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Abstract
Recent studies have shown that it may be possible to determine
if a machine learning model was trained on a given data sample,
using Membership Inference Attacks (MIA). In this paper we
evaluate the vulnerability of state-of-the-art speech recognition
models to MIA under black-box access. Using models trained
with standard methods and public datasets, we demonstrate that
without any knowledge of the target model’s parameters or train-
ing data a MIA can successfully infer membership with pre-
cision and recall more than 60%. Furthermore, for utterances
from about 39% of the speakers the precision is more than 75%,
indicating that training data membership can be inferred more
precisely for some speakers than others. While strong regular-
ization reduces the overall accuracy of MIA to almost 50%, the
attacker can still infer membership for utterances from 25% of
the speakers with high precision. These results indicate that (1)
speaker-level MIA success should be reported, along with overall
accuracy, to provide a holistic view of the model’s vulnerabil-
ity and (2) conventional regularization is an inadequate defense
against MIA. We believe that the insights gleaned from this study
can direct future work towards more effective defenses.
Index Terms: speech recognition, privacy, security, membership
inference

1. Introduction
Modern machine learned models rely on massive amounts of
training data that, in commercial settings, is often crowdsourced
from customers. In order to secure customers’ data and main-
tain its privacy, entities that build these models rely on strict
data handling policies. While such policies are effective during
model building, they alone, however, may not provide sufficient
guarantees after the model has been deployed [1].

Recent studies have shown that a machine learned model
may reveal information about its training data when subjected
to a Membership Inference Attack (MIA) [1, 2, 3, 4]. A MIA
attempts to determine if a given data point was used to train
a given model [1]. Successful MIAs are possible because the
model may fit its training data too closely causing its parameters
to encode peculiarities of the training data. Consequently, the
model’s outputs in response to training and non-training data
differ. Therefore, by analysing the model’s parameters [5] and/or
outputs [1] the membership of a data point can be inferred.

Despite their ubiquitous deployment [6, 7], the vulnerability
of ASR models to MIA has not been thoroughly evaluated. To
the best of our knowledge, only Miao et al [4] have studied
the vulnerability of ASR models but their analysis is limited to
speaker-level MIA, which reveals if a user’s data was used for
training, but does not indicate if the model leaks information
about the content of the user’s speech, which may be sensitive.
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To fill the gap in the current literature, in this paper we
present an empirical study that evaluates the vulnerability of
state-of-the-art ASR models to MIA. We assume a black-box
threat model i.e. the attacker sees only transcripts and the like-
lihoods of the k-best hypotheses, and has no knowledge of the
model parameters. Similar to [8, 3], we use the MIA accuracy,
i.e. how accurately can the MIA determine if a point was in the
training set, as a measure of the vulnerability.

Our results show that even with black box access to the
model and no knowledge of the training data distribution, the
overall MIA accuracy is more than 60%, which is better than
chance. We observe that MIA primarily uses Word Error Rate
(WER) to infer membership – utterances that yield lower WER
tend to be in the training set. Furthermore, we make a novel
discovery that training data membership can be inferred more
precicely for some speakers than others. Specifically, we find
that for about 39% of the speakers in the test set the MIA can
infer membership with greater than 75% precision. To the best
of our knowledge, past literature [8, 9] has only shown that it
may be easier to infer membership of some outlying data points,
but, this analysis has not been conducted at the user level.

Since the MIA exploits the difference in WER on training
and non-training data, we consider regularization as a defense.
We find that the overall MIA accuracy drops to 52% against
a strongly regularized model, but the MIA is able to predict
membership for 25.3% of the speakers with precision greater
than 75%. This implies that (1) regularization is not sufficient
to mitigate the risk of MIA for all users and (2) speaker-level
MIA success rate is a more accurate measure of an ASR model’s
vulnerability to MIA than overall accuracy.

2. Background
2.1. Membership Inference Attacks on ML Models

The MIA task [1] is defined as follows. Consider a universe,
U : X ×Y, where X is the set of data samples (human speech in
our case) and Y is the set the corresponding labels (transcripts
in our case). There is a service provided called Alice who has
access to a dataset DA : XA × YA ⊂ U. It uses Dtrain

A ⊂ DA

to train a ML model, gtarget : X → Y, which we call the
target model. Alice has an adversary called, Bob, who has two
datasetsDB ,Dtest ⊂ U and wants to determineDtest∩Dtrain

A .
To this end, Bob trains an attack model, m, perhaps using side-
information fromDB (see 3.3 for details), such that for x, y ∈ U,
m(x, y, gtarget) = 1

[
x, y ∈ Dtrain

A

]
and applies it to Dtest.

Shokri et al [1] introduced MIA for deep neural networks
and proposed an attack that exploits the difference in the class
probabilities returned by gtarget in response to data from inside
and outside the training set. Subsequently, Salem et al [10]
showed that MIA can succeed even if the attacker does not have
access to the distribution of DA, while Yeom et al [11] showed
that a naive attack model, m(x, y, gtarget) = 1[gtarget(x) =



y] can yield non-trivial accuracy if the generalization gap is
large enough. Song et al [12] and Choquette-Choo et al [8]
propose attacks that use adversarial perturbations, however [12]
requires the full confidence vector, while [8] does not. While
these studies were conducted on classification models, others
have been conducted on sequence generation tasks like machine
translation [3], text generation [13] and ASR [4]. It is worth
noting that [4] considers only speaker level attacks, which are
different from the utterance level attacks considered in our study.

Defenses against MIA range from standard regularization
techniques like Dropout or L2 regularization [1, 10] to perturbing
the output probabilities [1, 14, 15]. Unfortunately the latter fails
entirely in the face of label only attacks such as [8, 11]. Heavy
regularization reduces the generalization error and the success
of MIA in the average case, however, it has been shown in [9]
and 4.4.3 that the membership of certain data points can still be
predicted with high precision. We show that this is because the
model overfits to some training samples more than others.

2.2. RNN-Transducer

In our experiments we use the RNN-Transducer (RNN-T) ASR
model, which is an end-to-end neural sequence-to-sequence ar-
chitecture that has been widely used for ASR [16, 17, 18]. The
RNN-T consists of an encoder, a decoder and a joint network,
which are trained as follows. The encoder is a RNN that takes
as input an audio signal, x = x1, x2, ..., xT that has been pre-
processed into T frames, and produces a feature representation,
henc ∈ RT×D . The decoder is also a RNN that receives the
ground truth symbol sequence, y∗ = y∗1 , y

∗
2 , ..., y

∗
U , where each

y∗u is part of a vocabulary V of K symbols, and produces a
feature representation, hdec ∈ RU×D . Finally the joint net-
work takes as input henc and hdec and returns a probability
lattice P ∈ RT×U×K+1 over the vocabulary plus the blank
symbol, such that Ptuk = P (yu = k|x1, ..., xt, y∗0 , ..., y∗u−1).
Each path through P corresponds to an alignment between the
audio frames and the output sequence. The probability of an
alignment can be computed as the product of the probabilities
of the transitions that comprise the alignment. Summing the
probabilities of all the alignments corresponding to y∗ gives
the posterior probability P (y∗|x). During training the model
parameters are optimized to minimize the negative log of the
posterior. The inference procedure is similar except that the
decoder computes hdec

u for yu, based on the previously emitted
symbol, yu−1, instead of the ground truth. The joint network
receives henc

t and hdev
u as input, where t is the number of blanks

the model has emitted until now, and computes P (yu|xt, yu−1)
from which the next output symbol is sampled.

3. Methodology
3.1. Threat Models

A threat model is defined along two criteria – the level of ac-
cess Bob has to gtarget and the information Bob has about its
training data, Dtrain

A . We assume Bob has black box access to
gtarget, i.e. he has no knowledge about gtarget’s architecture or
parameters. However, this assumption does not preclude Bob try-
ing to guess gtarget’s architecture based on published literature.
Furthermore, Bob can only interact with gtarget by querying
it with utterances in response to which gtarget returns only the
transcripts, Ỹ ∈ Yk and the Negative Log-Likelihoods (NLL),
− lnP (y ∈ Ỹ |x) (see 2.2), for the k-best hypotheses.

With regards to access to Dtrain
A , we consider three scenar-

ios which we refer to as no, partial and full knowledge. In the no

knowledge (NK) scenario Bob has no information about DA, i.e.
DB ∩DA = ∅. Whereas in the partial knowledge (PK) scenario
Bob knows the distribution of the data in Dtrain

A but he does not
have access to the exact set of utterances, i.e. DB ⊂ DA and
DB ∩ Dtrain

A = ∅. Finally, in the full knowledge (FK) scenario,
Bob knows exactly the training data used by Alice for training
gtarget i.e. DB = Dtrain

A . This may be contrived scenario,
but we include it in our analysis to determine an upper-bound
on the Bob’s success rate under black box model access. As
mentioned in 2.1, after training his attack model,m, onDB , Bob
will attempt to infer the membership of utterances in Dtest. The
set Dtest is constructed such that Dtest = Dtest

A ∪ D̃, where
Dtest

A ⊂ Dtrain
A , D̃ ⊂ U, and D̃ ∩ (Dtrain

A ∪ DB) = ∅. Note
that Bob does not have any information about Dtest ∩ Dtest

A so
he can not use Dtest to train m, however, we (the authors) know
Dtest ∩ Dtest

A so we can determine how accurate m is.

3.2. Feature Selection

Since ML models tend to overfit to their training data, Bob
expects gtarget to have a generalization gap, i.e. gtarget tran-
scribes an inset utterance (x ∈ Dtrain

A ) more accurately than an
outset utterance (x /∈ Dtrain

A ). To exploit this gap, Bob uses the
Word Error Rate (WER) [19] between each hypothesis, y ∈ Ỹ ,
and the ground truth, y∗, as his primary feature.

However, WER is a very coarse feature which obfuscates the
influence of several other factors that may impact the transcrip-
tion accuracy. For instance, longer utterances can be challenging
for ASR models because the number of possible alignments in P
(see 2.1), increases exponentially with the length of the utterance.
Therefore, the WER on longer utterances may be higher than
the WER on shorter utterances regardless of their training data
membership. To account for the effect of utterance length Bob
includes the lengths of the reference and hypotheses transcripts,
and their ratio as features. It is also possible that the model would
to make different types of errors on inset and outset utterances,
so Bob includes the number of insertions, deletions and substitu-
tions required to transform y ∈ Ỹ to y∗. These features along
with the WERs for the k-best hypotheses, comprise a feature set
of size 6k + 1 that we refer to as wer+lens.

Taking wer+lens to be his canonical feature set Bob aug-
ments it with several other features. Expecting the model to
make more confident prediction on inset data, he adds the NLL
of each y ∈ Ỹ to obtain wer+lens+nll. To test the hypothesis
that the model may be more accurate at predicting certain words
than others he adds binary features for each inserted, deleted
and substituted word and obtain wer+lens+errors. To test the
hypothesis that gtarget is more adept at transcribing audio signal
with particular characteristics, Bob adds the mean, variance and
kurtosis of the frame-wise feature vectors of the audio signal to
the feature set to obtain wer+lens+audioStats.

3.3. Attack Model Training Protocol

To train the attack model, m, Bob follows the shadow model
protocol from [1], which is described in Algorithm 1. Bob splits
DB into D1

B and D0
B , and trains an ASR model, gproxy on D1

B

(see 4.1.2 for details). He then queries gproxy with DB and
computes features FB from the model’s outputs. He normalizes
the features to zero mean and one standard deviation and splits
them into F1

B and F0
B such that F i

B contains features extracted
from Di

B . After assigning label i to f ∈ F i
B , Bob combines F1

B

and F0
B into Dattack, which he uses to train a binary classifier

C. The attack model is obtained by pipelining querying, feature
extraction and classification into a single function, isMember.



Algorithm 1: Attack model training protocol

1 Function trainAttackClassifier(DB):
2 D1

B ,D0
B ← split (DB)

3 gproxy ← trainASRModel(D1
B)

4 FB ← extractFeatures(gproxy,DB)

5 F1
B ,F0

B ← slpit(normalize (FB))

6 Dattack :=
[
(f,1(f ∈ F1

B)|∀f ∈ F1
B + F0

B

]
7 C ← trainBinaryClassifier(Dattack)
8 return C
9 Function isMember(Deval, gt, C):

10 Feval ← extractFeatures(gt,Deval)

11 F̃eval ← normalize (Feval)

12 return [C(f)|∀f ∈ F̃eval]

13 C ←trainAttackClassifier(DB , gt)
14 m← fn(x, y, gt) : isMember([(x, y)], gt, C)

4. Evaluation
4.1. Evaluation Setup

4.1.1. Datasets

We use Librispeech [20] and TEDLIUM [21] in our experiments.
To ensure that the inset and outset datapoints are distributed
similarly and have the same set of speakers, we use only the
training splits of the two datasets. We divide the Librispeech data
into: LStgt

trn (480 hours), LSevl
in ⊂ LStgt

trn (10 hours), LSevl
out 6⊂

LStgt
trn (10 hours), LSatt

trn (384 hours), and LSatt
out 6⊂ LSatt

trn (10
hours). Meanwhile, we divide the TEDLIUM data into: TEDatt

trn

(338 hours), and TEDatt
out 6⊂ TEDatt

trn (8 hours). Alice uses
LStgt

trn to train gtarget, while Bob wants to infer the membership
of Dattack = LSevl

in ∪ LSevl
out. The rest of the datasets are used

by Bob to train the proxy and attack models as detailed in 4.2.

4.1.2. Target and Proxy Model Details

The target and proxy models are RNN-Ts with different configu-
rations. The target model, gtarget, consists of a 6 layer LSTM
[22] encoder, a 2 layer LSTM decoder and a Multi-Layered Per-
ceptron (MLP) as the joint network. The decoder and encoder
have 1024 units in each layer and output of the final layer is pro-
jected to 640 dimension before being passed to the joint network.
The joint network creates a tensor, J ∈ RT×U×640, such that
Jtu = henc

t + hdec
u , applies elementwise tanh to it and passes

it to a MLP with one hidden layer containing 512 units. The
proxy models, gproxy , have the same architecture except that the
encoder has 5 layers. Unless otherwise stated, all the models
are trained with dropout [23] with p = 0.3, SpecAugment [24]
settings from [25] and Adam optimzier [26], until the model con-
verges or 40K iterations are completed. The learning rate starts
at 1e-7 and warms up to 5e-4 over 1K iterations, stays constant
for 20K iterations before decaying exponentially [27, 25] The
batch size is set to 96 and 288 for the Librispeech and TEDLIUM
models, respectively. The WER of the models on inset and outset
data is presented in Table 1.

4.2. Attack Model Training

Bob follows Algorithm 1 for training proxy and attack models
for each threat model. He sets D1

B to TEDatt
trn,LSatt

trn and LStgt
trn

for the no knowledge (NK), partial knowledge (PK) and full
knowledge (FK) threat models, respectively. For each of the
threat models, he populatesDattack with features extracted from

Model WERinset WERoutset
Attack Model Accuracy

RF DT LR MLP64
target 8.7 14.8 - - - -

proxy-NK 16.2 26.0 64.4 64.1 60.3 63.9
proxy-PK 8.5 17.0 67.8 67.1 62.9 67.4
proxy-FK 5.7 14.9 71.9 71.4 67.3 71.8

Table 1: The WER of the target and proxy models on inset and
outset data, and the accuracies of the corresponding attack
models on data heldout from Dattack.

Figure 1: Precision and recall of the RF attack model for different
threat models and features computed from 4-best hypotheses.

10K utterances, of which 5K are sampled from D1
B and 5K are

sampled from either TEDatt
out in NK or LSatt

out in PK and FK.
For each proxy model, Bob trains attack models with several

types of binary classifiers, C, namely, Decision Tree (DT), Ran-
dom Forest (RF), Logistic Regression (LR) and Multi-Layered
Perceptron with one hidden layer containing 64 units (MLP64).
The classification thresholds for LR and MLP64 are calibrated
such that the difference between the true positive rate and false
positive rate is maximized on the training set. Bob trains each
type of classifier on the each of the four feature sets described
in 3.2. The training process is repeated four times with different
random seeds and different splits of Dattack. Table 1 presents
the accuracy of the classifiers trained with features from each
proxy model, averaged across feature sets and data splits. While
the differences were minute, the RF classifier was the most accu-
rate so we discuss only its results in the subsequent sections.

4.3. Attack Results

Figure 1 shows the precision and recall achieved by the RF
attack model against gtarget, for different threat models and
features computed from 4-best hypotheses. We observe that
by using only wer+lens, Bob is able to achieve precision and
recall more than 60% in all threat models, indicating the model’s
outputs do carry information about training data membership.
Adding additional information like audio features, NLL and
errors improves precision (slightly) in all cases, but adding NLL
or errors decreases recall. This indicates that wer+lens alone
provides a sufficiently strong signal for inferring membership.
A more interesting observation is that the NK attacker closely
tracks the precision and recall of the FK attacker indicating that
additional knowledge of the training data distribution is not
necessary to mount an effective attack. On the other hand the
PK attacker suffers from high false positives, as indicated by
the high recall and low precision scores. At first this seems
counter intuitive, but by looking at Table 1 we note that for the
PK proxy the WER for outset and inset data is lower, and their
ratio is higher compared to the NK proxy, which indicates that
the PK proxy has fit its training more closely than the NK proxy.
Because of this the feature values extracted from the PK proxy
may be too specific to its training data and may not generalize to
Dtest as well as the features from the NK proxy.

4.4. Analysis

To determine what causes the MIA to succeed, we analyse the
no knowledge RF attack model trained on wer+lens+nll.



Figure 2: Reduction in GINI impurity caused by each feature.
The 4 bars for each feature correspond to the 4-best hypotheses.

Figure 3: Histogram of WER and NLL
for inset and outset utterances of speak-
ers with high and low precision scores

Figure 4: Histogram
of per-speaker MIA
precision

4.4.1. Model Analysis

To determine Bob’s primary attack vector we identify the fea-
tures that are most “important” for predicting membership, i.e.
cause the greatest reduction in GINI impurity [28, 29]. Figure
2 shows that WER is the most important feature, which means
that gtarget’s generalization gap is the primary source of vulner-
ability. Similar to the observation in [3] for machine translation
models, we find that NLL is not very important, which suggests
that the model does not always make overconfident predictions
for inset data. This is validated by Figure 3, which shows that
the distributions of NLL for inset and outset data is wider, and
have greater overlap than the distributions of the WER.

These observations highlight two important differences in
the nature of MIA attacks on sequence prediction tasks and clas-
sification tasks. First, in classification tasks the correctness of
the model’s prediction is binary and provides insufficient infor-
mation for mounting a successful attack. Whereas in sequence
prediction the predictions can be partially correct and can, thus,
provide the attacker the additional information needed to mount
a successful attack. Second, unlike a classification models, se-
quence prediction models use search methods, like beam search,
that may reduce the influence of overconfidently predicted sym-
bols by selecting lower probability symbols at some points if
it increases the overall likelihood of the sequence. This would
explain why NLL is not an important feature.

4.4.2. Speaker-Level Analysis

To see if Bob is better at inferring membership of utterances
from some speakers than others, we measure his precision on
the utterances of each speaker and then plot the histogram of the
values in Figure 4. To ensure that the values are meaningful, we
consider speakers who have at least 1 inset and outset utterance.
We find that for 25.6% of the speakers Bob’s precision is more
than 90% and for about 39% of the speakers it is greater than
75%, which means that Bob can precisely infer membership for
more than a third of the speakers in this dataset.

To determine why certain speakers are more vulnerable we
compared the average WER and NLL for speakers on which
the attack model achieved high precision (≥ 75%) with the
speaker that yielded low precision (< 75%). Figure 3 shows
that for the speakers that yield high precision, the distributions
of WER and NLL scores for inset samples and outset differ, with
the outset distribution translated to the right. Whereas for low
precision speakers the distributions are almost identical. This
suggests that the model has overfit to some speakers and not oth-
ers. Upon further investigation we discovered that speakers with
high-precision contributed two more utterances on average to

(a) (b)

Figure 5: (a) MIA accuracy against regularized models with
different Dropout probabilities (p) and L2 penalties (λ) with
(WERintset,WERoutset) on top of the bars. (b) Histogram of per-
speaker MIA precision against two strongly regularized models.

the training data, which suggests that over-representation in the
training set may be linked to MIA vulnerability. However, fur-
ther investigation is required to ascertain the extent to which this
and other dataset sampling choices influence MIA vulnerability.

4.4.3. Impact of Regularization

The above analysis echos the conclusion of [1], that overfitting
is a sufficient condition for the success of MIA. To observe the
impact of overfitting, we measure Bob’s accuracy on attack mod-
els with different generalization gaps. To vary the generalization
gap we train attack models with different dropout probabilities
and L2 weight regualrization coefficients. The inset and outset
WER for these models, and Bob’s accuracy against them is pre-
sented in Figure 5a. We note that Bob’s accuracy decreases with
the generalization gap until it is very close to chance. However,
by this point the model’s WER is so high that it offer limited
utility. Furthermore, Figure 5b reveals even under the strongest
regularization Bob can still predict membership with more than
75% precision for 25.3% of the speakers, which is a (unaccept-
ably) large population. These results suggest that conventional
regularization is not an effective defense against membership
inference attacks. If training data and computation power are
in abundance, a better strategy may be to use differentially pri-
vate training [30, 31], which would obscure peculiarities in each
user’s utterances and explicitly limit their influence on the model.
Due to the lack of literature on the matter, training a differen-
tially private ASR model with low WER may not be a trivial
task, therefore we leave it to future work.

5. Conclusion
We have evaluated the vulnerability of RNN-T ASR models
trained on public datasets to MIA under a black box threat model,
using the shadow model technique proposed in [1]. We have
found that the success of MIA is largely due to the model’s gener-
alization gap i.e. difference in the model’s transcription accuracy
on training and non-training data. We have also found that the
generalization gap is non-uniformly distributed across speakers
in the dataset which allows an attacker to infer the membership
of utterances from certain speakers more accurately than oth-
ers. To the best of our knowledge, no prior work has performed
such a speaker-level analysis of MIA vulnerability. Based on
this analysis, we recommend that future studies should report
speaker-level MIA accuracy along with overall MIA accuracy.
Finally, we observed that reducing the generalization gap using
regularization reduces the overall accuracy of the MIA, however,
the membership of utterances from a significant proportion of
speakers can be still be inferred with high precision. These re-
sults indicate that investigating why the some speakers are more
vulnerable to MIA and developing techniques to better defend
against MIA would be promising directions for future work.
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