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Abstract
Large language models (LLMs) often fail to
scale their performance on long-context tasks
performance in line with the context lengths
they support. This gap is commonly attributed
to retrieval failures—the models’ inability to
identify relevant information in the long inputs.
Accordingly, recent efforts often focus on eval-
uating and improving LLMs’ retrieval perfor-
mance: if retrieval is perfect, a model should,
in principle, perform just as well on a long in-
put as it does on a short one—or should it?
This paper presents findings that the answer to
this question may be negative. Our system-
atic experiments across 5 open- and closed-
source LLMs on math, question answering, and
coding tasks reveal that, even when models
can perfectly retrieve all relevant information,
their performance still degrades substantially
(13.9%–85%) as input length increases but re-
mains well within the models’ claimed lengths.
This failure occurs even when the irrelevant
tokens are replaced with minimally distract-
ing whitespace, and, more surprisingly, when
they are all masked and the models are forced
to attend only to the relevant tokens. A simi-
lar performance drop is observed when all rel-
evant evidence is placed immediately before
the question. Our findings reveal a previously-
unrealized limitation: the sheer length of the
input alone can hurt LLM performance, inde-
pendent of retrieval quality and without any
distraction. They motivate our simple, model-
agnostic mitigation strategy that transforms a
long-context task into a short-context one by
prompting the model to recite the retrieved evi-
dence before attempting to solve the problem.
On RULER, we observe a consistent improve-
ment of GPT-4o up to 4% on an already strong
baseline.

1 Introduction

Recent large language models (LLMs) have sub-
stantially expanded their context windows. For

*Equal contribution.

example, models like Llama-3 (Meta, 2024) and
Claude 3 (Anthropic, 2024) can process 100K+ to-
kens, and Gemini can reportedly handle several
million tokens (Team et al., 2024). The push to
extend context windows of LLMs has raised expec-
tations for their ability to solve problems over long
inputs, such as those that require integrating in-
formation across, e.g., multiple books, entire code
repositories, or modeling long-horizon conversa-
tion (Chang et al., 2023; Liu et al., 2024a; Stallone
et al., 2024). However, the growing capacity of
LLMs to process long inputs has not consistently
translated into a corresponding capability to effec-
tively solve tasks over long contexts (Hengle et al.,
2025; Lee et al., 2024; Kuratov et al., 2024, inter
alia). What, then, prevents models from turning
access to information into effective use for problem-
solving over long contexts?

Recent studies suggest that LLMs approach long-
context tasks through two interleaved processes:
(1) identifying relevant information within the in-
put (commonly referred to as retrieval1), and (2)
using it to solve the problem (Wu et al., 2024c;
Kuratov et al., 2024; Li et al., 2024a; Zhang et al.,
2025b, inter alia). This conceptual decomposition
naturally invites the following intuition: if retrieval
is perfect, a model should, in principle, perform
just as well on a long input as it does on a short
one. Accordingly, failures in long-context tasks
are often attributed to suboptimal or hallucinated
retrieval. As a result, the ability to identify relevant
evidence has been treated as a crucial capability for
long-context LLMs and has shaped, at least in part,
both the evaluation (Kamradt, 2023; Xiao et al.,
2024; Mohtashami and Jaggi, 2023; Modarressi
et al., 2025a; Yu et al., 2025, inter alia) and model

1Our use of the term retrieval follows standard practice in
the long-context LLM literature (Kamradt, 2023; Wu et al.,
2024c; Hsieh et al., 2024, inter alia). It refers to a model’s abil-
ity to attend to and recite specific texts from the context, and
should not be confused with retrieval in retrieval-augmented
generation (RAG), which typically involves search engines.
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Figure 1: Extending the input length alone substantially degrades LLM reasoning capability, even if the model is
still able to retrieve the relevant evidence. In this example, inserting 25000 white spaces (with minimal distraction)
does not prevent the model from extracting all conditions and question correctly, but nevertheless causes it to reach
the wrong answer.

designs in recent efforts to improve long-context
LLMs (Yu et al., 2023; Peng et al., 2023; Li et al.,
2023; Xiong et al., 2024; Jin et al., 2024; Fu et al.,
2024; Ge et al., 2024; Chen et al., 2024; Xu et al.,
2025; Han et al., 2024, inter alia).

This work provides evidence that calls this
premise into question. Our systematic, controlled
experiments across 5 open- and closed-source mod-
els on math, question answering, and code gen-
eration tasks show that even when a model can
perfectly retrieve all the evidence—in the strictest
possible sense, reciting all tokens with 100% ex-
act match—its performance still degrades substan-
tially as input length increases (§3). For example,
Llama-3.1-8B Instruct, with a claimed 128K con-
text length, is able to retrieve all evidence with
exact matches for 970 of 1000 MMLU problems
(Hendrycks et al., 2021b) extended to 30k tokens
with irrelevant tokens — matching its retrieval per-
formance on the same problems presented in the
original form with shorter contexts. However, de-
spite this robustness in retrieval, its accuracy drops
by 24.2% compared to the short-context case. More
concerningly, this failure occurs even when the ir-
relevant tokens in the long context consist of min-
imally distracting whitespace (Fig. 1; §4.1), and
even when the evidence is placed immediately be-
fore the question. Surprisingly, in a separate ex-
periment, we observe a similar performance drop
even when all irrelevant tokens are masked and
the model attends only to the evidence and the

question—identical to those in the short-context
setting except for the longer distance between the
evidence and the question (§4.1).

These findings reveal a previously-unrealized
limitation: the sheer length of the input alone can
hurt LLM performance, independent of retrieval
quality and without any distraction. They motivate
the following hypothesis: even when retrieval is
perfect, the model’s performance can still be im-
proved by limiting the number of tokens in the in-
put. Our controlled experiments provide evidence
supporting this hypothesis, and yield a simple and
effective retrieve-then-reason mitigation strategy
(§5). Specifically, we prompt the model to recite
the evidence retrieved from the long context and
prepend it directly before the question to form a
new, shorter prompt to get the final output; this
effectively converts the long-context task into a
short-context one. Our experiments on GPT-4o
on RULER show that this simple approach consis-
tently improves performance by up to 4% on top of
an already high baseline performance.

Our findings reveal previously underappreciated
limitations in how current models approach long-
context tasks. They offer a potential explanation
for a recurring observation in retrieval-augmented
generation (RAG) that performance often saturates
or even degrades as more documents are added
to the context (Cuconasu et al., 2024; Jin et al.,
2024; Yu et al., 2024, inter alia), and for recent
findings that long CoTs can sometimes hurt the



performance (Zeng et al., 2025). These results
call for a rethinking of how long-context capabil-
ities are evaluated. In particular, benchmarks that
isolate retrieval as a standalone capability might
overestimate progress, as improvements in retrieval
alone do not necessarily translate into better long-
context performance; instead long-context capabil-
ities should be evaluated holistically. Practically,
our proposed mitigation strategy is model-agnostic,
simple, and effective.

2 Background and Related Work

Recent work on long-context LLMs has largely
followed a dichotomy of long context capabilities:
(1) retrieving relevant information from long in-
puts, and (2) solving the task using the retrieved
evidence (Qiu et al., 2025; Li et al., 2024a; Zhang
et al., 2025b; Wu et al., 2024c, inter alia). This
intuition motivates evaluation methods based on re-
trieval, such as needle-in-the-haystack tests (Kam-
radt, 2023) and passkey retrieval (Mohtashami and
Jaggi, 2023). The core intuition suggests that if a
model can accurately retrieve the relevant forma-
tion, it should be able to use that information as
effectively as it would in a short-context setting.
From this perspective, improvements in retrieval
are often taken as evidence of progress in long-
context capabilities (Peng et al., 2023; Xiong et al.,
2024; Jin et al., 2024; Fu et al., 2024; Chen et al.,
2024; Xu et al., 2025; Lin et al., 2025, inter alia).

To better reflect real-world use cases, later
benchmarks extend this setup to include reason-
ing tasks that require aggregating multiple pieces
of evidence, such as multi-step inference, vari-
able binding, and multi-document question answer-
ing (Wang, 2025; Hsieh et al., 2024; Kuratov et al.,
2024; Ling et al., 2024; Minzheng Wang et al.,
2024; Li et al., 2024b; Song et al., 2024; Zhang
et al., 2024a, inter alia). Findings from these eval-
uations show that strong performance on synthetic
retrieval tests does not always translate to more
complex long-context tasks (Hengle et al., 2025;
Lee et al., 2024; An et al., 2024, inter alia), sug-
gesting a different conclusion that language mod-
els struggle to use information in long-context in-
puts as effectively as when the information is con-
tained in a short-context (Zhang et al., 2024b; Ku-
ratov et al., 2024; Zhang et al., 2025a, inter alia).
These failures are typically attributed to subopti-
mal retrieval. For example, retrieval performance
often drops when more distractors are present (Ivgi

et al., 2022; Goldman et al., 2024), when retrieval
and aggregation of multiple pieces of evidence
is required (Wang, 2025; Karpinska et al., 2024;
Agrawal et al., 2024; Song et al., 2024), when rele-
vant passages have low lexical overlap (Modarressi
et al., 2025b), or when the evidence appears near
the middle of the context (Liu et al., 2024b). Some
studies have also noted that irrelevant tokens can
distract the model and impair its reasoning (Shi
et al., 2023; Wu et al., 2024a).

A deeper understanding of these failures—
and LLMs long-context capabilities in general—
requires carefully controlled experiments that dis-
entangle factors such as context length, token-level
distraction, and task complexity. To the best of
our knowledge, such analysis remains scarce, yet
it is essential for uncovering the true limits of cur-
rent models and guiding future efforts. This work
takes steps toward that goal through a series of
controlled experiments designed to address a cen-
tral question: what prevents a model from solving
a problem when it already has perfect access to
all the information it needs? While the retrieval
performance and the distractions from irrelevant
content are both important, our findings reveal a
previously overlooked factor: the sheer length of
the context itself. Our findings complement the pre-
vailing conclusions that long-context performance
is often bottlenecked by retrieval failures or distrac-
tion.

3 Measuring Long-context Performance
under Perfect Retrieval

To better understand the factors limiting LLMs’
long-context performance, §3.1 presents a series
of systematic, controlled experiments designed to
answer a simple but fundamental question: When a
model can perfectly retrieve all the information it
needs, can it solve long-context tasks as effectively
as short-context ones? We observe a consistent
and substantial performance drop across 5 open
and closed models even when all evidence can be
retrieved with a 100% exact match (§3.2).

3.1 A Long-Context Synthetic Benchmark
Covering Math, QA, and Coding

This section introduces our experiment setting and
lays the ground work for onward discussion. Our
synthetic benchmark is constructed by forming
long-context tasks from short-context ones, in-
spired by recent efforts (Bai et al., 2024; Wu et al.,



2024b; Hu et al., 2024; Zhu et al., 2025). We in-
clude math, question answering, and code genera-
tion tasks to make our conclusions more relevant
to a broad range of application scenarios.

Figure 2 provides an illustrative example. We
identify two components of each problem: the
evidence and the question. The evidence con-
tains all the information that the model needs
to solve the task, and the question contains the
query and format requirements. Both are spe-
cific to the task and will be detailed later in this
section. Given a pair of evidence and question,
we insert distraction tokens in between to reach
desired context lengths. This creates input of
the form: [Evidence] [Distraction Tokens]
[Question]. Intuitively, this setting simulates real-
world scenarios where a user interacts with a chat-
bot over a long dialogue, and the model must re-
trieve evidence from an earlier part of the conver-
sation to answer the current query.

While previous benchmarks increase the diffi-
culty of retrieval through different methods such
as scattering the evidence across the context (Ku-
ratov et al., 2024; Hsieh et al., 2024), and plac-
ing the evidence in different positions (Kuratov
et al., 2024; Hsieh et al., 2024; Zhang et al., 2024a;
Minzheng Wang et al., 2024), we aim to make re-
trieval as easy as possible to control for perfect
retrieval in order to answer our RQ. This leads to
two of our major design choices: (1) We keep the
evidence in a single consecutive chunk to avoid re-
quiring the model to aggregate scattered evidence.
(2) We intentionally place the evidence at the begin-
ning of the input, which, as the Lost-in-a-Middle
effect (Liu et al., 2024b) suggest, is the easiest lo-
cation to retrieve; the question is put at the end to
better simulate real-world applications. In this ex-
periment we follow Kamradt (2023) and use Paul
Graham Essays (Graham) as the distraction tokens.
Our setting generalizes to different evidence loca-
tions and distraction tokens, which we explore later
in §4.

Diverse tasks covering math, QA, and coding
To isolate the effect of context length on model
performance, we intentionally select tasks that
are commonly used to evaluate LLMs and on
which most models perform consistently well, at
least under short-context settings. To cover dif-
ferent capabilities, we use the following datasets:
math (GSM8K; Cobbe et al., 2021), question an-
swering (MMLU; Hendrycks et al., 2021a), and

Task Name Type Evidence Question

Variable
Summation
(VarSum)

Variable
Tracking

Values of 50
integer

variables

The sum of
3 random
variables

GSM8K Math

Problem
description

with chain-of-
thought steps

Specific
question

MMLU
Multiple
Choice

QA

Problem
description

Question
and four
options

HumanEval Coding
Function

definition w/
docstring

Instruction

Table 1: Summary of our tasks targeting different types
of model capacities, with the identification of evidence
and question. The test sets of GSM8K, MMLU and
HumanEval are used.

code generation (HumanEval; Chen et al., 2021).
In addition, we include a synthetic Variable Sum-
mation task in order to show whether this degrada-
tion applies to very simple problems. This task is
inspired by Variable Tracking (Hsieh et al., 2024),
Distractor Variable Assignment (Li et al., 2025)
and RV-Bench (Hong et al., 2025), and aims to test
the model’s ability to perform very basic arithmetic
operationss: summing a subset of variables from
a given list. Table 1 summarizes the evidence and
question of these tasks.

Measuring retrieval with exact match To quan-
tify retrieval performance, we prompt the model to
recite both the evidence and the question exactly
as they appear in the input. Retrieval performance
is measured using exact match, where the model
receives a score of zero if there is a difference be-
tween its output and the original evidence or ques-
tion. Note that the retrieval is evaluated separately
from the actual performance evaluation. In the lat-
ter set-up, we do not ask the model to recite before
solving the problem.

In this work, we intentionally measure retrieval
in the strictest possible way to rule out the effect
of retrieval failures as a source of error in problem
solving, in contrast to existing studies (Li et al.,
2024a; Kuratov et al., 2024; Li et al., 2024b; Qiu
et al., 2025, inter alia). Although these works re-
port a similar gap between long-context retrieval
and reasoning performance, some compare re-
trieval and problem-solving on different tasks; in
such settings, a perfect score on a retrieval task
does not ensure that there are no retrieval failures



Figure 2: Left: In our synthetic benchmark, each long-context problem is created by separating a short-context
problem into evidence and question, and extending the length with distraction tokens. Right: We discuss three types
of distractions in this work, ordered by decreasing strength: Essay tokens (Section 3), Whitespace (Section 4.1), and
masking out all distraction tokens (Section 4.2).

on the actual problem-solving tasks. Others, which
involve in their settings retrieval, aggregation and
relatively simple reasoning over multiple evidence
pieces (needles), suggest multiple causes for the
gap, such as the model’s failure to extract or aggre-
gate all needles. In both types of studies, retrieval
cannot be conclusively excluded as a possible fail-
ure mode.

In contrast, by measuring retrieval on the evi-
dence for the exact problems they are tasked to
solve, we are allowed to isolate the effect of re-
trieval failures and conduct a more direct investi-
gation of our research question: the effect of the
sheer context length on problem solving. To the
best of our knowledge, our work is among the first
attempts to measure long-context performance un-
der explicit control for perfect retrieval.

3.2 Performance Drops Despite Perfect
Retrieval

Models We choose two open-source mod-
els, Llama-v3.1-8B-Instruct and Mistral-v0.3-7B-
Instruct, because of their long-context capability
(with 128K and 32K claimed context lengths re-
spectively) and good performance on short-context
benchmarks (Meta, 2024; Jiang et al., 2023). Both
models are widely used for post-training, while hav-
ing different architectures. This choice of the two
representative but very different models can help
make our conclusions more practically relevant in
broader applications.

Results Fig. 3 shows the results of the retrieval
and problem solving performance. Although there
exists a drop in retrieval scores, this drop is rela-
tively marginal until the length reaches 30K tokens.
In fact, for inputs shorter than 15K tokens, both

models are able to accurately extract the problem
description except for no more than 8.2% of the
problems. Note again that the retrieval score is cal-
culated by exact match and a failure does not neces-
sarily mean the model cannot extract the evidence.
In contrast, accuracy drops drastically across all
tasks, by a larger margin as opposed to the retrieval
score across almost all tasks and context lengths
(except Llama3 on GSM8K with 7k tokens). A
large portion of the drop in problem solving hap-
pens within 7k tokens, well below the limit of ei-
ther model where retrieval performance starts to
degrade. On Var Sum, for example, the number is
59% off the baseline 96% for Llama, and 44% off
the 0-context 68% for Mistral, while the retrieval
scores only drop by 8% and 2% respectively; on
HumanEval, the retrieval scores for Mistral even
increase on longer inputs while its accuracy scores
keep decreasing.

Discussion Our results confirm that even in the
cases where a model accurately retrieves all the ev-
idence, it may still fail to solve a long-context task
of which it is capable of solving the short-context
version. This align with existing ones in reporting a
performance drop under long input (Li et al., 2024a;
Kuratov et al., 2024) while providing fresh insights.
Existing conclusions often entangle retrieval accu-
racy with task performance. Common settings like
locating relevant info from distracting text and rea-
soning through aggregated evidence may fail due
to retrieval, aggregation (not discussed here), rea-
soning, or the input length itself. This work, to the
best of our knowledge, for the first time, presents
systematic evidence suggesting that the model’s
capabilities in reasoning, QA, and coding degrade
with longer inputs and contribute to their failures,



Figure 3: Evaluation results on Llama3-8B and Mistral-v0.3-7B, with performance accuracy in problem solving
(Accuracy) and retrieval scores measured by Exact Match (Retrieval). "Context length" refers to the total number
of input tokens for each problem, which is crafted by inserting PaulGrahamEssay tokens between evidence and
question (as illustrated in Fig. 2). See Appendix for detailed numbers.

even when retrieval is perfect. Our findings never
seek to diminish the importance of the retrieval;
rather, by simulating an “upper bound” — perfect
retrieval — they raise a complementary question
that is often overlooked: in addition to improving
models’ ability to retrieve the right information, we
must also ask can the model still use that informa-
tion effectively in long-context settings?

Model Task 0 7500 15000 30000

GPT-4o

VarSum 100.0 0.0 0.0 0.0
GSM8K 87.8 -7.0 -8.5 -7.0
MMLU 82.4 -2.1 -0.3 -1.0
HumanEval 68.3 0.0 0.0 -3.1

Claude-3.5
VarSum 90.2 -0.6 -5.4 -4.8
GSM8K 95.3 -3.8 -5.2 -6.0
MMLU 82.2 -41.7 -38.8 -67.6
HumanEval 90.2 -0.6 -5.4 -4.8

Gemini

VarSum 100.0 0.0 0.0 0.0
GSM8K 83.2 +7.7 +8.6 +6.2
MMLU 81.9 -3.0 -3.5 -3.9
HumanEval 86.0 -11.0 -2.5 -1.8

Table 2: Performance drop across different lengths
on selected closed-source models, with corresponding
numbers of whitespace tokens between evidence and
question.

4 Models Struggle Even Without
Distraction

This section aims to answer What prevents a model
from effectively using information it has success-
fully retrieved? In addition to the distraction from
the irrelevant tokens, which aligns with existing
observations (Shi et al., 2023; Wu et al., 2024a),
we reveal a surprising finding: the sheer length of
the context alone can negatively impact the model’s
performance, even when there is little (§4.1) to no
(§4.2) distraction.

4.1 Performance Degradation with Minimum
Distraction

To reduce the distraction from irrelevant tokens, we
modify the benchmark design in §3.1 , by replac-
ing the natural language tokens with whitespace;
all other settings are kept the same. We intuitively
choose whitespace, since it generally carries mini-
mum information and is a natural separator, creat-
ing least distraction (Zhang et al., 2025c).

Llama and Mistral Fig. 4(a) shows our results
for Llama and Mistral. Although these results gen-
erally reflect an improvement compared to those
under the essay distraction in the previous section
(Fig. 3), we can still see a substantial drop in per-
formance for both models and all tasks: at least 7%
at 30K space tokens (as in Llama-GSM8K), and
more significant drops, notably including a 48%
drop for Llama on VarSum and 30% for Mistral on
GSM8K.

Closed-source Models We also test three closed-
source models: GPT4o (OpenAI, 2024), Claude-
3.7-Sonnet(Anthropic, 2024) and Gemini-2.0 (Has-
sabis and Kavukcuoglu, 2024) on our selected
tasks. Results are shown in Table 2. We observe
a very different pattern with these models from
their smaller open-source counterparts. They ex-
perience a smaller drop across increased context
lengths. For VarSum, both GPT-4o and Gemini-
2.0 achieve perfect performance throughout. The
closed-source models generally exhibit more ro-
bustness than the open-source ones in terms of the
negative impact of context lengths. However, sub-
stantial and mostly consistent degradation is still
observed in most models and tasks, despite varying
trends among tasks - with the notable exception



Figure 4: Performance across different context lengths on Llama-3-8B Instruct and Mistral-v0.3-7B-Instruct, with
corresponding numbers of whitespace tokens inserted for minimum distraction. (a, Left) Whitespaces are inserted
between evidence and question. (b, Right) Whitespaces are inserted before evidence, and question adjacent to
evidence.

of Gemini on GSM8K, where performance at 30K
actually improves by 8.6%, and HumanEval, where
the performance improves after a certain length in
some cases (15K vs 7K for Gemini, for example).

To determine if context length itself is the factor,
we also need to control the relative distance be-
tween evidence and question, as existing works (Li
et al., 2024a; An et al., 2024) suggest that it may
affect performance drop. Therefore, we move the
evidence back to the end of the input, right before
the question, so that the distance does not change
with input size. Our results are shown in Fig. 4(b),
where a substantial drop is observed despite occa-
sional fluctuations: up to 17% for Mistral and 20%
for Llama under 30K space tokens.

Previous observations like Lost-in-the-middle
(Liu et al., 2024b) acknowledge the affect of evi-
dence position in long-context performance, espe-
cially when the evidence is in the middle of the
text; on the other hand, our results prove that the
performance degradation is directly related to the
input length alone, regardless of the relative posi-
tion between evidence and question. In fact, the
degradation still happens when the evidence is put
in the best positions possible, the beginning and
the end of the text, and that further strengthens that
the sheer length of input is a decisive factor to the
degradation.

4.2 Eliminating Distraction Completely with
Masking

The previous experiment with whitespace already
provides initial implication that with minimal dis-
traction, the models are still hurt by increased con-

text size. Now, we take one step further and seek
no distraction, by masking all distraction tokens
when calculating attention for our targeted open-
source models, Llama and Mistral. Effectively, the
input to the model becomes [Evidence] [Masks]
[Question], where the model attends only to the
evidence and the question, identical to the short-
context setting except for the increased distance be-
tween them introduced by the masked tokens. The
results are in Table 3. Surprisingly, yet still in tune
with our expectations, we still observe a consis-
tent performance drop, which reaches at least 7.9%
for both models at 30K masked distraction tokens.
Some drops are even larger compared to when we
fill the context with space: for HumanEval, Llama3
suffers a 50% drop with masking compared to that
of only 19.4% with space.

Model Task 0 3750 7500 15000 30000

Llama3

VarSum 97.0 -11.0 -35.0 -24.0 -50.0
GSM8K 86.1 -1.7 -3.3 -4.3 -19.6
MMLU 62.8 -11.3 -15.9 -15.5 -21.1
HumanEval 57.3 -5.5 -22.0 -16.5 -50.0

Mistral

VarSum 66.0 -5.0 -11.0 -19.0 -34.0
GSM8K 64.5 -2.1 -4.8 -8.2 -15.1
MMLU 53.8 -4.7 -7.5 -11.0 -11.8
HumanEval 34.8 -7.3 -8.5 -10.4 -7.9

Table 3: Llama-3 and Mistral still suffer a performance
drop with increased length even when all distractions
are masked. The numbers 0, 3750, etc. are lengths of
masked distraction in tokens.

Discussion Through these settings, we feel more
confident to conclude that long-context language
models suffer a common performance degradation
when solving long-context tasks, even with perfect



retrieval, even with minimum or zero distraction.
Our conclusion suggests limitations for practical
applications. For example, in typical scenarios like
chatbot dialogues, even when the question immedi-
ately follows its evidence or evidence is pinpointed,
longer input may still lead to unexpected failures.
Our finding also provides insight for the actual
mitigation of the long-context degradation. One in-
centive that naturally emerges is to simply shorten
the length of the input context. In the next section,
we shall present a proof-of-concept solution based
on this idea.

5 Shortening Input Through Retrieval: A
Simple Fix

Having learned the negative impact of the sheer
length of the context (§4), we naturally arrive at the
following hypothesis: Even when retrieval is per-
fect, a model’s performance can still be improved
by limiting the number of tokens in the input.

This section introduces a simple, model-
agnostic, and effective mitigation strategy for cases
where accurate retrieval—though not necessarily
perfect—can be achieved. We then present experi-
mental results that support the above hypothesis.

Retrieve then Solve Given a long-context input
problem, our strategy first prompts the model to
retrieve and recite all relevant information from
the input context. This recited evidence is then
concatenated with the original problem statement
to form a new, shorter prompt. The model solves
the problem based solely on the recited evidence,
without having the long context as part of its input,
similarly to starting a new chat session in ChatGPT
(see Fig. 5 for an illustrative example).This effec-
tively turns a long-context task into a short-context
one using an additional prompt.

This approach is related to Li et al. (2024a),
which improves the model by training it to align
to both retrieval and reasoning objectives. Our
method, in contrast, does not address the retrieval
problem itself; rather, with an explicit retrieval step,
it assumes accurate retrieval as a prerequisite.

Experiments We evaluate our strategy on two
benchmarks: (1) our synthetic benchmark under
the initial setting, where we insert Essay tokens
between evidence and question of GSM8K prob-
lems. (2) Two QA tasks, QA1 and QA2, of RULER
(Hsieh et al., 2024), an established long-context
benchmark, in which models are provided with a

Figure 5: Our strategy retrieves evidence to shorten
the context length before solving the task.

problem and a number of potentially related doc-
uments, and are required to retrieve the answer
from one or more of the documents. We com-
pare our strategy against the baseline method where
the model is directly asked to answer the question
based on the input.

On our synthetic benchmark, as shown in Ta-
ble 4, with our method, Mistral-v0.3-7B Instruct
achieves a substantial performance boost under
longer contexts without excessive prompt engineer-
ing, with a gap of less than 10% and a 30% boost
until the input size reaches 26K.

On QA1 and QA2 tasks of RULER, we experi-
ment with GPT-4o, taking advantage of its retrieval
capabilities. As shown in Section 5, under varying
context lengths ranging from 128K to 4K tokens,
while the baseline already achieves strong perfor-
mance on QA1 (88.2–90.4%), our method yields
consistent improvements, reaching 92.2% at 4K.
Our method achieves a larger improvement on QA2
by maximum 4% at 32K.

Length 0 3750 7500 15000 26250

Baseline 70.6 49.3 43.4 41.6 35.5
Ours 76.2 71.4 66.7 69.1 66.7

Table 4: On our synthetic benchmark with essay dis-
tractions, we improve performance of Mistral-v0.3-7B
Instruct by up to 31.2% on GSM8K.

Our results suggests that this simple and model-
agnostic approach can enhance a model’s ability to
make use of the information they can accurately re-
trieve from long contexts. In doing so, it helps close
the gap between improvements in retrieval perfor-
mance and actual gains on long-context tasks.

6 Discussion

Our observations on the performance drop, even
with masking, along with the relatively steady per-
formance of closed-source models, are related to



Method Task 128K 64K 32K 16K 8K 4K

Baseline QA1 88.2 87.8 87.8 88.8 87.2 90.4
QA2 63.2 67.0 68.4 69.4 71.4 71.2

Ours QA1 88.2 88.4 88.6 89.8 89.8 92.2
QA2 65.4 70.6 72.4 72.8 74.0 73.2

Table 5: Our method consistently improves the perfor-
mance of GPT-4o on tasks QA1 and QA2 of the RULER
benchmark.

findings from (Li et al., 2024a; An et al., 2024)
which attribute the drop to a distribution bias with
position introduced during training. While An et al.
(2024) targets the drop in retrieval and Li et al.
(2024a) addresses the long-context performance as
a whole, our work further shows that this cause
also applies to the degradation caused by the length
itself, regardless of retrieval or distraction strength.

Our results further imply that the previous two-
part decomposition of long-context problem solv-
ing into retrieval and problem solving (Qiu et al.,
2025; Li et al., 2024a; Zhang et al., 2025b) is in-
conclusive, urging researchers to further explore
the underlying mechanisms. The current effort to
independently focus on improving models’ long-
context retrieval and short-context capacities at
training (Meta, 2024; Chen Wu and Yin Song and
Eden Duthie, 2024; Yang et al., 2025; AI et al.,
2024) may not fully translate to an overall improve-
ment in long-context ability: failure is possible
despite the model excelling in both. Our conclu-
sion encourages a more comprehensive evaluation
beyond focusing on retrieval, with a more fine-
grained analysis to precisely separate each failure
mode.

Our conclusion supplements existing observa-
tions for practical applications. It supports previ-
ous findings (e.g., Li et al. 2024c; Yu et al. 2024)
that RAG suffers from retrieving too many docu-
ments. It also aligns with Dai et al. 2025; Zeng et al.
2025, which argue that generating excessively long
CoTs can hurt reasoning models, despite being a
common strategy.

7 Conclusion

In this work, we expose a previously noticed but un-
explored limitation: the performance degradation
of language models may be attributed to the length
of the input itself, even when the model is able to re-
trieve all relevant information, and all distractions
are removed. Our findings challenge the popular
view of decomposing long-context task solving into

retrieval and problem solving, and encourage more
consideration on future model designs and evalua-
tions. Our simple yet effective strategy shows that
the degradation can be mitigated through reducing
the context length, serving as an initial attempt in
bridging the gap between retrieval and long-context
performance.

Limitations

The conclusions of this work are only based on two
open-source models, three closed-source models
and 4 tasks, despite consciously selecting those
that are more representative. We did not run ex-
periments for some combinations of settings, such
as retrieval on closed-source models (due to these
models occasionally refusing to recite evidence un-
der a long input).

The method proposed in Section 5 has limited
use case. It requires perfect retrieval, which is
already hard in many real-world tasks that feature
retrieval settings harder than in our synthetic data.
We did not report results for open-source models on
RULER, due to the fact that the failure of retrieval
directly causes a performance drop (compared to
baseline), and it is not our focus in this paper to
address this type of failure.

Declaration of generative AI and
AI-assisted technologies

While preparing this work, we used OpenAI’s
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A Appendix

A.1 System Prompt
See Figures 6, 7, 8, 9, 10, 11, 12, 13.

# Problem Description
{problem description}
# Analysis
{cot}
# Others
{distraction}
# Question
{question}
# Answer

Figure 6: Prompt for GSM8K Problems.

A.2 Detailed Results
See Tables 6, 7, 8, and 9.

A.3 Scientific Artifacts Used in this Work
The datasets used in the work are presented in Ta-
ble 10. This work only uses the artifacts for re-
search purposes and does not redistribute them.

# Problem Description
{problem description}
# Analysis
{cot}
# Others
{distraction}
# Question
{question}
# Answer
Let’s first recite “# Problem Description”, “# Anal-
ysis” and “# Question” word by word, and then
think and answer in the “## Answer” subsection.
Your response will be compared to the original
question using exact match. When reciting, do not
alter the original text.
## Problem Description

Figure 7: Prompt for GSM8K Problems, Retrieval Task.

# Problem Description
{evidence}
# Others
{distraction}
# Question
{question}
# Answer
Let’s think step by step.

Figure 8: Prompt for VarSum Problems.

# Problem Description
{evidence}
# Others
{distraction}
# Question
{question}
# Answer
Let’s first recite “# Problem Description” and “#
Question” word by word, and then think and an-
swer in the “## Answer” subsection. Your response
will be compared to the original question using ex-
act match. When reciting, do not alter the original
text.
## Problem Description

Figure 9: Prompt for VarSum Problems, Retrieval Task.
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# Problem Description
{evidence}
# Others
{distraction}
# Question
Choose the option that best satisfies the problem description.
{options}
Give only the number for the correct option.
# Answer
The correct option is

Figure 10: Prompt for MMLU Problems.

# Problem Description
{evidence}
# Others
{distraction}
# Question
Choose the option that best satisfies the problem description.
{options}
# Answer
Let’s first recite “# Problem Description” and “# Question” word by word, and then think and answer in
the “## Answer” subsection.
## Problem Description

Figure 11: Prompt for MMLU Problems, Retrieval Task.

Read the question based on the given documents. Choose the documents most relevant to the question and
copy them fully WORD BY WORD.

The following are given documents.

{context}
Read the question. Choose the documents most relevant to the question and copy them fully WORD
BY WORD. Only give me the relevant documents and do not output any other words. Do not make up
documents. Do not repeat documents. Use “# Document <number>” at the start of each document, then
copy its full content.

Question:
{question}

Figure 12: Prompt for the first step of the Retrieval before Reasoning Strategy on RULER’s QA1 and QA2 tasks.
The second step uses the original prompt from RULER.



<INPUT>
(Berlin) Film Festival; and Best International Documentary at the Harlem (New York) International Film
Festival".
Read the question. Choose the documents most relevant to the question and copy them fully WORD
BY WORD. Only give me the relevant documents and do not output any other words. Do not make up
documents. Do not repeat documents. Use “# Document <number>” at the start of each document, then
copy its full content.
Question: What type of film are both “500 Years Later” and “Manson”?

<FIRST RESPONSE>
# Document 2
Manson (film)
Manson is a documentary film made in 1973 about Charles Manson and his followers. It was directed by
Robert Hendrickson and Laurence Merrick.

# Document 20
500 Years Later
500 Years Later ( “500 amätat bähwala ”) is an independent documentary film directed by Owen ’Alik
Shahadah, written by M. K. Asante, Jr. and released in 2005. It has won five international film festival
awards in the category of Best Documentary (including) UNESCO “Breaking the Chains Award”).
Other awards it has won include “Best Documentary at the Pan African (Los Angeles) and Bridgetown
(Barbados) Film Festivals; Best Film at the International Black Cinema (Berlin) Film Festival; and Best
International Documentary at the Harlem (New York) International Film Festival”.

<SECOND INPUT>
Answer the question based on the given documents. Only give me the answer and do not output any other
words.

The following are given documents.
# Document 2
Manson (film)
Manson is a documentary film made in 1973 about Charles Manson and his followers. It was directed by
Robert Hendrickson and Laurence Merrick.

# Document 20
500 Years Later
500 Years Later (“500 amätat bähwala ”) is an independent documentary film directed by Owen ’Alik
Shahadah, written by M. K. Asante, Jr. and released in 2005. It has won five international film festival
awards in the category of Best Documentary (including) UNESCO “Breaking the Chains Award”).
Other awards it has won include “Best Documentary at the Pan African (Los Angeles) and Bridgetown
(Barbados) Film Festivals; Best Film at the International Black Cinema (Berlin) Film Festival; and Best
International Documentary at the Harlem (New York) International Film Festival”.

Answer the question based on the given documents. Only give me the answer and do not output any other
words.
Question: What type of film are both “500 Years Later” and “Manson”?

<SECOND RESPONSE>
Documentary film

Figure 13: An Example of the Retrieval before Reasoning Strategy on RULER.



Model Task Metric
Context Length (tokens)

0 7500 15000 30000

Llama3

Var Sum Acc. 96.0 -59.0 -60.0 -85.0
Ret. 100.0 -8.0 -8.0 -17.0

GSM8K Acc. 87.8 -5.4 -9.0 -12.3
Ret. 99.1 -6.9 -8.2 -10.1

MMLU Acc. 63.2 -21.4 -20.0 -24.2
Ret. 97.0 -1.5 +1.4 0.0

HumanEval Acc 57.3 -20.1 -40.9 -47.6
Ret. 100.0 -1.0 -5.4 -10.8

Mistral

Var Sum Acc. 68.0 -44.0 -47.0 -66.0
Ret. 100.0 -2.0 -4.0 -1.0

GSM8K Acc 70.6 -27.2 -28.9 -34.2
Ret. 95.3 +1.3 -1.9 -10.7

MMLU Acc 54.1 -13.9 -16.9 -20.3
Ret. 97.4 +0.3 +1.2 -28.9

HumanEval Acc 34.8 -17.7 -23.8 -34.8
Ret. 81.5 +14.8 +16.7 +9.5

Table 6: Evaluation results on Llama3-8B and Mistral-v0.3-7B, with performance accuracy in problem solving
(Acc.) and retrieval scores measured by Exact Match (Ret.). The results at 0-token show the absolute value of
the baseline performance under the original datasets. The later columns present the differences (deltas) between
performances under different input lengths, where each problem is extended with the corresponding numbers of
PaulGrahamEssay tokens between evidence and question(illustrated as Fig. 2), and those under 0-token. Scores
in percentage.

Model Task 0 3750 7500 15000 30000

Llama

VarSum 96.0 -5.0 -8.0 -12.0 -48.0
GSM8K 87.5 -0.4 -4.7 -3.2 -7.0
MMLU 63.2 -11.5 -15.9 -15.3 -20.2
HumanEval 57.3 -10.4 -12.2 -12.8 -31.7

Mistral

VarSum 68.0 -3.0 -4.0 -17.0 -28.0
GSM8K 70.0 -20.0 -12.0 -24.0 -30.0
MMLU 54.1 -5.7 -9.2 -12.7 -14.0
HumanEval 34.8 -4.9 -4.9 -6.7 -11.0

Table 7: Performance drop across different context lengths on Llama-3-8B Instruct and Mistral-v0.3-7B-Instruct,
with corresponding numbers of whitespace tokens inserted between evidence and question. Values at context
length > 0 are differences with 0-context.



Model Task 0 7500 11250 15000 18750 22500 26250 30000

Mistral

Var Sum 66.0 -4.0 -7.0 -7.0 +3.0 -3.0 -15.0 -17.0
GSM8K 64.2 -7.9 -7.3 -9.3 -8.7 -11.0 -12.2 -7.9
HumanEval 34.8 -6.7 -6.1 -6.7 -5.5 -6.1 -8.0 -9.8
MMLU 54.0 -5.5 -7.2 -7.2 -7.4 -9.2 -9.5 -10.1

Llama3

Var Sum 97.0 -8.0 -6.0 -6.0 -10.0 -15.0 -16.0 -20.0
GSM8K 85.5 -5.6 -6.6 -8.1 -10.7 -5.6 -8.4 -7.1
HumanEval 57.3 -7.9 -7.9 -12.2 -7.9 -12.8 -14.6 -18.3
MMLU 62.9 -12.1 -12.9 -15.6 -16.6 -18.2 -18.7 -19.4

Table 8: Performance across different context lengths on Llama-3-8B Instruct and Mistral-v0.3-7B-Instruct, with
whitespace tokens of corresponding lengths inserted before evidence, and question adjacent to evidence. Values
at context length > 0 are deltas from the 0-context baseline.

Model Task
Context Length (tokens)

0 3750 7500 11250 15000 18750 22500 26250 30000

Llama3
VarSum 97.0 -11.0 -35.0 -27.0 -24.0 -36.0 -48.0 -70.0 -50.0
GSM8K 86.1 -1.7 -3.3 -6.9 -4.3 -9.4 -11.7 -18.0 -19.6
MMLU 62.8 -11.3 -15.9 -16.6 -15.5 -19.0 -18.1 -18.7 -21.1

Mistral
VarSum 66.0 -5.0 -11.0 -14.0 -19.0 -26.0 -15.0 -23.0 -34.0
GSM8K 64.5 -2.1 -4.8 -6.5 -8.2 -11.6 -11.6 -14.4 -15.1
MMLU 53.8 -4.7 -7.5 -8.8 -11.0 -10.9 -11.5 -9.9 -11.8

Table 9: Masking

The datasets do not contain sensitive or offensive
content.

A.4 Computational Resources and
Experiment Statistics of this Work

This work uses GH200 GPUs for computations.
Around 20000 GPU hours are consumed. All the
experiments are run once, the results of which are
reported.

A.5 Potential Risks
This work explores the phenomenon of per-
formance degradation in long-context scenarios,
which is in itself unlikely to cause potential risks.
This work also presents a strategy to mitigate the
issue, which is mainly for demonstration purposes,
and its reliability is not guaranteed.



Dataset Domain Size Language License

GSM8K (Cobbe
et al., 2021)

Math 8.79K Samples English MIT License

MMLU (Hendrycks
et al., 2021a)

QA 116K Samples English MIT License

HumanEval (Chen
et al., 2021)

Coding 164 Samples
English;
Python

MIT License

RULER (Hsieh
et al., 2024)

Long-context;
Multitasking

13 Tasks English
Apache License

2.0

Table 10: Artifacts used in this work
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