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ABSTRACT

Information explosion has brought us a wide range of
data formats and machine learning keeps in constant evolu-
tion to develop mechanisms to extract knowledge from them.
Modern models in the Deep Learning space have proven to
be very successful in multiple applications, yet in the tabu-
lar space they fail to provide consistent competitive perfor-
mance. However, in this work we claim model selection can
become irrelevant as the key tends to lie in data processing.
In this paper we introduce the concept of relativity in feature
engineering, a powerful methodology to boost any classifier
performance and we provide over 30 different configurations
of models and feature engineering designs to prove we can
bias any result to help an arbitrary model score best. Our re-
sults attribute 600% more value to feature engineering than
model selection. In order to validate the effectiveness of our
approach, we submitted our work to a live machine learning
competition with outstanding results regardless of our model
of choice.

Index Terms— Feature Engineering, GBDT, DNN, Tab-
ular Data

1. INTRODUCTION

As humans, we are exposed to multiple ways to explore the
world that surrounds us, therefore for real-world applications
it is very common to have access to a wide variety of data
sources and when combined it gives origin to multimodal
tasks which have been a recent field of study for the machine
learning community[1]. Two of the most well studied fields
are Natural Language Processing (NLP) and Computer Vision
(CV), both with groundbreaking developments like the intro-
duction of transformers[2] and the easy access to large-scale
pre-trained models like DeBERTa[3] have pushed the state-
of-the-art (SOTA) and gave deep learning (DL) a huge posi-
tional advantage when it comes to model selection. The CV
field follows a very similar trend with convolutional neural
networks (CNN), providing outstanding performance in many
applications, and although computational expensive, architec-
tures like EfficientNets[4] have found great success balancing
the performance-vs-cost trade-off. Vision Transformers (ViT)

have found their way into CV as well[5] with recent deliveries
like Next-ViT[6] aiming to bridge the gap that still separates
ViT from CNN in terms of efficiency in the latency/accuracy
trade-off.

From the current SOTA review, we would argue that deep
learning has an edge for unstructured-homogeneous data (like
text and images), however multimodal data can come in all
sort of sources, including tabular which continues to be the
most popular form of data[7, 8]. For tabular data (TD), deep
learning has not been able to overcome the success of gradi-
ent boosted decision trees (GBDT) [9, 10, 11] and although
neural networks (NN) provide additional theoretical proper-
ties over GBDT[12], and in some cases can provide the best
performance, they hardly provide consistent improvements,
with bias detected on independent research where DL solu-
tions only tend to outperform when tested on their own spe-
cific datasets[13].

The case of tabular data is peculiar as feature engineering
(FE) is not as well defined unlike NLP or CV. Even if tools
exist to automatically build features[14], the importance that
proper feature engineering causes on a system can shift dra-
matically the performance of any classifier, hence, allowing
potential bias in model evaluation comparison, as FE for TD
can take a multitude of forms.

In this work, we introduce the concept of relativity and
how to leverage it in the process of FE. We further present
how powerful state-of-the-art auto feature engineering may
fail to uncover this property and the impact it brings to a va-
riety of classifiers. Our extensive experimentation includes
performance summaries for over 30 configurations of models
& feature sets but more important, it shows the relative irrel-
evance of classifier selection when compared to the value FE
brings to a system.

2. RELATED WORK

The importance that feature engineering (FE) plays in a ML
system has been studied in the past and there has always been
an interest to understand how a given model can change its
performance depending on the feature-space, this brought us
the field of Feature Selection (FS) that dates back at least three
decades, with particular booms around late 90’s [15, 16]. The



studies on FS have shown that there is a direct-link between
performance and features, especially in the presence of re-
dundant and noisy features that tend to lead a loss in general-
ization, in order to improve on this, techniques like wrapper
approaches were developed[16] but they tend to be too ex-
pensive for modern standards, and usually filter methods are
preferred[17]. With the recent advances in technology, mod-
ern algorithms like GBDT have feature selection built-in[10]
giving the capability for algorithms to pick the relevant fea-
tures on their own[18].

Even if the interest on FS has faded over the years, the
study of features and their contribution to a better model re-
mains very much alive, and one of the reasons is the curse
of dimensionality [19], as the data we collect is pushing us
to automate the process of FE which has traditionally been
manual[20]. Domain expertise is usually required to prop-
erly build features, and it continues to provide very powerful
gains compared to naive model fitting[21], i.e., model trained
on raw features. In many cases these improvements are way
beyond what model selection could have achieved; this might
suggest selecting the right features might be more important
that picking a model. In recent studies[22], the contribution of
FE has been compared to other properties of model building
like training size, with features having over 2x the contribu-
tion achieved by data increase, these findings keep supporting
the idea that FE is a critical and irreplaceable step in model
building.

Although there are many FE tools, some are restricted
to specific applications, notably FeatureTools[23] which
is mostly designed for relational data aggregations, or
TFresh[24] that focuses on time series, in this work we fo-
cus on flat data for its generalization, e.g., after transforma-
tions we could turn any data into a flat-format. To this end,
two main works are of particular relevance: AutoFeat[25]
combines both feature generation and selection in a single
package and while it has shown to improve the performance
of linear classifiers, it is unable to bring value when com-
pared to stronger models as stated by their own researchers,
thus rendering this into a simplification tool rather than a
performance option, on the other hand, OpenFE[14] focus
strongly in performance, claiming their methodology outper-
forms even carefully crafted human engineering. In our ex-
periments we dive further on the ability of OpenFE to find
meaningful relations in the presence of relativity, which we
will introduce in the following section.

3. PROPOSED METHODOLOGY

Tabular data, unlike other forms like images and audio tends
to be agnostic to position, i.e., there is no spatial informa-
tion, this is usually true in most tabular datasets. However, in
cases where there is an underlying logic behind each column
(feature), traditional Feature Engineering (FE) fails to extract
the proper information out of the data, as such information is

relative to the observer, this concept we denote later as “rela-
tivity”.

In order to formalize our proposal, we start from the con-
cept of influential features[26], an understanding of how a
shift in a given feature has an impact on the test loss, this
is shown to have a closed-form as follows:

Iup,loss(z, ztest) = −∇θL(ztest, θ̂)>H−1

θ̂
∇θL(z, θ̂) (1)

Where the influence (I) of upweighting(up) z on the loss
(L) at a test point ztest is defined give the parameters θ and
HessianH . Based on this definition, we can then approximate
the entire validation set impact as follows[27]:

m∑
j=1

L(zj , θ̂δi)−
m∑
j=1

L(zj , θ̂) ≈ [

m∑
j=1

φ(zi, zj)]δi (2)

Where m is the validation set size and δ represents a
given perturbation. This leads to the possibility of defining
instance-wise influential features[27] which can effectively be
used as a mechanism to quantify the real overall power of a
given variable. However, in this work we present an exten-
sion to generalize further the concept of influential features
that takes into account the particular available projections a
feature might have.

In order to understand further multi projections, we now
introduce the concept of relativity, defined as: the capacity
of a given feature to be projected under different observers.
Each observer is an arbitrary reference point to compare a
give feature. Although there might be an unlimited set of the-
oretical observers, in this work we focus on two main ones:

• Positional Observer: aims to exploit the information
behind a known underlying logic of the positions of fea-
tures in a given matrix. This type of relativity is usually
exploited by re-arranging and/or grouping features as
shown in Table 1 and 2.

• Fractional Observer: seeks to represent data as frac-
tional value of a reference, usually such reference can
be another feature in our matrix but not required. This
relativity is usually easy to find by a brute-force ap-
proach, e.g., by iterating over all possible pair combi-
nations. However, feature selection is critical to remove
all the generated noise. In Table 3 and 4 we provide an
common example of this transformation.

A practical example for positional observer transforma-
tion could be to leverage temporal patterns e.g., a range of
sensors that trigger in a particular order given an event E. We
could format this as sensor1 to sensori in a tabular space,
where i indicates the sensor number, yet, this can also be rep-
resented as trigger1 to triggern where n represents the order
in which a given sensor trigger. This can be seen visually in



Tables 1 & 2, both tables present the same information, only
changing the observer.

Table 1. Sensor trigger with sensor observer
SensorOne SensorTwo SensorThree

1 3 2
3 1 2
2 3 1

While Table 1 uses a sensor observer, which looks at
each sensor to record in which order they triggered, Table
2 has access to the same original data just with a differ-
ent observer at the trigger level to add additional spatial
information to our matrix. This tends to improve overall
model performance by extracting different information from
the same original data.

Table 2. Sensor trigger with trigger observer
TriggerOne TriggerTwo TriggerThree
Sensor1 Sensor3 Sensor2
Sensor2 Sensor3 Sensor1
Sensor3 Sensor1 Sensor2

Unlike positional observers which might require more in-
volvement, fractional observers are much easier to automate
and popular tools like OpenFE[14] are useful for this tech-
nique. In its most simple form it involves taking a reference
point as a fixed denominator over a series of columns. In Ta-
ble 3 we show a practical example of a bank loan application
where the loan amount might be particular complex to digest
for some models as the value itself might actually be irrel-
evant without the income context, this is easily resolved by
building ratios as shown in Table 4.

Table 3. Loan info with amount and year observer
Loan($) Income($) Year
$26, 100 $100, 000 2021
$64, 500 $200, 000 2022
$105, 300 $400, 000 2023

However, while certain transformations might result in
more relevant information (e.g., loan to income ratio), others
might provide pure noise as shown by Year column, which
although numeric, the division by income is unlikely to bring
any predictive value. This sort of processing should be paired
with feature selection, but even then, it can lead to severe
overfitting.

Table 4. Loan info with income observer
Loan($) Income($) Year
0.261 1 0.020
0.322 1 0.010
0.263 1 0.005

Although the process of FE can be very vast and cover-
ing all possibilities is intractable, in this work we focus on the
presented transformations. This ability to change the projec-
tion of signals we define as relativity, which is exploited then
by multiple set of observers also known as reference points.
Following this principle, the optimization for δi is dependent
to the observer used to project the data, leading to the opti-
mization problem:

δ∗(i,β) = argmin

m∑
j=1

L(z(j,β), θ̂δ(i,β)) (3)

Where the optimal perturbation δ∗ is a function of the per-
turbation itself and the observer β used in the projection, lead-
ing to different optimal depending on β in order to minimize
the loss L, which can be seen as a double optimization to de-
termine the best observer leading to the minimum loss. This
leads to Algorithm 1.

Algorithm 1: Optimal Observer Detection
Input: A dataset D with features i and samples M
Input: A set of candidate projection observers β
Output: Optimal Observer
// Initialize states
minimum loss← None
best observer ← None
// Evaluate projections
foreach observerβ do

// Compute validation loss

loss←
∑m
j=1 L(zj , θ̂δi)−

∑m
j=1 L(zj , θ̂)

// Update best observer
if loss < minimum loss then

minimum loss← loss;
best observer ← observer;

end
end
return best observer

The effect of an optimal observer in the FE process,
can dominate the entire solution rendering other aspects like
model selection and hyper-parameter tuning as a relative irrel-
evant process, in other words, in the presence of relativity,
a simple model with the proper observer could outperform
more complex architectures if those were to use naive FE.



4. EXPERIMENTS

The efficacy of our process has been benchmarked in a live-
competition as part of IEEE International Conference on
Multimedia and Expo (ICME) 2023: Predicting Frags in Tac-
tic Games, where this work has achieved 2nd place. Partici-
pants are tasked to determine if a frag (i.e., soldier kill) would
happen given a set of soldier characteristics (like position &
health), map properties (e.g. objects around) and videogame
screenshot. We believe this setup provides unbiased results
as (1) test-set labels are hidden and (2) solutions can be com-
pared relative to other participants. In the following subsec-
tions we provide the details of our experiments and solution
design.

4.1. Baseline: Main Tabular Data Only

The challenge dataset is an ideal candidate for information
fusion for its rich content of multimedia, including tabular,
metadata and images. In the spirit of simplicity and low la-
tency, we first provide a baseline relying purely on tabular
data (TD) and further expand the solution complexity. The
TD in this competition has strong relativity properties and it
allows data to be projected from different observers (e.g., sol-
diers in the field) presenting a great opportunity to exploit this
property as part of the FE process.

We benchmarked our proposal against raw data (e.g., as
provided in competition website), showing a reference of the
performance that can be achieved without FE. In addition, we
leverage OpenFE to build features automatically. We finally
compared both prior solutions against our FE exploiting rela-
tivity across multiple classifiers. All data is transformed into
numerical features with dimensions as shown in Table 5.

Table 5. Feature space for transformed datasets
Dataset Samples Features

Raw (original) 50k 39
OpenFE (automatic FE[14]) 50k 2039

Observer Based FE (this work) 50k 122

Our 122 features are the result of projecting the raw data
but changing the observer from a set of candidates as follows:

• Active Player: rearrange soldiers properties such as its
non-ambiguous which unit might be able to move

• Distance: encode positional coordinates as distances to
multiple reference points.

• Health: compute relative ratios for all units.

• Unit Types: aggregate values at the unit type level.

These main projections allow to exploit the relativity in
the data, other projections were explored but discarded fol-
lowing Algorithm 1. Our results are summarized in Table 6,
with all models running optimized parameters through a 10-
fold stratified validation with mean area under the ROC Curve
(ROC AUC) reported.

Table 6. AUC scores for benchmark configurations
Algorithm Raw OpenFE Observers
LGBM[10] 0.757 0.781 0.807
Xgboost[9] 0.761 0.781 0.803

Catboost[11] 0.752 0.781 0.806
HistGradientBoosting 0.745 0.777 0.795

RandomForest 0.713 0.732 0.798
ExtraTrees 0.707 0.725 0.797

DeepCrossNet[28] 0.663 0.696 0.780
TabNet[29] 0.650 0.660 0.790

MLP 0.678 0.626 0.788
DeepFM[30] 0.670 0.629 0.782

WideDeep[31] 0.672 0.614 0.786
LogisticRegression 0.580 0.645 0.781

Our results are consistent with previous observations[7]
that deep neural network (DNN) algorithms might offer com-
petitive performance only after careful FE. When the data
was provided as-is (raw, but normalized for stable gradi-
ent propagation), LightGBM outperformed the best overall
DNN (DeepCrossNet) solution by a staggering relative 58%
(0.757− 0.5)/(0.663− 0.5).

Model selection, does indeed play a role in overall per-
formance when data is poorly prepared. Auto-FE can help
to reduce the impact of models, with larger improvements
(81% for LogReg) observed for weaker models, but provid-
ing small or no benefit for others. In average, we managed to
improve performance by 6.7% thanks to OpenFE. However,
in the presence of relativity in the data, all classifiers exposed
to observer-based feature engineering outperformed any com-
bination of Algorithm+OpenFE, with a simple Logistic Re-
gression (using observers) matching the best solution (using
OpenFE) at 0.781 AUC.

We quantified the effect of observer-based feature en-
gineering in the overall solution against the value it
brings to invest in model selection. Our results show
the investment of FE brings around 600% the returns
( 1
12

∑12
k=1[(Observersk − 0.5)/(Rawk − 0.5)]) compared

to the time spent benchmarking different models or tuning
architectures and parameters ((0.807 − 0.5)/(0.781 − 0.5)).
Specifics values shown in Figure 1.

4.2. Additional Metadata: Map Specific Features

The concept of relativity is not exclusive to tabular data, al-
though in other forms, such as images, powerful DNN models



Fig. 1. Relative Contribution of Investments

might have a better chance to approximate these projections,
unlike for structured data. In this particular challenge a set
of map properties are provided, however, the map metadata
itself tends to be irrelevant. It is the relative position of a par-
ticular unit in the map that matters. Essentially changing the
observer to be each unit (instead of the map masks) multiple
features can be derived from the exact same map, e.g., region
properties close to each unit coordinates. This relativity con-
cept to exploit reference points in a cartesian plane can be
extended to any problem as its data agnostic.

An additional 85 features (85+122 = 207) provided con-
sistent gains across top GBDT classifiers, with observed im-
provements around 6%. For simplicity and given our findings
that FE gives much better return, we did not continue bench-
marking other models to reduce invested time. Our results
as shown in Table 7 further demonstrate model selection can
play such as small role at the top with all GBDT performing
virtually the same.

Table 7. AUC gains with metadata features
Algorithm Baseline Base+Maps Improvement

LGBM 0.807 0.826 +6.18%
Catboost 0.806 0.823 +5.55%
Xgboost 0.803 0.822 +6.27%

4.3. Additional Images: Gameplay Screenshots

Our solution refrained from using images in the spirit of sim-
plicity. But we acknowledge information fusion could lead
to greater results as DNN can extract important signals. This
simple design also makes our solution flexible and portable as
its compatible with future game maps that do not exist as of
today.

5. CONCLUSION

Algorithms have evolved to a great extent. For most appli-
cations seeking max performance, simple algorithms like Lo-
gistic Regression could handicap the result if no feature en-
gineering is done. This could give the false impression that
more powerful/complex models should be the key to improve
a system. Deep learning in particular has had a tremendous
success with automatic feature engineering in fields like CV,
however, for tabular data and based on our results, DNN still
heavily lags decision trees(DT) algorithms in performance.
Even the weakest of our DT-based models (ExtraTrees) out-
performs all DNN solutions and this is without considering
NN applications are slower and usually require special data
processing. The importance of models might look conflict-
ing with our earlier claims on the irrelevance of model selec-
tion. This is a relative perception, models are undoubtedly
important, however, the impact of powerful FE outshines any
gains from models per-se. We firmly believe this is a generic
pattern for any tabular-rich application and not exclusive to
our case study. For industry applications, projects tend to be
time & cost bounded and it’s important to invest resources
where it matters the most. Data and FE are your most valu-
able resource for return on investment, and model selection,
although important, might be the least of your problems.
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