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ABSTRACT

Accurately learning from user data while providing quantifiable pri-
vacy guarantees provides an opportunity to build better ML models
while maintaining user trust. This paper presents a formal approach
to carrying out privacy preserving text perturbation using the no-
tion of dχ -privacy designed to achieve geo-indistinguishability in
location data. Our approach applies carefully calibrated noise to
vector representation of words in a high dimension space as defined
by word embedding models. We present a privacy proof that satis-
fies dχ -privacy where the privacy parameter ε provides guarantees
with respect to a distance metric defined by the word embedding
space. We demonstrate how ε can be selected by analyzing plausible
deniability statistics backed up by large scale analysis on GloVe
and fastText embeddings. We conduct privacy audit experiments
against 2 baseline models and utility experiments on 3 datasets to
demonstrate the tradeoff between privacy and utility for varying
values of ε on different task types. Our results demonstrate prac-
tical utility (< 2% utility loss for training binary classifiers) while
providing better privacy guarantees than baseline models.
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1 INTRODUCTION

Privacy-preserving data analysis is critical in the age of Machine
Learning (ML) and Artificial Intelligence (AI) where the availabil-
ity of data can provide gains over tuned algorithms. However, the
inability to provide sufficient privacy guarantees impedes this po-
tential in certain domains such as with user generated queries.
As a result, computation over sensitive data has been an impor-
tant goal in recent years [18, 25]. On the other hand, private data
that has been inappropriately revealed carries a high cost, both in
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terms of reputation damage and potentially fines, to data custodi-
ans charged with securing curated information. In this context, we
distinguish between security and privacy breaches as follows: a
security breach is unintended or unauthorized system usage, while
a privacy breach is unintended or unauthorized data disclosure dur-
ing intended system uses [6]. Unintended disclosures, or accidental
publications which lead to re-identification have been two common
causes of recent privacy breaches [2, 7, 18, 39, 41, 55, 56]. While
it is possible to define rules and design access policies to improve
data security, understanding the full spectrum of what can consti-
tute a potential privacy infraction can be hard to predict a priori.
As a result, solutions such as pattern matching, ad hoc filters and
anonymization strategies are provably non-private. This is because
such approaches cannot anticipate what side knowledge an attacker
can use in conjunction with the released dataset. One definition
that takes into account the limitations of existing approaches by
preventing data reconstruction and protecting against any potential
side knowledge is Differential Privacy.

Differential Privacy (DP) [21], which originated in the field of
statistical databases, is one of the foremost standards for defining
and dealing with privacy and disclosure prevention. At a high level,
a randomized algorithm is differentially private if its output distri-
bution is similar when the algorithm runs on two neighboring input
databases. The notion of similarity is controlled by a parameter
ε ≥ 0 that defines the strength of the privacy guarantee (with ε = 0
representing absolute privacy, and ε = ∞ representing null privacy).
Even though DP has been applied to domains such as geolocation
[4], social networks [40] and deep learning [1, 50], less attention
has been paid to adapting variants of DP to the context of Natural
Language Processing (NLP) and the text domain [15, 59].

We approach the research challenge of preventing leaks of pri-
vate information in text data by building on the quantifiable privacy
guarantees of DP. In addition to these formal privacy requirements,
we consider two additional requirements informed by typical de-
ployment scenarios. First, the private mechanism must map text
inputs to text outputs. This enables the mechanism to be deployed
as a filter into existing text processing pipelines without additional
changes to other components of the system. Such a requirement
imposes severe limitations on the set of existing mechanisms one
can use, and in particular precludes us from leveraging hash-based
private data structures commonly used to identify frequent words
[22, 54, 58]. The second requirement is that the mechanism must
scale to large amounts of data and be able to deal with datasets that
grow over time. This prevents us from using private data synthesis
methods such as the ones surveyed in [10] because they suffer from
severe scalability issues even in moderate-dimensional settings, and
in general cannot work with datasets that grow over time. Together,
these requirements push us towards solutions where each data
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record is processed independently, similar to the setting in Local
DP (LDP) [31]. To avoid the curse of dimensionality of standard
LDP we instead adopt dχ -privacy [3, 4, 14], a relaxed variant of
local DP where privacy is defined in terms of the distinguishability
level between inputs (see Sec. 2.3 for details).

Our main contribution is a scalable mechanism for text analysis
satisfying dχ -privacy. The mechanism operates on individual data
records – adopting the one user, one word model as a baseline corol-
lary to the one user, one bit model in the DP literature [31]. It takes a
private input word x , and returns a privatized version x̂ where the
word in the original record has been ‘perturbed’. The perturbation is
obtained by first using a pre-determined word embedding model to
map text into a high-dimensional vector space, adding noise to this
vectorial representation, and the projecting back to obtain the per-
turbed word. The formal privacy guarantees of this mechanism can
be interpreted as a degree of plausible deniability [8] conferred to
the contents of x from the point of view of an adversary observing
the perturbed output. We explore this perspective in detail when
discussing how to tune the privacy parameters of our mechanism.

The utility of the mechanism is proportional to how well the
semantics of the input text are preserved in the output. The main
advantage of our mechanism in this context is to allow a higher
degree of semantics preservation by leveraging the geometry pro-
vided by word embeddings when perturbing the data. In this work
we measure semantics preservation by analyzing the performance
obtained by using the privatized data on downstream ML tasks
including binary sentiment analysis, multi-class classification, and
question answering. This same methodology is typically used in
NLP to evaluate unsupervised learning of word embeddings [49].

Our contributions in this paper can be summarized as follows:
1. We provide a formal approach to carrying out intent preserving

text perturbation backed up by formal privacy analysis (Sec. 2).
2. We provide a principled way to select the privacy parameter ε

for dχ -privacy on text data based on geometrical properties of
word embeddings (Sec. 3).

3. We conduct analysis on two embedding models, providing in-
sights into words in the metric space (Sec. 4). We also show how
the vectors respond to perturbations, connecting the geometry
of the embedding with statistics of the dχ -privacy mechanism.

4. We apply our mechanism to different experimental tasks, at dif-
ferent values of ε , demonstrating the trade-off between privacy
and utility (Sec. 5).

2 PRIVACY PRESERVING MECHANISM

Consider a single word x submitted by a user interacting with an
information system. E.g. x might represent a response to a survey
request, or an elicitation of a fine grained sentiment. In particular,
x will contain semantic information about the intent the user is
trying to convey, but it also encodes an idiosyncratic representation
of the user’s word choices. Even though the word might not be
explicitly personally identifiable information (PII) in the traditional
sense of passwords and phone numbers, recent research has shown
that the choice of words can serve as a fingerprint [12] via which
tracing attacks are launched [52]. Our goal is to produce x̂ , a version
of x that preserves the original intent while thwarting this attack
vector. We start the section by giving a high-level description of the

rationale behind our mechanism and describing the threat model.
Then we recall some fundamental concepts of dχ -privacy. Finally,
we provide a detailed description of our mechanism, together with
a formal statement of its privacy guarantees.

2.1 Mechanism Overview

We start by providing a high-level description of our mechanism.
Our mechanism applies a dχ -privacy mechanism x̂ = M(x) to
obtain a replacement for the given word x . Such replacement is
sampled from a carefully crafted probability distribution to ensure
that x̂ conveys a similar semantic to x while at the same time hid-
ing any information that might reveal the identity of the user who
generated x . Intuitively, the randomness introduced by dχ -privacy
provides plausible deniability [8] with respect to the original con-
tent submitted by the user. However, it also permits a curator of
the perturbed words to perform aggregate sentiment analysis, or
to cluster survey results without significant loss of utility.

2.2 Utility Requirements and Threat Model

When designing our mechanism we consider a threat model where
a trusted curator collects a word from each user as x (1),x (2), . . . and
wishes to make them available in clear form to an analyst for use
in some downstream tasks (such as clustering survey responses
or building ML models). The data is collected in the ‘one user, one
word’ model, and we do not seek to extend theoretical protections to
aggregate user data in this model. Unfortunately, providing words
in the clear presents the challenge of unwittingly giving the analyst
access to information about the users interacting with the system.
This could be either in the form of some shared side knowledge
between the user and the analyst [33], or through an ML attack
to learn which users frequently use a given set of words [51, 52].
Our working assumption is that the exact word is not necessary
to effectively solve the downstream tasks of interest, although the
general semantic meaning needs to be preserved to some extent; the
experiments in Sec. 5 give several examples of this type of use case.
Thus, we aim to transform each submission by using randomization
to provide plausible deniability over any potential identifiers.

2.3 Privacy over Metric Spaces

Over the last decade, Differential Privacy (DP) [21] has emerged
as a de facto standard for privacy-preserving data analysis algo-
rithms. Several variants of DP have been proposed in the literature
to address a variety of settings depending on whether, for example,
privacy is defined with respect to aggregate statistics and ML mod-
els (curator DP) [21], or privacy is defined with respect to the data
points contributed by each individual (local DP) [31].

Since our application involves privatizing individual words sub-
mitted by each user, LDP would be the ideal privacy model to con-
sider. However, LDP has a requirement that renders it impractical
for our application: it requires that the given word x has a non-
negligible probability of being transformed into any other word x̂ ,
no matter how unrelated x and x̂ are. Unfortunately, this constraint
makes it virtually impossible to enforce that the semantics of x are
approximately captured by the privatized word x̂ , since the space
of words grows with the size of the language vocabulary, and the



number of words semantically related to x will have vanishingly
small probability under LDP.

To address this limitation we adopt dχ -privacy [3, 14], a relax-
ation of local DP that originated in the context of location privacy
to address precisely the limitation described above. In particular,dχ -
privacy allows a mechanism to report a user’s location in a privacy-
preserving manner, while giving higher probability to locations
which are close to the current location, and negligible probability
to locations in a completely different part of the planet. dχ -privacy
was originally developed as an abstraction of the model proposed
in [4] to address the privacy-utility trade-off in location privacy.

Formally, dχ -privacy is defined for mechanisms whose inputs
come from a set X equipped with a distance function d : X × X →
R+ satisfying the axioms of a metric (i.e. identity of indiscernibles,
symmetry and triangle inequality). The definition of dχ -privacy
depends on the particular distance function d being used and it
is parametrized by a privacy parameter ε > 0. We say that a ran-
domized mechanism M : X → Y satisfies εdχ -privacy if for any
x ,x ′ ∈ X the distributions over outputs ofM(x) andM(x ′) satisfy
the following bound: for all y ∈ Y we have

Pr[M(x) = y]
Pr[M(x ′) = y]

≤ eεd (x,x
′) . (1)

We note that dχ -privacy exhibits the same desirable properties
of DP (e.g. composition, post-processing, robustness against side
knowledge, etc.), but we won’t use these properties explicitly in our
analysis; we refer the reader to [14] for further details.

The type of probabilistic guarantee described by (1) is charac-
teristic of DP: it says that the log-likelihood ratio of observing any
particular output y given two possible inputs x and x ′ is bounded
by εd(x ,x ′). The key difference between dχ -privacy and local DP
is that the latter corresponds to a particular instance of the for-
mer when the distance function is given by d(x ,x ′) = 1 for every
x , x ′. Unfortunately, this Hamming metric does not provide a way
to classify some pairs of points in X as being closer than others.
This indicates that local DP implies a strong notion of indistin-
guishability of the input, thus providing very strong privacy by
“remembering almost nothing” about the input. Fortunately, dχ -
privacy is less restrictive and allows the indistinguishability of the
output distributions to be scaled by the distance between the respec-
tive inputs. In particular, the further away a pair of inputs are, the
more distinguishable the output distributions can be, thus allowing
these distributions to remember more about their inputs than under
the strictly stronger definition of local DP. An inconvenience of
dχ -privacy is that the meaning of the privacy parameter ε changes
if one considers different metrics, and is in general incomparable
with the ε parameter used in standard (local) DP (which can lead
to seemingly larger privacy budget values as the dimensionality of
the metric space increases). As a result, this paper makes no claim
to provide privacy guarantees in the traditional sense of classical
DP. Thus, in order to understand the privacy consequences of a
given ε in dχ -privacy one needs to understand the structure of the
underlying metric d . For now we assume ε is a parameter given
to the mechanism; we will return to this point in Sec. 3 where we
analyze the meaning of this parameter for metrics on words de-
rived from embeddings. All the metrics described in this work are

Euclidean. For discussions on dχ -privacy over other metrics (such
as Manhattan and Chebyshev, see [14])

2.4 Method Details

We now describe the proposed dχ -privacy mechanism. The full
mechanism takes as input a string x containing |x | words and out-
puts a string x̂ of the same length. To privatize x we use adχ -privacy
mechanismM : X → X, where X =Wℓ is the space of all strings
of length ℓ with words in a dictionaryW. The metric between
strings that we consider here is derived from a word embedding
model ϕ :W → Rn as follows: given x ,x ′ ∈ Wℓ for some ℓ ≥ 1,
we let d(x ,x ′) =

∑ℓ
i=1 ∥ϕ(wi )−ϕ(w

′
i )∥, wherewi (resp.w ′i ) denotes

the ith word of x (resp. x ′), and ∥ · ∥ denotes the Euclidean norm
on Rn . Note that d satisfies all the axioms of a metric as long as the
word embedding ϕ is injective. We also assume the word embed-
ding is independent of the data to be privatized; e.g. we could take
an available word embedding like GloVe [44] or train a new word
embedding on an available dataset. Our mechanism M works by
computing the embedding ϕ(w) of each wordw ∈ x , adding some
properly calibrated random noise N to obtain a perturbed embed-
ding ϕ̂ = ϕ(w) + N , and then replacing the wordw with the word
ŵ whose embedding is closest to ϕ̂. The noise N is sampled from
an n-dimensional distribution with density pN (z) ∝ exp(−ε ∥z∥),
where ε is the privacy parameter of the mechanism. The following
pseudo-code provides implementation details for our mechanism.

Algorithm 1: Privacy Preserving Mechanism
Input: string x = w1w2 · · ·wℓ , privacy parameter ε > 0
for i ∈ {1, . . . , ℓ } do

Compute embedding ϕi = ϕ(wi )

Perturb embedding to obtain ϕ̂i = ϕi + N with noise density
pN (z) ∝ exp(−ε ∥z ∥)

Obtain perturbed word ŵi = arдminu∈W ∥ϕ(u) − ϕ̂i ∥
Insert ŵi in ith position of x̂

release x̂

See Sec. 2.6 for details on how to sample noise from the multi-
variate distribution pN for different values of ε .

2.5 Privacy Proof

The following result states that our mechanism M satisfies εdχ -
privacy with respect to the metric d defined above.

Theorem 1. For any ℓ ≥ 1 and any ε > 0, the mechanism M :
Wℓ →Wℓ satisfies εdχ -privacy with respect to d .

Proof. The intuition behind the proof is to observe thatM can
be viewed as a combination of the generic exponential mechanism
construction for the metric d together with a post-processing strat-
egy that does not affect the privacy guarantee of the exponential
mechanism. However, we chose not to formalize our proof in those
terms; instead we provide a self-contained argument leading to
a more direct proof without relying on properties of dχ -privacy
established elsewhere.

To start the proof, we first consider the case ℓ = 1 so that x =
w ∈ W and x ′ = w ′ ∈ W are two inputs of length one. For any



possible output word ŵ ∈ W we define a set Cŵ ⊂ Rn containing
all the feature vectors which are closer to the embedding ϕ(ŵ) than
to the embedding of any other word. Formally, we have

Cŵ =

{
z ∈ Rn : ∥z − ϕ(ŵ)∥ < min

u ∈W\{ŵ }
∥z − ϕ(u)∥

}
.

The set Cŵ is introduced because it is directly related to the proba-
bility that the mechanismM on input x = w produces ŵ as output.
Indeed, by the description of M we see that we get M(w) = ŵ if
and only if the perturbed feature vector ϕ̂ = ϕ(w) + N is closer to
ϕ(ŵ) than to the embedding of any other word inW. In particu-
lar, letting pϕ(w )+N (z) denote the density of the random variable
ϕ(w) + N , we can write the probability of this event as follows:

Pr[M(w) = ŵ] = Pr[ϕ(w) + N ∈ Cŵ ] =
∫
Cŵ

pϕ(w )+N (z)dz

=

∫
Cŵ

pN (z − ϕ(w))dz ∝

∫
Cŵ

exp(−ε ∥z − ϕ(w)∥)dz ,

where we used that ϕ(w)+N has exactly the same distribution of N
but with a different mean. Now we note that the triangle inequality
for the norm ∥ · ∥ implies that for any z ∈ Rn we have the following
inequality:

exp(−ε ∥z − ϕ(w)∥) = exp(−ε ∥z − ϕ(w)∥)
exp(−ε ∥z − ϕ(w ′)∥) exp(−ε ∥z − ϕ(w

′)∥)

= exp(ε(∥z − ϕ(w ′)∥ − ∥z − ϕ(w)∥))
× exp(−ε ∥z − ϕ(w ′)∥)
≤ exp(ε ∥ϕ(w) − ϕ(w ′)∥) exp(−ε ∥z − ϕ(w ′)∥)
= exp(εd(w,w ′)) exp(−ε ∥z − ϕ(w ′)∥) .

Combining the last two derivations and observing the the normal-
ization constants in pN (z) and pϕ(w )+N (z) are the same, we obtain

Pr[M(w) = ŵ]
Pr[M(w ′) = ŵ]

=

∫
Cŵ

exp(−ε ∥z − ϕ(w)∥)dz∫
Cŵ

exp(−ε ∥z − ϕ(w ′)∥)dz
≤ exp(εd(w,w ′)) .

Thus, for ℓ = 1 the mechanismM is εdχ -privacy preserving.
Now we consider the general case ℓ > 1. We claim that because

the mechanism treats each word in x = w1 · · ·wℓ independently,
the result follows directly from the analysis for the case ℓ = 1. To
see this, we note the following decomposition allows us to write
the output distribution of the mechanism on strings of length ℓ > 1
in terms of the output distributions of the mechanism on strings of
length one: for x , x̂ ∈ Wℓ we have

Pr[M(x) = x̂] =
ℓ∏
i=1

Pr[M(wi ) = ŵi ] .

Therefore, using that M is dχ -privacy preserving with respect to
d on strings of length one, we have that for any pair of inputs
x ,x ′ ∈ Wℓ and any output x̂ ∈ Wℓ the following is satisfied:

Pr[M(x) = x̂]

Pr[M(x ′) = x̂]
=

ℓ∏
i=1

(
Pr [M(wi ) = ŵi ]

Pr [M(w ′i ) = ŵi ]

)
≤

ℓ∏
i=1

exp(εd(wi ,w
′
i )) = exp(εd(x ,x ′)) ,

where we used that the definition of d is equivalent to d(x ,x ′) =∑ℓ
i=1 d(wi ,w

′
i ). The result follows. □

2.6 Sampling from the Noise Distribution

To sample from pN , first, we sample a vector-valued random vari-
able v = [v1 . . .vn ] from the multivariate normal distribution:

p(x ; µ, Σ) = 1
(2π )n/2 |Σ|1/2

exp
(
−
1
2 (x − µ)

T Σ−1(x − µ)
)
.

where n is the dimensionality of the word embedding, the mean µ
is centered at the origin and the covariance matrix Σ is the identity
matrix. The vector v is then normalized to constrain it in the unit
ball. Next, we sample a magnitude l from the Gamma distribution

p(x ;n,θ ) = xn−1e−x/θ

Γ(n)θn
.

where θ = 1/ε and n is the embedding dimensionality. A sample
noisy vector at the privacy parameter ε is therefore output as lv.
More details on the approach can be found in [60, Appendix E].

3 STATISTICS FOR PRIVACY CALIBRATION

In this section we present a methodology for calibrating the ε pa-
rameter of our dχ -privacy mechanism M based on the geometric
structure of the word embedding ϕ used to define the metric d .
Our strategy boils down to identifying a small number of statis-
tics associated with the output distributions of M , and finding a
range of parameters ε where these statistics behave as one would
expect from a mechanism providing a prescribed level of plausible
deniability. We recall that the main reason this is necessary, and
why the usual rules of thumb for calibrating ε in traditional (i.e.
hamming distance based) DP cannot be applied here, is because the
meaning of ε in dχ -privacy depends on the particular metric being
used and is not transferable across metrics. We start by making
some qualitative observations about how ε affects the behavior of
mechanismM . For the sake of simplicity we focus the discussion
on the case where x is a single word x = w , but all our observations
can be directly generalized to the case |x | > 1.

3.1 Qualitative Observations

The first observation is about the behavior at extreme values of ε .
As ε → 0 we haveM(w) converging to the a fixed distribution over
W independent ofw . This distribution will not be uniform across
W since the probability limε→0 Pr[M(w) = ŵ] will depend on the
relative size of the eventCŵ defined in the proof of Thm. 1. However,
since this distribution is the same regardless of the input w , we
see that ε → 0 provides absolute privacy as the output produced
by the mechanism becomes independent of the input word. Such
a mechanism will not provide preserve semantics as the output
is essentially random. In contrast, the regime ε → ∞ will yield
a mechanism satisfying M(w) = w for all inputs, thus providing
null privacy, but fully preserving the semantics. As expected, by
tuning the privacy parameter ε we can trade-off privacy vs. utility.
Utility for our mechanism comes in the form of some semantic-
preserving properties; we will measure the effect of ε on the utility
when we use the outputs in the context of a ML pipeline in Sec. 5.
Here we focus on exploring the effect of ε on the privacy provided



by the mechanism, so as to characterize the minimal values of the
parameter that yield acceptable privacy guarantees.

Our next observation is that for any finite ε , the distribution
of M(w) has full support onW. In other words, for any possible
output ŵ ∈ W we have a non-zero probability that M(w) = ŵ .
However, we know from our discussion above that for ŵ , w these
probabilities vanish as ε → ∞. A more precise statement can be
made if one tries to compare the rate at which the probabilities
Pr[M(w) = ŵ] for different outputs ŵ . In particular, given two
outputs with d(w, ŵ) ≪ d(w, ŵ ′), by the definition of M we will
have Pr[M(w) = ŵ] ≫ Pr[M(w) = ŵ ′] for any fixed ε . Thus, taking
the preceding observation and letting ε grow, one obtains that
Pr[M(w) = ŵ] goes to zero much faster for outputs ŵ far from w
than for outputs close to it. We can see from this argument that,
essentially, as ε grows, the distribution ofM(w) concentrates around
w and the words close tow . This is good from a utility point of view
– words close to w with respect to the metric d will have similar
meanings by the construction of the embeddings – but too much
concentration degrades the privacy guarantee since it increases the
probability Pr[M(w) = w] and makes the effective support of the
distribution ofM(w) too small to provide plausible deniability.

3.2 Plausible Deniability Statistics

Inspired by the discussion above, we define two statistics to mea-
sure the amount of plausible deniability provided by a choice of the
privacy parameter ε . Roughly speaking, in the context of text redac-
tion applications, plausible deniability measures the likelihood of
making correct inferences about the input given a sample from the
privatization mechanism. In this sense, plausible deniability can be
achieved by making sure the original word has low probability of
being released unperturbed, and additionally making sure that the
words that are frequently sampled given some input word induce
enough variation on the sample to hide which what the input word
was. A key difference between LDP and dχ -privacy is that the for-
mer provides a stronger form of plausible deniability by insisting
that almost every outcome is possible when a word is perturbed,
while the later only requires that we give enough probability mass
to words close to the original one to ensure that the output does
not reveal what the original word was, although it still releases
information about the neighborhood where the original word was.

More formally, the statistics we look at are the probability Nw =

Pr[M(w) = w] of not modifying the input word w , and the (effec-
tive) support of the output distribution Sw (i.e. number of possible
output words) for an inputw . In particular, given a small probability
parameter η > 0, we define Sw as the size of the smallest set of
words that accumulates probability at least 1 − η on inputw :

Sw = min |{S ⊆ X : Pr[M(w) < S] ≤ η}| .

Intuitively, a setting of ε providing plausible deniability should have
Nw small and Sw large for (almost) all words inw ∈ W.

These statistics can also be related to the two extremes of the
Rényi entropy [46], thus providing an additional information-theoretic
justification for the settings of ε that provide plausible deniability
in terms of large entropy. Recall that for a distribution p overW

with pw = PrW ∼p [W = w], the Rényi entropy of order α ≥ 0 is

Hα (p) =
1

1 − α log
( ∑
w ∈W

pαw

)
.

By taking the extremes α = 0 and α = ∞ one obtains the so-called
min-entropy H0(p) = log |supp(p)| and max-entropy H∞(p) =
log(1/maxw pw ), where supp(p) = {w : pw > 0} denotes the
support of p. This implies that we can see the quantities Sw and Nw
as proxies for the two extreme Rényi entropies through the approx-
imate identities H0(M(w)) ≈ log Sw and H∞(M(w)) ≈ log 1/Nw ,
where the last approximation relies on the fact that (at least for small
enough ε),w should be the most likely word under the distribution
of M(w). Making these two quantities large amounts to increasing
the entropy of the distribution. In practice, we prefer to work with
the statistics Sw and Nw than with the extreme Rényi entropies
since the former are easier to estimate through simulation.

4 ANALYSIS OF WORD EMBEDDINGS

A word embedding ϕ : W → Rn maps each word in some vo-
cabulary to a vector of real numbers. An approach for selecting
the model parameters is to posit a conditional probability p(o |w)
of observing a word o given a nearby word or context w by tak-
ing the soft-max over all contexts in the vocabulary as: p(o |w) =
exp

(
ϕ(o)⊤ϕ(w)

)
/
∑
w ′∈W exp

(
ϕ(w ′)⊤ϕ(w)

)
[26]. Such models are

usually trained using a skip-gram objective [38] to maximize the
average log probability of wordsw given the surrounding words as
a context window of sizem scans through a large corpus of words
w1, . . . ,wT : 1

T
∑T
t=1

∑
−m≤j≤m, j,0 logp(wt+j |wt ).

The geometry of the resulting embedding model has a direct
impact on defining the output distribution of our redaction mecha-
nism. To get an intuition for the structure of these metric spaces –
i.e., how words cluster together and the distances between words
and their neighbors – we ran several analytical experiments on
two widely available word embedding models: GloVe [44] and
fastText [9]. We selected 319, 000 words that were present in both
the GloVe and fastText embeddings. Though we present findings
only from the common 319, 000 words in the embedding vocabu-
laries, we carried out experiments over the entire vector space (i.e.,
400, 000 for GloVe and 2, 519, 370 for fastText).

Our experiments provide: (i) insights into the distance d(x ,x ′)
that controls the privacy guarantees of our mechanism for different
embedding models detailed below; and (ii) empirical evaluation of
the plausible deniability statistics Sw and Nw described in Sec. 4.1
for the mechanisms obtained using different embeddings.

We analyzed the distance between each of the 319, 000 words and
itsk closest neighbors. Thek valueswere 1, 5, 10, 20, 50, 100, 200, 500,
and 1000. We computed the Euclidean distance between each word
vector and its k neighbors. We then computed 5th, 20th, 50th, 80th,
and 95th percentile of the distances for each of the k values. The
line chart in Fig. 1 summarizes the results across the percentiles
values by presenting a logarithmic view of the increasing k values.

The line plot results in Fig. 1 give insights into how different
embedding models of the same vector dimension can have different
distance distributions. The words in fastText have a smoother
distance distribution with a wider spread across percentiles.



Figure 1: Distribution of distances between a given vector

and its k closest neighbors for GloVe and fastText

4.1 Word Distribution Statistics

We ran the mechanism 1, 000 times on input w to compute the
plausible deniability statistics Sw and Nw at different values of ε
for each word embedding model. For each wordw and the corre-
sponding list of 1, 000 new wordsW ′ from our dχ perturbation, we
recorded: (i) the probability Nw = Pr[M(w) = w] of not modifying
the input wordw (estimated as the empirical frequency of the event
M(w) = w); and (ii) the (effective) support of the output distribution
Sw (estimated by the distinct words inW ′).

The results presented in Fig. 2 provide a visual way of selecting
ε for task types of different sensitivities. We can select appropriate
values of ε by selecting our desired worst case guarantees, then
observing the extreme values of the histograms for Nw and Sw . For
example, at ε = 5, no word yields fewer than 300 distinct new words
(Sw graph), and no word is ever returned more than 500 times in
the worst case (Nw graph). Therefore, by looking at the worst case
guarantees of Sw and Nw over different values of ε , we can make a
principled choice on how to select ε for a given embedding model.

4.2 Selecting Between Different Embeddings

Our analysis gives a reasonable approach to selecting ε (i.e., via
worst case guarantees) by means of the proxies provided by the plau-
sible deniability statistics. In general, tuning privacy parameters
in dχ -privacy is still a topic under active research [30], especially
with respect to what ε means for different applications.

With regards to the same embedding model with different di-
mensionalities, Fig. 3 suggests that they do provide the same level
of average case guarantees (at ‘different’ values of ε). Therefore,
selecting a model becomes a function of utility on downstream
tasks. Fig. 3 further underscores the need to interpret the notion of
ε in dχ -privacy within the context of the metric space.

In Fig. 4, we present the average values of Sw and Nw statistics
for GloVe and fastText. However, the average values are not
sufficient to make a conclusive comparison between embedding
models since different distributions can result in the same entropy –
therefore, we recommend setting worst case guarantees. For further
discussions on the caveats of interpreting entropy based privacy
metrics see [57].

Table 1 presents examples of word perturbations on similar mech-
anisms calibrated on GloVe and fastText. The results show that as
the average values of Nw increase (corresponding to higher values
of ε), the resulting words become more similar to the original word.

5 ML UTILITY EXPERIMENTS

We describe experiments we carried out to demonstrate the trade-
off between privacy and utility for three downstream NLP tasks.

5.1 Datasets

We ran experiments on three textual datasets, each representing a
common task type in ML and NLP. The datasets are: IMDb movie
reviews (binary classification) [36], Enron emails (multi-class clas-
sification) [32], and InsuranceQA (question answering) [23]. Each
dataset contains contributions from individuals making them suit-
able dataset choices.

5.2 Setup for utility experiments

For each dataset, we demonstrated privacy vs. utility at:
Training time: we trained the models on perturbed data, while

testing was carried out on plain data. This simulates a scenario
where there is more access to private training data.

Test time: here, we trained the models completely on the avail-
able training set. However, the evaluation was done on a privatized
version of the test sets.

5.3 Baselines for utility experiments

All models in our experiments use 300d GloVe embeddings (hence
the seemingly larger values of ε . See discourse in Sec. 2.3 and Fig. 3)
on Bidirectional LSTM (biLSTM) models [27].

IMDb movie reviews The training set was split to as in [36].
The privacy algorithm was run on the partial training set of 15, 000
reviews. The evaluation metric used was classification accuracy.

Enron emails Our test set was constructed by sampling a ran-
dom 10% subset of the emails of 10 selected authors in the dataset.
The evaluation metric was also classification accuracy.

InsuranceQAWe replicated the results from [53]withGeometric
mean of Euclidean and Sigmoid Dot product (GESD) as similarity
scores. The evaluation metrics used Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR).

The purpose of our baseline models was not to advance the state
of the art for those specific tasks. They were selected to provide a
standard that we could use to compare our further experiments.

5.4 Results for utility experiments

We now discuss the individual results from running the dχ algo-
rithm on machine learning models trained on the 3 datasets pre-
sented in Fig. 5. We start with the binary sentiment classification
task on the IMDb dataset. Across the 3 experiments, we observe the
expected privacy utility trade-off. As ε increases (greater privacy
loss), the utility scores improve. Conversely, at smaller values of ε ,
we record worse off scores. However, this observation varies across
the tasks. For the binary classification task, at training and test
time, the model remains robust to the injected perturbations. Per-
formance degrades on the other 2 tasks with the question answering
task being the most sensitive to the presence of noise.

6 ML PRIVACY EXPERIMENTS

We now describe how we evaluate the privacy guarantees from our
approach against two query scrambling methods from literature.



Figure 2: Empirical Sw and Nw statistics for 50 dimensional GloVe word embeddings as a function of ε .
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50 freebsd ncurses stadiumarena dampener telemeter geospace
multibody vpns futsal popel deorbit powerup
56-bit tcp broomball decathletes airbender skylab
public-key isdn baseballer newsweek aerojet unmanned

100 ciphertexts plaintext interleague basketball laser voyager
truecrypt diffie-hellman usrowing lacrosse apollo-soyuz cassini-huygens
demodulator multiplexers football curlers agena adrastea
rootkit cryptography lacrosse usphl phaser intercosmos

200 harbormaster cryptographic players goaltender launch orbited
unencrypted ssl/tls ohl ephl shuttlecraft tatooine
cryptographically authentication goaltender speedskating spaceborne flyby
authentication cryptography defenceman eishockey interplanetary spaceborne

300 decryption encrypt nhl hockeygoalies spaceplane spaceship
encrypt unencrypted hockeydb hockeyroos spacewalk spaceflights
encrypted encryptions hockeyroos hockeyettan spaceflights satellites
encryption encrypted hockey hockey spacecraft spacecraft

Table 1: Output ŵ = M(w) on topic model words from the 20 Newsgroups dataset. Selected wordsw are from [34]

Figure 3: Average Sw and Nw statistics: GloVe 50d and 300d

6.1 Baselines for privacy experiments

We evaluated our approach against the following baselines:
Versatile [5] – using the ‘semantic’ and ‘statistical’ query scram-

bling techniques. Sample queries were obtained from the paper.
Incognito [37] – using perturbations ‘with’ and ‘without’ noise.

Sample queries were also obtained from the paper.

6.2 Datasets

Search logs – The two evaluation baselines [5, 37] sampled data
from [43] therefore, we also use this as the dataset for our approach.

Figure 4: Average Sw andNw statistics: GloVe and fastText

6.3 Setup for privacy experiments

We evaluate the baselines and our approach using the privacy audi-
tor described in [52]. We modeled our experiments after the paper
as follows: From the search logs dataset [43], we sampled users
with between 150 and 500 queries resulting in 8, 670 users. We ran-
domly sampled 100 users to train and another 100 users (negative
examples) to test the privacy auditor system.

For each evaluation baseline, we dropped an existing user, then
created a new user and injected the scrambled queries using the
baseline’s technique. The evaluation metrics are: Precision, Recall,
Accuracy and Area Under Curve (AUC). The metrics are computed



Figure 5: dχ -privacy scores against utility baseline

over the ability of the privacy auditor to correctly identify queries
used to train the system, and queries not used to train the system.

6.4 Results for privacy experiments

The metrics in Table 2 depict privacy loss (i.e. lower is better). The
results highlight that existing baselines fail to prevent attacks by
the privacy auditor. The auditor is able to perfectly identify queries
that were perturbed using the baseline techniques regardless of
whether they were actually used to train the system or not.

Model Precision Recall Accuracy AUC

Original queries 1.0 1.0 1.0 1.0
Versatile (semantic) 1.0 1.0 1.0 1.0
Versatile (statistical) 1.0 1.0 1.0 1.0
Incognito (without noise) 1.0 1.0 1.0 1.0
Incognito (with noise) 1.0 1.0 1.0 1.0
dχ -privacy (at ε = 23) 0.0 0.0 0.5 0.36

Table 2: Results: scoresmeasure privacy loss (lower is better)

Conversely, ourdχ approach in the last line of Table 2 and expanded
in Table 3, show we are able provide tunable privacy guarantees
(over 3x greater than baselines for ε ≤ 23 on AUC scores). Across
all metrics (at ε ≤ 23), our privacy guarantees is better than chance.

ε for GloVe 300d
Metric 6 12 17 23 29 35 41 47 52
Precision 0.00 0.00 0.00 0.00 0.67 0.90 0.93 1.00 1.00
Recall 0.00 0.00 0.00 0.00 0.02 0.09 0.14 0.30 0.50
Accuracy 0.50 0.50 0.50 0.50 0.51 0.55 0.57 0.65 0.75
AUC 0.06 0.04 0.11 0.36 0.61 0.85 0.88 0.93 0.98
Table 3: dχ -privacy results: all scores measure privacy loss

7 DISCUSSION

We have described how to achieve formal privacy guarantees in
textual datasets by perturbing the words of a given query. Our
experiments on machine learning models using different datasets
across different task types have provided empirical evidence into
the feasibility of adopting this technique. Overall, our findings
demonstrate the tradeoffs between desired privacy guarantees and
the achieved task utility. Previous work in data mining [11, 35]
and privacy research [24, 28] have described the cost of privacy
and the need to attain tunable utility results. Achieving optimal
privacy as described in Dalenius’s Desideratum [20] will yield a
dataset that confers no utility to the curator. While techniques such

as homomorphic encryption [25] hold promise, they have not been
developed to the point of practical applicability.

8 RELATEDWORK

Text redaction for privacy protection is a well understood and
widely studied problem [13] with good solutions currently found
wanting [29]. This is amplified by the fact that redaction needs
vary. For example, with transactional data (such as search logs), the
objective is anonymity or plausible deniability so that the identity
of the person performing the search cannot be ascertained. On
the other hand, with plain text data (such as emails and medical
records), the objective might be confidentiality so that an individual
is not associated with an entity. Our research is designed around
conferring plausible deniability in search logs while creating a
mechanism that can be extended to other plain text data types.

The general approach to text redaction in literature follows two
steps: (i) detection of sensitive terms, and (ii) obfuscation of the
identified entities. Our approach differs from related works in these
two tasks. With respect to (i) in transactional data, [37] is predicated
on defining private queries and sensitive terms based on uniformity,
uniqueness and linkability to predefined PII such as names and lo-
cations. This approach however doesn’t provide privacy guarantees
for queries that fall outside this definition. Other methods such
as [19, 42, 48] bypass the detection of sensitive terms and inject
additional keywords into the initial search query. It has been shown
in [45] that this model is susceptible to de-anonymisation attacks.
On the other hand, techniques such as [5] do not focus on (i), but
source (ii) i.e., replacement entities from related web documents
while we use word embedding models for this step.

Similarly, for plain text data, approaches such as [16, 17] address
(i) by using models to ‘recognize several classes of PII’ such as
names and credit cards, while [47] focuses on (ii) that is, sanitizing
an entity c by removing all terms t that can identify c individually or
in aggregate in a knowledge base K. Indeed, any privacy preserving
algorithm that places a priori classification on sensitive data types
assume boundaries on an attackers side knowledge and a finite limit
on potentially new classes of personal identifiers. Our approach
with dχ -privacy aims to do away with such assumptions to provide
tunable privacy guarantees.

9 CONCLUSION

In this paper, we presented a formal approach to carrying out pri-
vacy preserving text perturbation using dχ -privacy. Our approach
applied carefully calibrated noise to vector representations of words
in a high dimension space as defined by word embedding models.
We presented a theoretical privacy proof that satisfies dχ -privacy
where the parameter ε provides guarantees with respect to a metric



d(x ,x ′) defined by the word embedding space. Our experiments
demonstrated that our approach provides tunable privacy guaran-
tees over 3 times greater than the baselines, while incurring < 2%
utility loss on training binary classifiers (among other task types)
for a range of ε values. By combining the results of our privacy
and utility experiments, with our guidelines on selecting ε by using
worst-case guarantees from our plausible deniability statistics, data
holders can make a rational choice in applying our mechanism to
attain a suitable privacy-utility tradeoff for their tasks.
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