝜆 .

While this is not explicitly part of the definition, we would like

the circuit EC to be of nearly optimal size, namely close to linear

in𝑚 + 𝑛.
The recent works of Braverman and Newman [18] and Vaikun-

tanathan and Zamir [59] present recursive constructions of TDM

in which EC is computable in time (𝑚 + 𝑛)1+𝜀 or even 𝑂̃ (𝑚 + 𝑛)
under the standard LPN assumption or variants of the McEliece

assumption. In Section 5 we propose direct (non-recursive) candi-

date TDM constructions that can achieve better asymptotic and

concrete efficiency and satisfy the universal notion of TDM, at the

expense of relying on less standard or even new assumptions.

3 Learning Subspace with Noise Assumptions
In this section we review the learning subspace with noise (LSN)
class of assumptions put forward in [24, 33] and introduce a new

variant that will be used to minimize the overhead of our EMVP

protocols. We also extend the previous assumptions by considering

variants that use structured codes (in rings or otherwise) to support

faster encoding.

All flavors of LSN have the following form: We pick a secret

𝑘-dimensional linear code 𝐶 ⊆ F𝑛 , and then sample polynomially

many random codewords c𝑖 from 𝐶 , where each codeword is sub-

ject to some noise or perturbation. In all cases, we require that

the perturbed vectors from 𝐶 should be indistinguishable from the

distribution obtained by applying a similar perturbation to truly

random vectors. The different flavors of LSN vary in the type of

noise/perturbation applied to sampled codewords. In most parame-

ter regimes, these assumptions are not known to imply public-key

encryption, or even collision-resistant hashing.

Definition 3.1 (Basic LSN [24, 33]). The (basic) learning subspace

with noise assumption (𝑘, 𝑛, 𝜇)-LSN asserts that for a uniformly
random secret rank-𝑘 matrix C ∈ F𝑘×𝑛 and any polynomial number
of samples𝑚 :=𝑚(𝜆), it holds that:

(c1 + e1, . . . , c𝑚 + e𝑚) ≈𝑐 (u1, . . . , u𝑚) ,

where c𝑖 = a⊺
𝑖
C for a𝑖 ← F𝑘 , e𝑖 is uniformly random in F𝑛 with

probability 𝜇 and e𝑖 = 0 ∈ F𝑛 otherwise, and u𝑖 ← F𝑛 .

In the above definition and in the following, the parameters

𝑘, 𝑛, 𝜇 are all functions of the security parameter 𝜆.

For codes of constant asymptotic rate 𝑘/𝑛 < 1, the above flavor

of LSN requires a high level of noise (𝜇 = 1 − 𝑜 (1)) to be plausibly

secure against polynomial-time attacks. Indeed, if 𝜇 < 1 − (𝑘/𝑛)𝑑 ,
there is an 𝑛𝑂 (𝑑 ) -time LSN distinguisher [23, 24, 33]. In particular,

if 1 − 𝜇 is inverse-polynomial, the above basic variant of LSN is

broken in quasi-polynomial time. On the other extreme, if 𝑘 = 𝑛

the vectors are truly random, and when 𝑘 is very close to 𝑛 basic

LSN is equivalent to LPN. (Concretely, when 𝑛 = 𝑘 + 1, the basic
LSN assumption over F2 with noise rate 𝜇 is equivalent to the LPN

assumption with noise rate 𝜇/2 [23, 24, 33].) If we change the noise
pattern so that every sample from c𝑖 is subject to noise in all but

𝑘 coordinates, then LSN is implied by LPN with similar parame-

ters [24]. This observation underlies the LPN-based implementation

of our protocols.

To avoid the quasi-polynomial time attack and improve the effi-

ciency of our EMVP protocols, we consider other natural variants

of LSN in which each sampled codeword c𝑖 is planted in a random

low-dimensional linear subspace 𝑉𝑖 ⊆ F𝑛 containing it. That is,

each sample includes a random basis for such a space. We refer to

this variant as regular LSN. Alternatively, we may plant c𝑖 in an

affine subspace c𝑖 + 𝑉𝑖 . Over large F, the two variants or regular

LSN are equivalent up to a difference of 1 in the dimension (see

Section 6.1).

Regular LSN with a subspace of dimension 𝑟 is at least as secure

as (but seemingly more secure than) a “regular” variant of basic LSN

with noise rate 𝜇 = 1 − 1/𝑟 in which each chunk of 𝑟 samples has

exactly codeword and 𝑟−1 noise vectors. A similar regular variant of

LPN has been extensively studied in the literature; see [2, 21, 49, 52]

and references therein. To resist polynomial-time algebraic attacks,

regular LSN would require 𝑟 to be super-constant. However, unlike

basic LSN, here we can obtain security against sub-exponential

time algebraic attacks even with constant code rate 𝑘/𝑛 < 1 by

letting 𝑟 = 𝑘𝛿 for any constant 𝛿 > 0. See Section 6.1.

In the most efficient variants of our EMVP protocols, the space

𝑉𝑖 is a product of 𝑠 linear subspaces𝑉𝑖, 𝑗 of F𝑛/𝑠 . This can be viewed

as splitting c𝑖 into 𝑠 blocks, and hiding each block c𝑖, 𝑗 in the affine

space c𝑖, 𝑗 +𝑉𝑖, 𝑗 . We refer to this variant as “split LSN.”

Definition 3.2 (Split-LSN [24]). The (𝑘, 𝑛, 𝑟, 𝑠)-SLSN assumption
asserts that for a uniformly random secret rank-𝑘 matrix C ∈ F𝑘×𝑛
and any polynomial number of samples𝑚 :=𝑚(𝜆), it holds that:

((V𝑖,1, c𝑖,1 + e𝑖,1), . . . , (V𝑖,𝑠 , c𝑖,𝑠 + e𝑖,𝑠 ))𝑖∈[𝑚]
≈𝑐 ((V𝑖,1, u𝑖,1), . . . , (V𝑖,𝑠 , u𝑖,𝑠 ))𝑖∈[𝑚] ,

where c𝑖 = a⊺
𝑖
C for a𝑖 ← F𝑘 , (c𝑖,1, . . . , c𝑖,𝑠 ) is a partitioning of c𝑖 into

blocks of length 𝑛/𝑠 , and for any 𝑖, 𝑗 , u𝑖, 𝑗 ← F𝑛/𝑠 and e𝑖, 𝑗 = d⊺
𝑖, 𝑗
V𝑖, 𝑗

for V𝑖, 𝑗 ← F(𝑟−1)×(𝑛/𝑠 ) and d𝑖, 𝑗 ← F𝑟−1.

This conjecture becomes weaker as 𝑟 increases, but even the case

𝑟 = 2 already seems hard, as was conjectured by Chen et al. [24]:
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Conjecture 3.1 (Split-LSN conjecture [24]). For every 𝛿 > 0 and
0 < 𝜌 < 1, the (𝑘, 𝑛, 2, 𝑠)-SLSN assumption holds when 𝑘 ≥ 𝜌𝑛 and
𝑠 ≥ (𝑛/𝑘) · 𝑛𝛿 .

The Split-LSN assumption with 𝑠 ≫ 𝑛/𝑘 is a less structured

variant of the assumption underlying the sk-PIR protocol proposed

in [16, 22] and further analyzed in [6, 14, 15]. See [24] for discussion.

Splitting allows us to increase the dimension of the planting ambient

space with essentially no increase in the computation cost of the

EMVP protocol.

1-Dimensional Split LSN.. Recall that the split-LSN experiment

splits a sampled codeword into blocks, and then plants each block

in a random affine space. It seems simpler to use a (homogeneous)

linear space instead. Indeed, in the analysis section (section 6) we

study this simpler variant. To maximize efficiency, we want to use a

1-dimensional linear space for hiding each block. The main problem

with this variant is that the security proof takes advantage of the

affine structure of the split-LSN assumption. To get around this

difficulty, we modify the assumption by allowing the adversary to

shift each sampled codeword before it is planted in a linear space.

The shifts correspond to queries 𝑞𝑖 made by the EMVP client, and

are similar to the shifts in a related assumption from [16].
4
We

formalize the 1-dimensional variant below.

Definition 3.3 (1D-Split-LSN). The 1-dimensional split-LSN as-
sumption (𝑘, 𝑛, 𝑠)-1D-SLSN asserts that for a uniformly random se-
cret rank-𝑘 matrix C ∈ F𝑘×𝑛 and any polynomial number of samples
𝑚 :=𝑚(𝜆) it holds that:
(𝛼𝑖,1 · (c𝑖,1 + Δ𝑖,1), . . . , 𝛼𝑖,𝑠 · (c𝑖,𝑠 + Δ𝑖,𝑠 ))𝑖∈[𝑚] ≈𝑐 (u𝑖 )𝑖∈[𝑚] ,

where u𝑖 ∈ F𝑛 , c𝑖 = a⊺
𝑖
C for a𝑖 ← F𝑘 , (c𝑖,1, . . . , c𝑖,𝑠 ) is a partitioning

of c𝑖 into blocks of length 𝑛/𝑠 , for any 𝑖, 𝑗 , 𝛼𝑖, 𝑗 ← F \ {0}, and where
the shifts Δ𝑖, 𝑗 ∈ F𝑛/𝑠 in the 𝑖-th sample can be chosen adversarially
based on previous samples (this choice does not affect the random
experiment).

Note that 1D-SLSN is not meaningful over F2, since in this case

all coefficients 𝛼𝑖, 𝑗 need to be 1. For fields F𝑞 with 𝑞 ≥ 3, we con-

jecture it to have similar security to the original SLSN assumption

with a 1-dimensional affine space, namely with 𝑟 = 2. In particular:

Conjecture 3.2 (1D-SLSN conjecture). For every 𝛿 > 0 and 0 <

𝜌 < 1 and F such that |F| ≥ 3, the (𝑘, 𝑛, 𝑠)-1D-SLSN assumption
over F holds when 𝑘 ≥ 𝜌𝑛 and 𝑠 ≥ (𝑛/𝑘) · 𝑛𝛿 .

In Section 6 we will analyze a simplified version of 1D-SLSN
where all offsets Δ𝑖, 𝑗 are 0. The extra shifting power of the adversary
is not helpful for any attack we are aware of. The hardness of the

simplified variant of the conjecture implies indistinguishability

between the case where the client’s queries q𝑖 are random and

the case where q1 = q2 = . . . = q𝑚 = 0. While this intuitively

seems like the easiest distinguishing case, we cannot back this by a

security reduction.

Finally, motivated by the concrete analysis in section 6, we will

also consider a more conservative variant of 1D-SLSN where each

sample uses an independently random partition into 𝑠 blocks.

4
A different variant of this assumption from [22] avoids these shifts by relying on the

fact that the query domain is polynomial, which is not the case here. One can avoid

these shifts in our context by relying on the earlier Split-LSN assumption (Defini-

tion 3.2) with 𝑟 = 2, paying roughly 2xmore in communication and server computation.

3.1 Ring-LSN and Other Structured Codes
All of the assumptions discussed up to this point involve a random
code𝐶 , making the computational cost of both the matrix encoding

and query encoding scale quadratically with the row length pa-

rameter ℓ . To make these costs scale quasilinearly or even linearly

with ℓ , we can choose 𝐶 from suitable families of structured codes.
Indeed, the secret-key PIR constructions from [16, 22] implicitly

rely on such structured variants of LSN.

One common choice of a structured code corresponds to a natural

ring variant of LSN, where both𝐶 and its dual 𝐷 admit quasilinear-

time encoding using polynomial multiplication. This takes a partic-

ularly simple form when 𝑛 = 2𝑘 . In this case, the encoding matrix

of 𝐶 can be written as C = (𝐼 | C′) where C′ ∈ F𝑘×𝑘 is a random

circulant matrix, matrix, and the dual code 𝐷 can be generated by

D = (−C′T | 𝐼 ), hence can also support quasilinear-time encoding.

Concretely, we work over the polynomial ring 𝑅 = F[𝑋 ]/𝑃 (𝑋 ),
where 𝑃 is a fixed polynomial of degree 𝑘 , typically an irreducible

polynomial or even just 𝑃 = 𝑋𝑘 − 1. We view both the code𝐶 and a

message 𝑣 as elements of 𝑅, represented by coefficient vectors C and

v in F𝑘 . The encoding of 𝑣 under 𝐶 is (𝑣,𝐶 · 𝑣) ∈ 𝑅2 ≡ F𝑛 and the

dual encoding under𝐷 is (−𝐶T ·𝑣, 𝑣) ∈ F𝑛 . When 𝑃 (𝑋 ) = 𝑋𝑘−1, the
polynomial𝐶T

is obtained from𝐶 by reversing its coefficient vector.

In general, if the mapping v ↦→ 𝐶 · v can be implemented with 𝑠

additions and scalar multiplications, then the transpose mapping

v ↦→ 𝐶T · v can be implemented with 𝑂 (𝑠) such operations [9].

Ring variants of this kind serve as common substitutes for ran-

dom linear codes in the context of cryptography from noisy linear

algebra [13, 44, 53, 55]. This makes ring variants of our LSN as-

sumptions plausible. Some care must be taken when using codes

over algebraic rings in the context of 1D-SLSN to avoid bad interac-

tions between the algebraic ring structure and the 1D-SLSN block

structure. For example a particularly bad choice would be to use

𝑃 = 𝑋𝑘 − 1 and blocks of size 𝑛/𝑠 that divides 𝑘 . When relying on

1D-SLSN it may therefore be better to use an irreducible 𝑃 . (Alter-

natively, one can take 𝑃 (𝑋 ) = 𝑋𝑘 − 1 and apply a public random

permutation to the codeword (in both 𝐶 and 𝐷) to avoid this bad

interaction.)

Finally, we note that one could potentially use other families

of dual linear codes that admit fast encoding, since our EMVP

protocols do not need the ring structure per se. When 𝑛 = 2𝑘 , this

can be done by letting C = (𝐼 | C′) and D = (−C′T | 𝐼 ) as above,
where C′ ∈ F𝑘×𝑘 is a distribution over 𝑘×𝑘 matrices such that each

instance of C′ is fast, in the sense that v ↦→ C′ · v can be computed

by a circuit with 𝑂 (𝑘) additions and scalar multiplications. Good

heuristic choices of such C′ can be obtained from known families

of linear-time encodable codes, e.g., ones from [3, 11, 32, 35, 40].

Alternatively, one can use a recent construction of fast dual codes

from [20]. In this construction both the code and its dual provably

meet the Gilbert-Varshamov bound over F2, and can be conjectured

to meet this bound over general F.

LSN modulo a composite. Our EMVP protocols are not inherently

limited to work over finite fields. For instance, it may be desirable

to design EMVP protocols that work natively over rings of the

form 𝑅 = Z
2
𝑘 , where elements may not have an inverse. Here we

note that most of our protocols do not require inversion, since one
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just needs to generate a random systematic code and its dual. For

instance, when 𝑛 = 2𝑘 as before we can let C = [ 𝐼 | C1 ] and D =

[ −CT
1
| 𝐼 ] for a randomC1 over𝑅, where securitywould follow from

the suitable variant of LSN over 𝑅. For the most efficient variant

based on 1D-SLSN, we must of course choose random invertible
scalars 𝛼𝑖 ∈ 𝑅 (and in this case we do need to invert them). In the

context of LPN-based cryptography over Z
2
𝑘 , such constructions

have been analyzed and have so far resisted all known attacks [52].

4 EMVP from 1D-SLSN
In this section we describe our main EMVP protocol, based on

1D-SLSN, which maximizes efficiency. In the full version [4], we

describe our LPN-based protocol, which yields near-optimal asymp-
totic (but not concrete) efficiency under a standard assumption.

Recall that in the 1D-SLSN assumption, we hide each sampled

codeword from a secret code 𝐶 by splitting it into 𝑠 blocks, and

multiplying each block by a random invertible scalar 𝛼𝑖 . An EMVP

protocol based on the conjectured hardness of distinguishing such

(shifted) samples from random is formally described in fig. 1.

In the setup phase, the rows of M are encoded into M̃ using

a random systematic encoding matrix D, and then M̃ is masked

with a pseudorandom matrix R. The resulting matrix M̂ = M̃ + R
is uploaded to the server. To make a query, the client samples a

random c← 𝐶 , where 𝐶 is the dual code of the code generated by

D. Setting q̃ = c + (q | 0𝑘 ), the clients wants to obtain the product

M̃q̃ (which is equal toMq since D = (I|D′) is systematic).

Of course, the client needs to hide q̃ from the server, which it

does (under 1D-SLSN) by breaking it into 𝑠 blocks and multiplying

the 𝑖’th block by the scalar 𝛼𝑖 as above. Concatenating all these

blocks, the client sends to the server the encrypted vector q̂. The
server multiplies each block of M̂ with the corresponding block

of q̂, sending the result (which is an 𝑚-by-𝑠 matrix) back to the

client. The client can undo the effect of the 𝛼𝑖 by taking a linear

combination of the 𝑠 columns vectors with coefficients 𝛼−1
𝑖

. Note,

however, that since M̃ is masked by R, the client must also cancel

the effect of the server’s evaluation over the mask. This can be done

efficiently if R is a trapdoored matrix, which allows the client to

perform fast multiplication with q̃.

Lemma 4.1 (EMVP from 1D-SLSN: Correctness). The EMVP pro-
tocol from fig. 1 satisfies the correctness requirement.

Proof. In decoding, the client computes the value a = M′p′ − r′.
By construction, r′ = EC(q̃), which is equal to Rq̃ by the correctness
of the underlying trapdoored matrix. Additionally, we can rewrite

M′p′ = [M̂1q̂1 | . . . | M̂𝑠 q̂𝑠 ]p′ =
𝑠∑︁
𝑖=1

𝛼−1𝑖 M̂𝑖 q̂𝑖 =
𝑠∑︁
𝑖=1

M̂𝑖 q̃𝑖 = M̂q̃.

Correctness then holds since

M̂q̃ = MDq̃ + Rq̃ = M
(
D(q | 0𝑘 ) + Dc

)
+ r′ = Mq + r′,

where the last equality follows by the fact that D is of the form

[𝐼ℓ |D′] and c is orthogonal to the code generated by D. □

Lemma 4.2 (EMVP from 1D-SLSN: Security). The EMVP protocol
from fig. 1 is secure under (𝑘, 𝑛, 𝑠)-1D-SLSN (Definition 3.3).

Proof. Consider a hybrid protocol where the outputs of the PRF

are replaced by uniformly random outputs and, consequently, 𝐶 is

a uniformly random code and R that is generated by TDM using a

uniformly random trapdoor. Furthermore, replace R by a uniformly

random matrix. Under the security of the PRF and TDM, this is as

secure as the original protocol. In the hybrid protocol, since the

database encoding is masked by a uniformly random R which is

independent in the queries generated by the client, the adversary’s

view can be simulated only given the queries, which consist of

polynomially many samples of the form 𝑞 = (𝛼1 · q̃1 | . . . | 𝛼𝑠 · q̃𝑠 ),
where q̃ = (q̃1 | . . . | q̃𝑠 ) is a partition of (q | 0𝑘 ) + c where c is a
uniformly random codeword in 𝐶 and 𝛼1, . . . , 𝛼𝑠 ← F \ {0}. Such
queries correspond precisely to (𝑘, 𝑛, 𝑠)-1D-SLSN samples with

hidden code𝐶 and shifts (Δ1 | . . . | Δ𝑠 ) = (q | 0𝑘 ) (see definition 3.3).
These queries are thus pseudorandom under (𝑘, 𝑛, 𝑠)-1D-SLSN and

the security of the protocol follows. □

Optimizing download rate. Recall that 1D-SLSN considers a pseu-

dorandom experiment where each sampled codeword is split into 𝑠

blocks, and each block is hidden in a 1-dimensional linear space. The

parameter 𝑠 has little impact on the client and server computation,

but it does impact the download rate, blowing up the size of the

server’s answer by a factor of 𝑠 . To achieve download rate 1 (namely,

server-client message that approaches the output length), we can

compose the EMVP protocol with any rate-1 additively homomor-

phic encryption (AHE) in the following way. In parallel to sending

the query 𝑞 to the server, the client also sends the AHE-encrypted

q′ = (p′, r′). Since q′ is short, this does not add much to the upload

cost. Now instead of sendingM′ to the client, the server uses the

AHE to homomorphically evaluate the outputM′p′ − r′, which the

client can decrypt. Note that this does not require additional rounds

of interaction. Rate-1 AHE can be implemented from a variety of

cryptographic assumptions [17, 34, 38]. With this extension, the

protocol is no longer field agnostic. However, the non-agnostic part

is asymptotically dominated by the other costs.

Variations. The protocol from fig. 1 can be easily adapted to use

the (𝑘, 𝑛, 𝑟, 𝑠)-SLSN assumption (definition 3.2) instead of 1D-SLSN.
This may allow for a more flexible choice of parameters (see sec-

tion 6), increasing both the upload cost and the download cost by an

extra factor of 𝑟 . The increase in the download cost can be mitigated

via composition with HE as discussed above.

5 New Trapdoored Matrix Constructions
In this section we present new TDM constructions (definition 2.2)

that are tailored to our goals of concrete efficiency and lightweight

protocols for distributing EMVP clients.

All of the following constructions generate the trapdoored ma-

trix R by multiplying secret and public matricesM𝑖 , where (1) all

matrices are “fast” in the sense that v ↦→ M𝑖v can be computed by

a near-linear size arithmetic circuit, and (2) the matrices are “in-

compatible” in the sense that they do not share the same structure.

As in [18, 59], we consider here without loss of generality the case

of generating a square 𝑘 × 𝑘 trapdoor matrix R. The general case
reduces to this case by covering a rectangular matrix with square

matrices, padding with 0’s if needed. However, as discussed below,

some variants of our TDM constructions have a lower overhead for
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Parameters:
• 1D-SLSN parameters 𝑘 (𝜆), 𝑛 (𝜆), 𝑠 (𝜆) such that 𝑠 |𝑛 and 𝑛 − 𝑘 ≥ 𝜆Ω (1) .

• Field oracle F, where |F | > 2.

• Trapdoored matrix TDM with trapdoor size 𝜅 (𝜆,𝑚,𝑛) .
• A pseudorandom function PRF : {0, 1}𝜆 × {0, 1}𝜆 → {0, 1}𝜆 .

The Protocol:
• G(1𝜆, 1𝑚, 1ℓ ) :

1. Let 𝜆0 = min{𝜆′ : 𝜆′ ≥ 𝜆, ℓ ≤ 𝑛 (𝜆′ ) − 𝑘 (𝜆′ ) } and let ℓ0 = 𝑛 (𝜆0 ) − 𝑘 (𝜆0 ) .
// In the following, we assume w.l.o.g. that ℓ = ℓ0 . Otherwise, the rows in

the input matrix are padded with ℓ0 − ℓ zeros (it always holds that ℓ0 ≥ ℓ).

2. Let 𝑛 = 𝑛 (𝜆0 ), 𝑘 = 𝑘 (𝜆0 ), 𝑠 = 𝑠 (𝜆0 ), 𝜅 = 𝜅 (𝜆,𝑚,𝑛)
3. Return sk = (k,𝑚, ℓ, 𝑛, 𝑘, 𝑠, 𝜅 ) where k← {0, 1}𝜆 is a PRF key

• E(sk,M) : Use PRF(k, · ) to determine the randomness in the following.

1. Let C← F𝑘×𝑛 define a secret 1D-SLSN code𝐶

2. Let 𝐷 = 𝐶⊥ and D ∈ Fℓ×𝑛 be a systematic generator matrix of 𝐷 , where D = [𝐼ℓ | D′ ]
3. Let td← F𝜅 and (R, EC) ← TDM(1𝜆, 1𝑚, 1𝑛, td) // R is a trapdoored matrix

4. Return M̂ = MD + R ∈ F𝑚×𝑛
• Q (sk, q) :

1. Let r← F𝑘 and c← rTC ∈ F𝑛 // c is a random codeword

2. Let q̃ = (q | 0𝑘 ) + c and r′ = EC(q̃) ∈ F𝑚 // use the trapdoor to compute r′ = Rq̃
3. Let 𝛼1, . . . , 𝛼𝑠 ← F \ {0} and let p′ = (𝛼−1

1
, . . . , 𝛼−1𝑠 ) ∈ F𝑠

4. Let q̂ = (𝛼1 · q̃1 | . . . | 𝛼𝑠 · q̃𝑠 ) ∈ F𝑛 , where (q̃1 | . . . | q̃𝑠 ) is a partition of q̃ into blocks of length 𝑛/𝑠
5. Let q′ = (p′, r′ )
6. Return (q̂, q′ )
• A(M̂, q̂) :

1. Parse M̂ as [M̂1 | . . . | M̂𝑠 ] and q̂ as (q̂1 | . . . | q̂𝑠 ) .
2. ReturnM′ = [M̂1q̂1 | . . . | M̂𝑠 q̂𝑠 ] ∈ F𝑚×𝑠
• D(sk,M′, q′ ) : ReturnM′p′ − r′ ∈ F𝑚

Figure 1: Main EMVP Protocol from 1D-SLSN.

a rectangular TDM R that has many more rows than columns or

vice versa.

5.1 TDM from Dual LPN
We start with a simple generic construction of TDM from the dual

version of the LPN assumption, applied to suitable families of struc-

tured codes. In this construction, the pseudorandom matrix R is

defined by R = HE, where H ∈ F𝑘×𝑛 is a public parity-check matrix

for which dual LPN holds, namely (H,He) ≈𝑐 (H, u) for a sparse e
and random u, and E ∈ F𝑛×𝑘 is a secret sparse matrix defined by

td. (Here the 𝜅1 field elements of td determine the values of the

nonzero entries of E and the 𝜅2 bits determine their locations.)

As we show below, R is pseudorandom based on the dual-LPN

assumption defined by H. To ensure that R is also fast given the

trapdoor E, we pick H from a family of fast matrices, namely where

the mapping e ↦→ He can be computed by a (near-)linear size

circuit. For example, we can let H be a random quasi-cyclic matrix,

corresponding to the Ring-LPN assumption over F [13, 44], or pick it
from any family of linear-time encodable codes that are conjectured

to be (dual-)LPN-friendly [11, 19, 35].

To formalize the above, we start by recalling the definition of

dual-LPN.

Definition 5.1 (Dual-LPN). LetH denote a PPT sampling algorithm
where, for any 𝑘, 𝑛 ∈ N,H(1𝑘 , 1𝑛) samples a matrix H ∈ F𝑘×𝑛 . The
(decisional) dual-LPN assumption (𝑘, 𝑛,H , 𝜀)-dual-LPN over F :=

F(𝜆), for polynomials 𝑘 := 𝑘 (𝜆), 𝑛 := 𝑛(𝜆) and 𝜀 := 𝜀 (𝜆) ∈ (0, 1),

asserts that (H,He) ≈𝑐 (H, u), where H←H(1𝑘 , 1𝑛), e← Ber𝑛F (𝜀)
and u← F𝑘 .

The (𝑘, 𝑛,H , 𝜀)-dual-LPN assumption is equivalent to LPN with

dimension 𝑘′ = 𝑛 − 𝑘 , noise rate 𝜀 and 𝑛 samples, where the LPN

generating matrix is (a random basis of) the code whose parity-

check matrix is H←H (see, e.g., [12, Section 3.3.1]).

A standard hybrid argument implies that if (H,He) is pseudoran-
dom for a Bernoulli noise vector e, then so is (H,HE) for a Bernoulli
matrix E.

Lemma 5.1 (Dual-LPN implies matrix dual-LPN). The (𝑘, 𝑛,H , 𝜀)-
dual-LPN assumption over F implies the following for any poly-
nomial 𝑚 := 𝑚(𝜆), (H,HE) ≈𝑐 (H,U), where H ← H(1𝑘 , 1𝑛),
E← Ber𝑛×𝑚F (𝜀) and U← F𝑘×𝑚 .

Lemma 5.1 directly induces a trapdoored matrix construction,

presented in fig. 2, which given a security parameter 𝜆 generates a

𝑘 × 𝑘 trapdoored matrix.

Proposition 5.1 (TDM from dual-LPN). The TDM from fig. 2 is
secure under (𝑘, 𝑛,H , 𝜀)-dual-LPN. Moreover, the expected size of
the evaluation circuit EC is 𝜀𝑘𝑛 + |ECH |, where |ECH | is the size of
an arithmetic circuit ECH : F𝑛 → F𝑘 evaluating the linear map
e ↦→ He.

To make the dual-LPN based TDM construction efficient, we

would like to minimize the size of ECH. We discuss two different

instantiations based on two different types of fast codes: quasi-

cyclic codes and specific families of linear-time encodable codes.
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Parameters:
• Field oracle F
• dual-LPN parameters 𝑘 (𝜆), 𝑛 (𝜆), 𝜀 (𝜆) and a sampling algorithm H(1𝑘 , 1𝑛 ) with output in F𝑘×𝑛

TDM(1𝜆, td) // Generate 𝑘 × 𝑘 trapdoored matrix for 𝑘 = 𝑘 (𝜆)
(1) Use td to sample H← H(1𝑘 , 1𝑛 ) and E← Ber𝑛×𝑘F (𝜀 )
(2) Let EC : F𝑘 → F𝑘 be an arithmetic circuit that, on input v ∈ F𝑘 , computes v′ = Ev and outputs Hv′

(3) Output (R = HE, EC)

Figure 2: TDM from dual-LPN.

5.1.1 TDM from Ring-LPN. Ring-LPN [13, 44, 55], an LPN analogue

of ring-LWE [53], broadly refers to a class of structured LPN as-

sumptions where both the encoding and its dual have a ring-based

structure that gives rise to quasilinear-time computation using FFT.

For example, one can take H to be a random Toeplitz matrix, or

alternatively a random quasi-cyclic matrix of the form H = [ 𝐼 | C ],
where 𝐼 is the 𝑘 × 𝑘 identity matrix and C is a random circulant

matrix whose rows are all cyclic shifts of a random vector in F𝑘 .
Alternatively (and more conservatively), letting F̂ be a degree-𝑘

field extension of F, viewed as a 𝑘-dimensional vector space over F,
C can be chosen to implement multiplication by a random scalar

in F̂. In all of these cases, dual-LPN is conjectured to hold and the

map e ↦→ He can be computed by a circuit of size 𝑂 (𝑘 log𝑘).
Compared to the standard LPN assumption, (dual) ring-LPN is

more structured and hence less conservative. However, the above

instantiations of ring-LPN are comparable to standard LPN in terms

of their concrete security against known attacks. Assuming known

attacks are optimal up to a poly(𝑘) factor, we get a TDM for 𝑘 × 𝑘
matrices with security against poly(𝑘)-time distinguishers in which

EC can be a circuit of size 𝑘 · 𝑡 for any 𝑡 = 𝜔 (log𝑘). This can be

compared to the recursive LPN-based constructions from [18, 59],

where EC has size (at least) 𝑘 · 𝑡2 and concrete savings over the

naive solution are only achieved for larger 𝑘 .

5.1.2 TDM from Linear-Size Dual-LPN. In the above ring-LPN

based TDM, the mapping e ↦→ He can be computed by circuits

of quasilinear size. Since the ring structure is not essential for

dual-LPN to hold, one may try to instantiate proposition 5.1 with

linear-size computable maps e ↦→ He for which dual-LPN holds.

Candidates for suchHwere proposed in the line of work on pseudo-

random correlation generators [10, 12] and can be based on different

families of linear-time encodable codes from [3, 11, 32, 35, 40]. Note

that even if the code is efficiently decodable, its dual may support

LPN. These candidates give rise to TDM constructions in which

the second (non-sparse) linear map H is computable by a linear-

size circuit. However, the total asymptotic size of EC is dominated

by the sparse linear map E, and hence will be the same as in the

previous ring-LPN based constructions.

The general template for such constructions is as follows. Sup-

pose that, for C ∈ F𝑘×𝑛 , x ↦→ xTC is an encoding function of a

linear code 𝐶 such that (primal) LPN holds in 𝐶⊥. Then the trans-

pose map e ↦→ Ce satisfies dual-LPN. Moreover, by the transposi-

tion principle [5, 9], if the encoding x ↦→ xTC can be implemented

with 𝑠 additions and scalar multiplications, then the transpose map

e ↦→ Ce requires only 𝑂 (𝑠) such operations. Hence, linear codes

with fast encoders whose duals are not known to admit efficient

decoding algorithms can serve as a basis for fast TDM.

Linear-size evaluation for rectangular TDM. When R = HE is

a square 𝑘 × 𝑘 matrix, E should have 𝜔 (𝑘 log𝑘) nonzero entries.

Indeed, the pseudorandomness of R requires each of the 𝑘 columns

of E to have 𝑡 = 𝜔 (log 𝜆) nonzero entries. This makes EC super-

linear. However, if R is a rectangular𝑇𝑘×𝑘 matrix, where𝑇 ≥ 𝑡 , we

can make EC linear in the output size by using a sparse E ∈ F2𝑇𝑘×𝑘
with 𝑡 nonzero entries per column and fast, dual-LPN friendly

H ∈ F𝑇𝑘×2𝑇𝑘 . Using the transposition principle, the same holds for

a rectangular TDM of dimensions 𝑘 ×𝑇𝑘 .

5.2 Faster and Universal TDM?
Recall that in the above dual-LPN based TDM constructions, the

trapdoored matrix is of the form R = HE, where E is a sparse LPN

noise matrix. This has two disadvantages. First, the level of sparsity

of E is limited (typically around 100 nonzero entries per column or

more), leading to a corresponding slowdown. (As discussed above,

this slowdown can be mitigated when R is rectangular.) Second,

this TDM is not universal because the composed map v ↦→ HEv is

only fast when the sparse mapping E is wired into EC, ruling out a

public EC.
Instead, we propose a heuristic approach for a universal TDM

that can also support EC with an asymptotically optimal size. The

general blueprint is to let the trapdoored matrix be a product of a

constant number of secret “fast” matrices, where to support mix-

ing we interleave the products with public random permutations.

Concretely, let 𝑐 ≥ 1 be an expansion factor, and let

R = S𝐿 · Π𝐿 · S · Π𝑅 · S𝑅, (1)

where

• S𝐿 ∈ F𝑐𝑘×𝑘 , S ∈ F𝑐𝑘×𝑐𝑘 , S𝑅 ∈ F𝑘×𝑐𝑘 are secret matrices,

• Π𝐿,Π𝑅 are public random 𝑐𝑘 × 𝑐𝑘 permutation matrices.

An expansion factor 𝑐 > 1 makes the final map S𝐿 act as a

randomness extractor. A similar idea was used in the construction

of linear-size pairwise-independent hash functions from [47], which

follows a similar blueprint. Note that if 𝑐 = 1 and F is small, then the

probability of R being singular is noticeably bigger than a random

matrix even when the secret matrices are random. This explains

why we need 𝑐 > 1.

Before specifying how to choose the secret matrices, we note

the following common feature of our instantiations: each secret

matrix is an affine (degree-1) function of td, where td contains

Ω(𝑘) field elements. Thus, the mapping from td to R is a degree-3

polynomial map determined by Π𝐿 and Π𝑅 . Since it is commonly
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conjectured that an overwhelming fraction of degree-3 polynomial

maps FΩ (𝑘 ) ↦→ F𝑘
2

define a pseudorandom generator (as a natural

generalization of the standard MQ assumption [54]), the security of

the above TDM would follow from the additional leap of faith that

the same holds for the degree-3 map induced by a random choice

of Π𝐿,Π𝑅 .

It remains to specify the choices of the expansion factor 𝑐 and the

secret structured matrices. We propose two instantiations of eq. (1):

(1) Quasi-cyclic. Here we take 𝑐 = 2, let S𝐿, S𝑅 be quasi-cyclic

matrices of the form [ 𝐼 | C ], each defined by a random vec-

tor in F𝑘 , and S a circulant matrix defined by a vector in

F2𝑘 . Note that once we fix Π1 and Π2, the evaluation cir-

cuit EC(td) has quasilinear size, since it computes𝑂 (1) con-
volutions of vectors of length 𝑂 (𝑘) interleaved with fixed

permutations.

(2) Linear size. Alternatively, we can pick the 3 secret ma-

trices so that the corresponding linear maps can be imple-

mented by linear-size circuits. A conservative choice would

be to let 𝑐 ≥ 2 and pick each of the secret linear maps from

a “randomizing” family that has a uniform output on ev-

ery nonzero input. Concretely, consider a bilinear function

𝐵 : F𝑘1 × F𝑘2 → F𝑘3 (here 𝑘𝑖 = Θ(𝑘)) with the following

properties: (1) for every fixed nonzero v ∈ F𝑘2 , the output of
𝐵(s, v) induced by a uniform choice of s ∈ F𝑘1 is uniform in

F𝑘3 ; (2) 𝐵 can be implemented by an arithmetic circuit of size

𝑂 (𝑘1 + 𝑘2 + 𝑘3). This can be used to instantiate eq. (1) in the

following way. Each of the 3 secret linear maps is defined by

applying 𝐵 with the key s taken from td (an independent s
for each map) and v as the input to this map. The output of

𝐵 is fed into the next step. An explicit 𝐵 as above is known

to exist, and can be constructed from asymptotically good

codes with linear-size encoders [35, 47]. We conjecture that

for most choices of 𝐵 as above (and in particular the ones

from the literature), the TDM defined by eq. (1) is secure.

An RAA-style TDM candidate. In the full version, we propose a

leaner variant of eq. (1) based on the design principle of Repeat-

Accumulate-Accumulate (RAA) codes [3, 32, 40].

The candidate TDM constructions in this section have the advan-

tages of being universal, and can potentially beat the asymptotic

and concrete efficiency of the previous constructions. In fact, the

linear-size instantiations (if secure) have asymptotically optimal

circuit size. On the down side, these are new and speculative de-

signs, that require further analysis and tuning of parameters. We

leave a more thorough study of the concrete security and efficiency

of these and other TDM candidates to future work.

6 Cryptanalysis
In this section we analyze the LSN-type assumptions we use with

respect to some relevant types of algebraic attacks, which would

allow us to propose concrete parameters and discuss the concrete

efficiency in section 6.2 below. (In this section we use row vectors

by default, vs. column vectors in the rest of the document.)

6.1 Algebraic Attacks
Here we devise some algebraic attacks on regular-LSN and split-

LSN (the cases 𝑠 = 1 and 𝑠 > 1 from definition 3.2). The setting

that we analyze in both cases is having a random secret rank-𝑘

code 𝐶 ⊂ F𝑛 , generated by a matrix G ∈ F𝑘×𝑛 (which we almost

always assume is systematic, G = [I𝑘 |X] with I𝑘 the 𝑘 × 𝑘 identity

matrix). The adversary is given many samples (as many as it wants),

where for each sample a random codeword c = rG is chosen and

the adversary is given either 𝑑 random vectors in F𝑛 or 𝑑 random

vectors whose span includes c. (The parameter 𝑑 corresponds to

𝑟 · 𝑠 from Definition 3.2.)

The difference between regular-LSN and split-LSN is that in

regular-LSN these 𝑑 vectors are uniform in F𝑛 , whereas in split-

LSN each vector has only one non-zero block. That is, in split-LSN

the index set [𝑛] is partitioned into 𝑠 blocks of size 𝑏 = 𝑛/𝑠 each,
and in each vector is uniform in one block and 0 in all other blocks.

This way of choosing the samples is convenient for our analysis,

but is slightly different than the way it is described in definition 3.2.

There we used dimension-(𝑑 − 1) affine space, where 𝑑 − 1 vectors
v𝑖 are chosen at random and we set v𝑑 = c +∑𝑖 𝛾𝑖<𝑑v𝑖 for random
scalars𝛾𝑖 ∈ F. Here, instead, we use dimension-𝑑 linear space where

the 𝑑 random vectors are chosen subject to c ∈ Span(v1, . . . , v𝑑 ).
For regular-LSN (𝑠 = 1), the statistical distance between the two

choices of samples is ≤ 1/|F|. Indeed, the only difference is that in

the affine case the adversary knows that the linear combination

yielding c has 𝛾𝑑 = 1, whereas in the linear case the coefficient 𝛾𝑑
is also uniform in F𝑑 . But since c is itself a random codeword, the

only difference between these distributions is that in the linear case

we allow 𝛾𝑑 = 0 whereas the affine case (Definition 3.2) we do not.

For Split-LSN (𝑠 > 1), the two distributions are different because

for each block, the coefficient multiplying the last vector of the block

may be different. However, the attacks described below against

the linear-space distribution imply an attacks against the affine-

space distribution from Definition 3.2. Indeed, a sample from the

affine-space distribution can be transformed to a sample from the

linear-space distribution by replacing the set of vectors for each

block by a random basis of vectors spanning the same subspace.

Finally, for the 1D-SLSN case from Definition 3.3, all our attacks

use 0 shifts, and it is unclear how to use shifts to improve them.

Below we describe an algebraic attack in a framework that ap-

plies to both 𝑠 = 1 and 𝑠 > 1 cases, and then analyze separately the

complexity of this attack for regular-LSN (𝑠 = 1) and for split-LSN

(𝑠 > 1). This attack follows the common pattern of tensor-based

rank attacks, which succeed in finding a nonzero degree-𝑑 polyno-

mial that annihilates all samples, if one exists, in time roughly𝑚𝑑
,

where𝑚 is the length of each sample. (As we note in Section 6.1.1

below, this attack can be thought of as an adaptation of the Arora-

Ge type of attacks [2] to our secret-code setting.) The attack uses

the following simple lemma:

Lemma 6.1. Fix a field F and parameters 𝑑, 𝑘, 𝑛 such that 𝑑 ≤
𝑛 − 𝑘 . For every rank-𝑘 code 𝐶 ⊂ F𝑛 there exists a non-zero degree-𝑑
multivariate polynomial 𝑃𝐶 (·), such that 𝑃𝐶 (v1, . . . , v𝑑 ) = 0 holds
for every set of vectors that non-trivially span vectors from𝐶 . In other
words, if there exists coefficients 𝛾𝑖 that are not all zero such that∑
𝑖 𝛾𝑖v𝑖 ∈ 𝐶 , then 𝑃𝐶 (v1, . . . , v𝑑 ) = 0.
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Proof. Let 𝜋 : F𝑛 → F𝑑 be any linear map such that 𝐶 ⊆
Kernel(𝜋) and Image(𝜋) = F𝑑 (i.e., 𝜋 is of full rank). Such a linear

exists since dim(𝐶)+dim(F𝑑 ) = 𝑘+𝑑 ≤ 𝑛. For example, let c1, . . . , c𝑘
be a basis of 𝐶 , and let c𝑘+1, . . . , c𝑛 be an extension of it to a basis

of F𝑛 . Then define 𝜋 (c𝑖 ) = 0 for 𝑖 ≤ 𝑛 − 𝑑 and 𝜋 (c𝑖 ) = e𝑖−𝑛+𝑑 for

𝑖 ≥ 𝑛 − 𝑑 + 1 (where e𝑗 is the 𝑗 ’th unit vector in F𝑑 ).
For any set of 𝑑 vectors v1, . . . , v𝑑 ∈ F𝑛 , let V𝜋 be the 𝑑-by-𝑑 ma-

trix overFwith the𝜋 (v𝑖 )⊺ as columns,V𝜋 = [𝜋 (v1)⊺ | · · · |𝜋 (v𝑑 )⊺].
We define the polynomial 𝑃𝐶 (v1, . . . , v𝑑 ) = det(V𝜋 ), which is in-

deed a non-zero degree-𝑑 multivariate polynomial. (𝑃𝐶 is non-zero

since 𝜋 is full rank.)

It remains to show that 𝑃𝐶 (v1, . . . , v𝑑 ) = 0 whenever

∑𝑑
𝑖=1 𝛾𝑖v𝑖 ∈

𝐶 for coefficients 𝛾𝑖 that are not all zero. As 𝐶 is in the kernel of 𝜋 ,

we have

∑𝑑
𝑖=1 𝛾𝑖 𝜋 (v𝑖 ) = 𝜋

( ∑𝑑
𝑖=1 𝛾𝑖v𝑖

)
= 0, and since the 𝛾𝑖 are

not all zero then it means that the 𝜋 (v𝑖 )’s are linearly dependent.

Therefore, the determinant of V𝜋 must be zero, 𝑃𝐶 (v1, . . . , v𝑑 ) =
det( [𝜋 (v1)⊺ | · · · |𝜋 (v𝑑 )⊺]) = 0. □

The basic attack. We note that regardless of 𝐶 or 𝜋 , the monomi-

als in det( [𝜋 (v1)⊺ | · · · |𝜋 (v𝑑 )⊺]) are always a subset of the entries
of the tensor v̂ = v1 ⊗ v2 ⊗ · · · ⊗ v𝑑 (that has dimension 𝑛𝑑 ). Hence

for every code 𝐶 there is a vector w𝐶 (of the coefficients of 𝑃𝐶 )

such that ⟨w𝐶 , v̂⟩ = 0 for every sample v̂ = v1 ⊗ v2 ⊗ · · · ⊗ v𝑑 that

the adversary sees. This means that the v̂’s from all the queries

live in a proper subspace of F𝑛
𝑑
. After seeing at most 𝑛𝑑 samples,

the adversary can see that their rank is strictly less than 𝑛𝑑 , thus

distinguishing them from random. (If the v𝑖 ’s were random then

whp the v̂ from different samples are not contained in any proper

subspace of F𝑛
𝑑
.)

To mount this attack, the adversary needs to check linear depen-

dence between 𝑛𝑑 vectors, but these are highly structured vectors,

each can be described by at most 𝑛𝑑 scalars. Hence we consider the

complexity of this attack to be “essentially 𝑛𝑑 ”.

Note that 𝑛𝑑 is only an upper bound, and below we show that

essentially the same attack can be carried out with lower complexity.

To that end, we exhibit classes of linear maps 𝜋 satisfying the

conditions in the proof of lemma 6.1, where the set of possible

monomials in det(V𝜋 ) is smaller than 𝑛𝑑 .

6.1.1 Relations to Algebraic Attacks from the Literature. As we
mentioned above, we can view our algebraic attacks as a variant

of the Arora-Ge attacks [2] on LPN, adjusted to handle our setting

where the code is secret. In the attacks from [2], the LPN secret

s plays the same role as the code 𝐶 in our setting. They consider

an multiple LPN samples of the form y𝑖 = A𝑖s + e𝑖 where the

noise e𝑖 is “structured” enough to have a non-zero degree-𝑑 annihi-

lating polynomial 𝑃 . Since the matrix A𝑖 is known, then they can

transform this noise-annihilating polynomial into secret-dependent

polynomial 𝑃s (A, y) = 𝑃 (y − As) (of the same degree as 𝑃 ) that a

annihilates all the samples, and use tensor-based rank attacks to

find 𝑃s given enough samples. In our case, it is the code 𝐶 which

is secret. We similarly show that there exists a code-dependent

non-zero degree-𝑑 polynomial 𝑃𝐶 that annihilates all the samples,

and use tensor-based rank attacks to find 𝑃𝐶 given enough samples.

We also remark that sophisticated attacks based on Gröbner

bases/XL [28] do not seem to help in our case. These techniques are

useful in situations where the number of samples available to the

attacker is limited, they allow better usage of the limited samples

available at the price of increasing the degree of the annihilating

polynomials (and thus the complexity of the attack). This is useful

in the context of PCGs (such as in [21, 49]) where the number

of samples is fixed by the construction itself. But in our case we

allow the adversary to draw as many samples as it wants, so we

get attacks with better complexity by using more samples than by

using Gröbner/XL.

6.1.2 Complexity of the Split-LSN Attack. In this subsection we

use the notations from the definitions of split-LSN in Section 3.

Specifically, the index set [𝑛] is split into 𝑠 blocks (of dimension

𝑏 = 𝑛/𝑠), and each block is hidden in a linear space of dimension 𝑟 .

Thus the total number of vectors is 𝑑 = 𝑠 · 𝑟 = 𝑛𝑟/𝑏.
To be able to use the attack from above in this setting, we there-

fore need the condition 𝑛 ≥ 𝑘 + 𝑑 , or equivalently 𝑛 ≥ 𝑘𝑏/(𝑏 − 𝑟 ).
In fact if we let 𝑛′ ≤ 𝑛 be the smallest multiple of 𝑏 such that

𝑛′ ≥ 𝑘𝑏/(𝑏 − 𝑟 ), then we can truncate all the vectors to dimension

𝑛′ and the attack will still work. Below we therefore assume that

the length 𝑛 is exactly that, 𝑛 = 𝑏 · ⌈𝑘/(𝑏 − 𝑟 )⌉, so the number

of blocks is 𝑠 = ⌈𝑘/(𝑏 − 𝑟 )⌉ and the total number of vectors is

𝑑 = 𝑟𝑠 = 𝑟 ⌈𝑘/(𝑏 − 𝑟 )⌉.
We can now use a straightforward application of the attack, and

notice that since each of the vectors v1, . . . , v𝑑 is supported only

on 𝑏 coordinates then the tensor ⊗𝑖v𝑖 has only 𝑏𝑑 = 𝑏𝑟 ⌈𝑘/(𝑏−𝑟 ) ⌉

non-zero terms. The attack complexity in this case is therefore

essentially𝑏𝑟 ⌈𝑘/(𝑏−𝑟 ) ⌉ . In particular, for the most aggressive setting

of 𝑟 = 1, we get complexity of 𝑏 ⌈𝑘/(𝑏−1) ⌉ . If 𝑘 is divisible by 𝑏 and

𝑘 < 𝑏2, then ⌈𝑘/(𝑏 − 1)⌉ = 1 + 𝑘/𝑏 so we get complexity of 𝑏1+𝑘/𝑏 .
We note that the reduction in the base of the exponent (from 𝑛

to 𝑏) is only possible because the partition into blocks is fixed and

does not change from one sample to the next. If instead for each

sample we choose a different partition of the index set [𝑛] into
𝑠 blocks of size 𝑏 each, then we seem to have to consider all the

possible tensors, none of them is always zero. In that case, the best

bound that we know is that for a generic regular-LSN, which as we

show below is (𝑘 + 1)𝑑 . 5

6.1.3 Complexity of the Regular-LSN Attack. We show that even

for the general regular-LSN problem where the v𝑖 ’s are chosen at

random (subject to Span(v1, . . . , v𝑑 ) ∩𝐶 ≠ {0}), the complexity of

the attack from above can be lowered from𝑛𝑑 to (𝑘+1)𝑑 . We assume

that the code is generated by a systematic matrix G = [I𝑘 |X], and
extend G with 𝑛 − 𝑘 additional rows to get a basis𝑀 for F𝑛 .

Below it is convenient to view a vector w ∈ F𝑛 as a pair (u|v) ∈
F𝑘 × F𝑛−𝑘 . Consider now the linear map 𝜋 (u|v) = v − uX ∈ F𝑑 . A
codeword (u|v) ∈ 𝐶 is generated as (u|v) = rG = (r|0)M = (r|rX)
and therefore 𝜋 (u|v) = v − uX = rX − rX = 0, so 𝐶 is in the kernel

of 𝜋 . At the same time, the image of 𝜋 contains all of F𝑑 since any

vector w ∈ F𝑑 can be obtained as w = 𝜋 (0|w). This 𝜋 therefore

satisfies the conditions of lemma 6.1, and we can use it in the attack

from above. With this 𝜋 , the polynomial 𝑃𝐶 from lemma 6.1 is the

5
Even for blocks that are rather structured but not quite fixed then we don’t know

how to do better than (𝑘 + 1)𝑑 . For example the index set [𝑛] is partitioned into 2𝑠

fixed half-blocks of size 𝑏/2 each, and for each sample we assemble 𝑠 blocks, each a

random pair of those half-blocks.
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determinant

𝑃𝐶 ((u1 |v1), . . . , (u𝑑 |v𝑑 )) = det

(
[(v1 −u1X)⊺ | · · · | (v𝑑 −u𝑑X)⊺]

)
,

which is a sum of all the diagonal products of that matrix with

coefficients ±1. Each one of these diagonal products has the form∏𝑑
𝑖=1 (𝑣𝑖 𝑗 − ⟨u𝑗 , x𝑖 ⟩) where the 𝑗 ’s are some permutation of the 𝑖’s

(and the x𝑖 ’s are columns of the matrix X).
For every subset 𝑆 ⊆ {1, . . . , 𝑑}, the determinant therefore has a

term corresponding the the subset tensor x𝑆 = ⊗𝑖∈𝑆x𝑖 (in order),

and each such term is multiplied by a sum of tensors of the u𝑖 ’s and
v𝑖 ’s (of dimension𝑘 |𝑆 | ). This can be expressed as a big inner product
that has one term of dimension 1 (the sum of all the terms

∏
𝑖 𝑣𝑖 𝑗 ),

𝑑 terms of dimension 𝑘 (for terms that have 𝑑 − 1 factors 𝑣𝑖 𝑗 ’s

and one ⟨u𝑗 , x𝑖 ⟩ for each 𝑖 = 1, . . . , 𝑑),
(𝑑
2

)
terms of dimension 𝑘2,

etc. The total dimension is therefore

∑𝑑
𝑖=0

(𝑑
𝑖

)
𝑘𝑖 = (𝑘 + 1)𝑑 . The

attack in this case consists of collecting enough of these vectors of

dimension (𝑘 + 1)𝑑 until is finds linear dependence, which would

happen after at most (𝑘 + 1)𝑑 regular-LSN samples (but whp only

after (𝑘 + 1)𝑑 + 1 random samples). Hence the attack complexity is

essentially (𝑘 + 1)𝑑 . We describe more cryptanalysis results in the

full version of the paper [4].

6.2 Parameters
We recall the parameters of our “most aggressive” (and most effi-

cient) construction based on 1D-Split-LSN:

• The matrix dimensions are𝑚 × ℓ : we have𝑚 records, each a

dimension-ℓ vector over the field F;
• Records are encoded using an (ℓ, 𝑛)-linear code 𝐷 (so the

server’s overhead is a factor of 𝑛/ℓ).
• Denoting 𝑘 = 𝑛 − ℓ , the code that we want to hide using

1D-Split-LSN is the dual of 𝐷 , which we denote by 𝐶 . This

is a (𝑘, 𝑛)-linear code over F.
• We split the length-𝑛 codewords in 𝐶 into 𝑠 blocks, each of

length 𝑏 = 𝑛/𝑠 .

We denote by 𝜆 the security parameter, and choose parameters so

that the attacks from section 6 all have complexity more than 2
𝜆
.

For the 1D-Split-LSN constructions we need 𝑏 ⌈𝑘/(𝑏−1) ⌉ ≥ 2
𝜆
due

to the algebraic attack from section 6.1.2.

Finally due to efficiency considerations we want to minimize

server overhead factor 𝑓 = 𝑛/ℓ : This parameter controls the storage

and computation overhead of the server (vs. storing the plaintext

matrix and computing the plaintext matrix vector product), as well

as the increase of query upload bandwidth. In addition, we also

want to minimize the number of blocks 𝑠 (which means maximizing

the block size 𝑏), as it controls the size of the server’s answer and

the client’s decoding work. Concretely the compression ratio for the
download bandwidth compared to the naive solution sending the

full matrix is: ℓ/𝑠 = 𝑏/𝑓 , since the server returns 𝑠 field elements

per row, instead of ℓ elements in the naive solution.

To get concrete parameters, we can begin by deciding the server

overhead factor that we are willing to tolerate, which determines

the ratio between 𝑘 and ℓ . To wit, server overhead of 𝑓 × implies

𝑘 = ℓ (𝑓 − 1) (up to rounding). For example a 4× server overhead
means 𝑘 = 3ℓ , while overhead of 1.25× means 𝑘 = ℓ/4, etc.

Rewriting the constraint𝑏 ⌈𝑘/(𝑏−1) ⌉ ≥ 2
𝜆
as ⌈𝑘/(𝑏 − 1)⌉ log

2
𝑏 ≥

𝜆, we can ignore the ceiling and get the sufficient condition 𝑘 ≥
𝜆 · (𝑏 − 1)/log

2
𝑏. This constraint, together with 𝑘 = ℓ (𝑓 − 1) imply

the following:

• We recall that we need𝑏 > 𝑓 to get a more efficient download

bandwidth than the trivial protocol that just sends the entire

dataset to the client for every query, and since 𝑏 is an integer

then 𝑏 ≥ ⌊𝑓 ⌋ + 1 (and in particular 𝑏 ≥ 2).

• For any value of ℓ above this minimal value, we canmaximize

the compression ratio 𝑏/𝑓 by using the largest value of 𝑏

that satisfies (𝑏 − 1)/log
2
𝑏 ≤ 𝑘/𝜆.

We list some parameter examples in table 1, from the smallest

possible record size ℓ upto ℓ = 10000 (which is roughly the size

used in the World ID application [7]).

6.2.1 Can We Get Better Parameters? As we commented at the

bottom of section 6.1.2, the algebraic attacks seem to become more

expensive if instead of fixed blocks, we choose the partition into

blocks at random for each sample separately. In that case, the attack

complexity becomes (𝑘 +1) ⌈𝑘/(𝑏−1) ⌉ (instead of 𝑏 ⌈𝑘/(𝑏−1) ⌉ ), which
enables significantly better parameters.

Rewriting the last constraint as ⌈𝑘/(𝑏 − 1)⌉ log
2
(𝑘 + 1) ≥ 𝜆, we

ignore the +1 and ceiling and get the sufficient condition 𝑘 log
2
𝑘 ≥

𝜆·(𝑏−1). Substituting𝑏 = ⌊𝑓 ⌋+1 yields a lower bound on𝑘 , and then
𝑘 = ⌈ℓ (𝑓 − 1)⌉ yields a lower bound on ℓ . For values of ℓ above that

lower bound, we can set 𝑘 = ⌈ℓ (𝑓 − 1)⌉ and 𝑏 = 1 +
⌊
𝑘 log

2
𝑘/𝜆

⌋
.

For example with 𝜆 = 128, for server overhead 𝑓 = 1.25 we

need at least 𝑏 = 2, so 𝑘 log
2
𝑘 > 𝜆 = 128 or 𝑘 ≥ 28, and therefore

ℓ = 𝑘/(𝑓 −1) = 108 (vs. ℓ = 74 with fixed blocks). With the same 𝑓 =

1.25 and 𝜆 = 128, if we have ℓ = 512 (so 𝑘 = 128) then the block-size

parameter 𝑏 can be as large as 𝑏 = 1+
⌊
128 · log

2
(128)/128

⌋
+ 1 = 8

(vs. 𝑏 = 2 with fixed blocks). We include a few parameter-setting

examples for this variant in table 1.
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