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Abstract

Evaluating the quality of search systems traditionally requires
a significant number of human relevance annotations. In re-
cent times, several systems have explored the usage of Large
Language Models (LLMs) as automated judges for this task
while their inherent biases prevent direct use for metric estima-
tion. We present a statistical framework extending Prediction-
Powered Inference (PPI) (Angelopoulos, Duchi, and Zrnic
2024) that combines minimal human annotations with LLM
judgments to produce reliable estimates of metrics which re-
quire sub-instance annotations. Our method requires as few
as 100 human-annotated queries and 10, 000 unlabeled exam-
ples, reducing annotation requirements by significantly com-
pared to traditional approaches. We formulate our proposed
framework (PRECISE) for inference of relevance uplift for
an LLM-based query reformulation application, extending PPI
to sub-instance annotations at the query-document level. By
reformulating the metric-integration space, we reduced the
computational complexity from O(2/°!) to O(2%), where
|C| represents corpus size (in order of millions). Detailed ex-
periments across prominent retrieval datasets demonstrate that
our method reduces the variance of estimates for the business-
critical Precision@K metric, while effectively correcting for
LLM bias in low-resource settings.

Introduction

Large Language Models (LLMs) (Achiam, Adler et al. 2023;
Bai, Kadavath et al. 2022; DeepSeek-Al et al. 2025) have
rapidly gained traction in industrial applications. Evaluation
of LLM applications traditionally relies on human audits,
a process that is neither scalable nor cost-effective, espe-
cially when dealing with large, diverse datasets collected
from real-world applications. To address this challenge, re-
cent work (Saad-Falcon et al. 2024; Zheng et al. 2023a; Es
et al. 2024; Dong, Hu, and Collier 2024) has explored us-
ing LLMs themselves as evaluators, leveraging their strong
reasoning capabilities and contextual comprehension. This
offers a potential solution to the evaluation bottleneck, au-
tomating quality assessment of complex tasks at scale.
Ranking and recommendation problems are cornerstones
of today’s e-commerce websites, spanning search, advertis-
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Figure 1: Code-mixed queries encountered in our production
system, demonstrating the linguistic challenges of Indian e-
commerce search. Left: queries from customers often mix
Hindi words written in Latin script with English. Right: query-
reformulation into grammatical English using a frontier LLM
greatly improves search relevance. Our deployed approach
PRECISE-PPI seeks to estimate the performance of the
query-reformulation approach by debiasing LLM relevance
judgements with minimal human annotations.

ing, and product recommendations. Human evaluation has
traditionally been the gold standard for evaluating ranking
quality, it faces unique challenges in this domain. Rank-
ing models and algorithms change frequently, necessitating
repeated evaluations. Relying on implicit signals like user
clicks for evaluation can introduce biases (Ovaisi et al. 2020;
Wang et al. 2016), as clicks are influenced by factors other
than relevance, such as position and presentation.
LLM-based evaluation has thus emerged as a promising al-
ternative, potentially enabling efficient and timely assessment
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Figure 2: High-level flow of our PRECISE-PPI method to estimate relevance metrics. Our approach combines estimates from
LLM annotations on unlabelled queries and human-labelled gold annotations of query-product relevance.

of large-scale recommendations or search results.

However, this is not without risks, including potential bi-
ases inherent in LLMs (Chen et al. 2024; Li et al. 2024)
and consistency issues across different contexts (Shen et al.
2023). These challenges necessitate careful consideration
and mitigation strategies when leveraging LLMs to evaluate
e-commerce ranking and recommendation algorithms.

While human evaluation is crucial for unbiased assess-
ment of ranking and recommendation systems, it is limited in
quantity due to cost and scale challenges. Conversely, LLM
evaluations are abundant but potentially biased. To leverage
the strengths of both human and LLM evaluations, we for-
mulate a novel ranking-metric estimator based on Prediction-
Powered Inference (PPI) (Angelopoulos et al. 2023). PPI is
a framework for valid statistical estimation, where limited
human annotations are augmented with machine learning pre-
dictions. Ranking systems present a unique challenge for PPI,
due to the hierarchical nature of the estimation task: while
human annotations are collected at the atomic (query, doc-
ument) level, ranking performance metrics are computed at
query level and then aggregated over the entire dataset. This
inconsistency makes the vanilla PPI estimator infeasible.

We address this gap by extending the PPI framework to es-
timate from signals provided from sub-query level human and
LLM annotations, demonstrating that our technique is com-
patible with standard ranking metrics such as Precision@K.
Our comprehensive evaluation across proprietary and public
datasets demonstrates the framework’s effectiveness across
diverse e-commerce search systems and multiple evaluator
models.

Application Description

We consider an e-commerce application scenario in India
that enables resellers to purchase products on behalf of end
customers who have limited proficiency with traditional e-
commerce websites or mobile apps, particularly in Tier-2
and Tier-3 Indian cities. The application maintains an exten-
sive catalog featuring millions of buyable products, while
leveraging Amazon fulfillment to ensure reliable delivery
and returns. The application focuses primarily on low-value
products in the fashion and electronics categories.

This application has lacks a dedicated set of annotators to
provide a large set of human-curated relevance judgments.

This posed a unique challenge to estimate the quality of new
search relevance improvements. In the rest of this paper, we
analyze how our estimation approach was used to guide the
deployment of system that uses LLM-based query reformula-
tion to overcome significant linguistic challenges that majorly
impact search performance.

Query Pattern Analysis

We categorized queries into three volume-based segments:
Head queries (contributing 50% of total search volume),
Body queries (25% of volume), and Tail queries (25% of
volume). We conducted a comprehensive analysis of 1,000
queries from each segment using LLM-as-a-Judge, revealing
substantial linguistic defects that impair the effectiveness of
the production search engine:

* Increasing defect severity: The fraction of problematic
queries increases dramatically from Head to Tail segments,
with organic grammatically correct English queries de-
creasing sharply from Head queries to Tail queries.

* Hinglish prevalence: Hinglish queries (Hindi words writ-
ten in Latin script) represent a significant portion of search
volume, particularly in Body and Tail segments. Figure 1
illustrates typical examples of such queries.

With millions of unique queries across all segments, these
linguistic defects significantly affect daily customer search
quality.

LLM-Based Query Reformulation Solution

To address these query defects, we developed an LLM-based
query reformulation system using Claude 3 Sonnet. The sys-
tem employs two specialized prompts which use both reason-
ing traces and in-context exemplars:

* Prompt V1: Performs translation of Hinglish queries and
correction of grammatical errors and typos in customer-
entered queries.

* Prompt V2: Extends V1 with Indian ethnic context aware-
ness to preserve culturally-specific terms (e.g. “kurti”,
“salwar kameez”) that should not be translated, as these
terms appear as-is in product catalogs.

The reformulation system targets all Head and Body
queries, covering 75% of total search volume. Tail queries



are excluded due to their high uniqueness (the vast majority
are searched only once) and the prohibitive cost of reformu-
lating several million queries within the launch timeline of
the Diwali sale.

Note that we anonymize the user queries to remove poten-
tial PII information prior to usage in our LLM-based refor-
mulation solution.

Metric Estimation Pre-Deployment

Query reformulation presents a fundamental challenge: it
can either significantly improve or severely degrade search
relevance, depending on the quality of the reformulations. In
traditional search experiments, the impact of ML solutions
is validated using extensive human-annotated test sets of
relevance judgments. However, our application’s annotation
constraints made this approach infeasible.

Deploying an untested query reformulation system would
pose substantial business risk. The available audit bandwidth
consisted of only a few days of software engineering team
time immediately before launch. This scenario exemplifies
the exact use case for which our PRECISE approach was
designed: estimating the true performance impact of an ML
system when extensive human annotation is prohibitively ex-
pensive or time-constrained, but where deployment decisions
must be made with confidence.

We deployed PRECISE to estimate Precision@K im-
provements across three treatments: (a) Control: unmodified
production queries; (b) T1: queries reformulated with Prompt
V1; (c) T2: queries reformulated with Prompt V2 including
Indian ethnic context. Our framework correctly identified the
best-performing treatment, which was subsequently validated
through A/B testing with limited traffic and deployed to pro-
duction, improving search relevance for millions of users and
leading to significant business impact for our application.

Method

In this section, we introduce our novel PRECISE method
of evaluating ranking models using LLMs. We first describe
the general framework of Prediction-Powered Inference for
estimating performance metrics (Boyeau et al. 2025).

Background: PPI for Metric Estimation
Assume we have a human-labeled “gold” dataset
Dy = {(z", y) - (2§, y5™)} and have access to
an unlabeled dataset D,, = {x,(}), e ,xSLN)} where N > n,
and both covariates are iid samples from the same (true)
distribution. Our goal is to evaluate performance of a
machine learning system f using the datasets D, and D,,.
Let ¢ be any metric of interest e.g. accuracy for classification
task, squared error for regression etc. We can estimate model
performance as the expectation of ¢(f(z\"), y{”) over the
labelled data; however the same cannot be done with D,,,
due to absence of ground-truth labels. Since we have limited
labeled examples, reporting f on D, exhibits high variance
in the accuracy estimate.

To leverage the large corpus of unlabeled data, we can
employ an “annotator” ML model M that generates synthetic

labels {gjq(tl), e ,g&N)} and average ¢(f(ac5f)), gff)) across
D,.. While this reduces variance, potential bias from the
trained model M can creep in, resulting in a statistically
biased estimate. Prediction-Powered Inference is a statistical
framework to debias estimates by leveraging both labeled
and unlabeled datasets. We typically use the efficient PPI++
estimator (Angelopoulos, Duchi, and Zrnic 2024):

1 i i ~ (i
> B @)D =X 5P W)
where,
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is the estimate of the metric on each instance of the un-
labelled set, using the conditional probability distribution
output from the annotator over the output space Y as in

(Boyeau et al. 2025). Each ,z_g” is calculated analogously.
Here 0 < )\ < 1 is a hyperparameter that can be tuned to

minimize the variance of the estimator pppy . However, the

estimator remains unbiased for any value of A > 0.

PRECISE-PPI: Ranking Metric Estimation

A limitation of the previous PPI formulation is that it is un-
defined for situations where the annotator model provides
synthetic labels at a granularity other than the instance-level.
For example, in the case of estimating common ranking met-
rics such as Precision @K, Recall @K, etc, the notion of an
“instance” pertains to a query but the annotator model pro-
vides a relevance annotation at the query-document level.

The key challenge here is the formulation of the output
space y € Y over which to take the integrand/summand
&(f(x®),y) - p(y), which is also compatible with the
granularity of p(*) () = M (y|z(®)) provided by the annotator
model. ) )

To overcome this issue, we reformulate /]7(f ) and ﬂg) in
order to estimate [ipp;+- appropriately for the task of search
relevance. Concretely, assume the corpus of documents C' =
{dM,...,dD} is an internal aspect of the search relevance
model under evaluation, i.e. f(z) = fo(x), where x is a
single query. Assume this model provides binarized relevance
labels to K documents in C'. We can imagine the prediction
as a K-hot vector:

g = fo(z) = |rel(dV),... ,rel(d“c\))} 7

where ||g]l1 = K. An example realization may be
[1,0,1,...,0]; exactly K indexes must be hot.

Assume that for the purpose of estimating Precision@K
using PPI, we have a labelled a small dataset of n queries,
providing a binary relevance annotation to each of the top-
K results per query. In this scenario, we can represent the



ground-truths for the gold set as using a similar one-hot
vector:

y= [TEI(d(l)), o 77'el(d(|c‘))} ,

where y||; < K and at most K values are “hot”.

To measure Precision@K at the instance-level, we would
simply calculate the scaled dot product of these quantities:

T
olfo(@).y) = ol5.y) = L2

However, both y and g are sparse; it is equivalent to com-
pute the dot product of the K documents which are marked
as relevant by fo(-).

The above observation is crucial to the efficient formu-
lation of the iterable space Y which we integrate/sum to
produce [LEZ ) and ﬂ_((;). An exact calculation of these quan-
tities would require us to consider Y to be all vectors of
length |C'|, and considering every possible combination of
hot values, i.e. Y = {0,1}/°l. As |C| is often in millions,
this calculation is intractable.

However, due to the sparsity in the calculation of Pre-
cision@K (as we have at most K “hot” positions), we can
instead iterate over a much-reduced space of all combinations
of K-length vectors Y = {0, 1}%.

Our key observation here here is that the probability mass
of all |C/|-length vectors where the K documents are zeros,
is accumulated into a single probability weight of the all-
zero K-length vector. This makes the computation tractable:
although the size of the iterable space |Y| is still exponential,
typically we estimate Precision@K with small K (e.g. < 10),
permitting us to estimate /2" and ﬂ_gf).

Concretely, consider a single query x for which we
have a K-length vector of annotator-provided probabilities
P’ (dy,) = M (dg|x) that the kth ranked document dy, is rele-
vant to the query z.

We can convert this into a probability value for each K-
length binary vector y € Y = {0,1}¥ by applying the
probability-distribution operation:

K
ply) = [T 7 (de)?s (1 =5 (di)) ) 3)

k=1

where Y = {0, 1}¥ is all possible K-length binary vectors
and yy, is each elementof y € Y.

The calculation of fipp; 14 then proceeds as before for reg-
ular PPI. Thus, we are able to formulate the estimate for both
ranking and information retrieval tasks.

Experimental Setup
Datasets

We conduct experiments on two complementary datasets to
validate PRECISE for search relevance estimation.

ESCI (Reddy et al. 2022): released by Amazon as part
of KDD Cup 2022, ESCI contains difficult search queries
across US, Japan, and Spain marketplaces, each paired with
up to 40 potentially relevant products. Each query-product

pair is annotated with four relevance categories: Exact, Sub-
stitute, Complement, and Irrelevant. For our experiments,
we preprocess ESCI by: (i) focusing on the US marketplace
data; (ii) binarizing relevance judgments by considering only
“Exact” and “Irrelevant” labels while dropping ambiguous
”Substitute” and "Complement” cases; and (iii) selecting
top-K ranked results and filtering queries with fewer than K
results.

Application data: as our LLM-based query reformulation
primarily affects the Body queries, we sample 8.5k of these
and retrieve top-4 results from the production search system.
We split this into 100 human-annotated queries and 8.4k
unlabeled queries (84x labelled set size), providing a realistic
scenario for applying PRECISE to production systems. We
anonymize the data so that all identifiable user attributes were
removed.

For the underlying search systems being evaluated, ESCI
experiments use the dataset’s inherent ranking, while our
application uses a hybrid of boosted BM25-based lexical
search and bi-encoder based semantic search.

Automated Annotator models M

For automated relevance judgment, we employ three models:
(1) Claude 3 Sonnet and (2) Claude 3 Haiku with custom
prompts incorporating uncertainty estimation, and (3) jina-
reranker-v1-turbo-en, an off-the-shelf cross-encoder model.
These models serve as synthetic annotators, providing rele-
vance scores and confidence estimates for PRECISE calcu-
lations.

For the LLM-based annotators, we prompted the model to
elicit uncertainty levels (“About Even”, “Slightly Better than
Even”, “Probably”, “Pretty Good Chance”, “Highly Likely”,
“Almost Certain”’) which are mapped to numerical scores in
[0.5, 1.0], with irrelevant predictions subtracting the mapped
score from 1.0 (detailed prompts are in the Appendix). We
apply isotonic regression calibration on the labelled set to
improve score reliability.

For evaluation, we compare two approaches: prob uses
average annotator probability scores across K ranks as the
Precision@K estimate, while bin binarizes scores using a 0.5
threshold before calculating Precision@K against the K-hot
prediction vector.

Analysis of PRECISE-PPI Estimator

We first demonstrate the effectiveness of PRECISE by using
the public ESCI dataset to analyse the correctness of our
approach under controlled conditions where ground-truths
for the unlabelled set are known.

Variance Reduction with Small Labelled Sets A key find-
ing is that the PRECISE-PPI estimator provides substantial
variance reduction even with as few as n = 30 gold anno-
tations. Figure 3 shows the sampling distributions for Pre-
cision@4 estimation using different estimators; we observe
that our approach demonstrates significantly tighter confi-
dence intervals compared to gold-only estimates (red curves),
indicating more reliable performance estimates. We also ob-
serve that LLM-only estimates are significantly biased for
both prob and bin approaches.
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Figure 3: Estimated Precision@4 on ESCI. We show sampling distributions and 95% CI for different estimators, calculated by
sampling 50 gold datasets from ESCI. We consider samples of size n = 30 (top row) and n = 100, using N = 60, 000 unlabeled
queries. Claude 3 Sonnet is used as the calibrated annotation model. The vertical yellow line denotes the true relevance, averaged
across the entire ESCI dataset. PRECISE-PPI estimator (green) achieves variance reduction compared to the estimator using
only Gold data (red), with superior reduction at higher A values. Both these approaches are significantly less biased than the

LLM-only annotators prob (cyan) and bin (cerulean).

Estimator Unlb. Size Bias ({) Std. Error (|)

Gold - 1.04 4.45
M w1 1w
e T S
a0 40

Table 1: Effect of unlabeled set size on PRECISE-PPI esti-
mator performance with n = 30 gold samples. True Preci-
sion@4 = 89.73%. The 100x configuration provides optimal
trade-off.

Optimal Unlabeled Set Size  Our analysis reveals that large
unlabeled sets are not necessary for effective estimation using
PRECISE. Table 1 shows the cost-performance trade-offs
for different unlabeled set sizes. With n = 30 gold samples,
using 100x unlabeled data (3,000 unlabelled queries) pro-
vides nearly identical performance to using 2000x unlabeled
data (60,000 queries), while reducing costs by 95%. This
finding is crucial for practical deployment, as it significantly
reduces the computational cost of our approach.

Cost-Performance Frontier Table 3 summarizes the
cost-performance trade-offs for different annotator models.

Claude 3 Sonnet achieves the best bias-variance trade-off
with a bias of only 0.70 points and standard error of 3.50,
improving on gold-only estimation for the n = 30 case. No-
tably, Claude 3 Haiku provides competitive performance at
significantly lower cost ($79 vs $946 for Sonnet).

LLM Judge Calibration We find that LLM-based evalua-
tors (Claude 3 Sonnet and Haiku) demonstrate well-calibrated
behavior, with most true positives receiving scores > 0.5 and
true negatives receiving scores < 0.4. In contrast, the cross-
encoder model (Jina Turbo) shows poor calibration with many
true positives receiving low scores. Detailed calibration anal-
ysis is provided in the Appendix.

The calibration quality directly impacts PPI performance:
calibrated models provide better variance reduction and more
accurate estimates. This suggests that prompt-based uncer-
tainty elicitation in LLMs is more effective than using off-the-
shelf cross-encoder confidence scores for PPI applications.

The calibration analysis (in Appendix) provides additional
insights into evaluator selection and the importance of uncer-
tainty quantification for effective PPI implementation.

Production Deployment Results

Having validated PRECISE on the ESCI dataset, we demon-
strate its real-world applicability by deploying an LLM-based
query reformulation system in the production e-commerce
search application and measuring its impact. We mention the
evaluation prompt in the Appendix.



Production Search

Estimator K=1 K=2 K=4

Reformulation V1 Reformulation V2

K=1 K=2 K=4 K=1 K=2 K=4

STRICT RELEVANCE (PARTIAL = IRRELEVANT)

60.60% 60.00% 61.10%
Sonnet-Unlb (prob) 74.90% 74.90% 74.90%
Sonnet-Unlb (binary) 83.10% 82.70% 82.00%
PRECISE-PPI (A=0.95) 55.10% 54.60% 55.30%

Gold (n=100)

64.60% 64.10% 65.710% 62.60% 62.60% 63.60%
7740% 77.40% 77.40% 77.60% 77.60% 77.60%
85.20% 84.50% 84.00% 85.50% 84.80% 84.30%
59.50% 59.10% 60.30% 59.70% 59.20% 59.40%

LOOSE RELEVANCE (PARTIAL = RELEVANT)

94.20% 93.70% 93.00%
Sonnet-Unlb (prob) 74.90% 74.90% 74.90%
Sonnet-Unlb (binary) 83.10% 82.70% 82.00%
PRECISE-PPI (A=0.95) 91.40% 90.40% 89.50%

Gold (n=100)

97.30% 97.80% 97.60% 96.30% 97.30% 97.30%
77.40% 77.40% 77.40% 7T77.60% 77.60% 77.60%
85.20% 84.50% 84.00% 85.50% 84.80% 84.30%
94.30% 94.50% 94.20% 94.00% 94.10% 94.30%

Table 2: Precision@K Offline Metric Estimation for Query Reformulation. Note: we anonymize these numbers by introducing a

randomly-selected value as the baseline.

Estimator Bias (]) Std.Error () Cost (USD)
Gold 1.04 4.45 -
Claude 3 Sonnet 0.70 3.50 945.6
Claude 3 Haiku 0.29 3.86 79.3
Jina Turbo 0.51 4.26 <5.0

Table 3: Cost-performance comparison for Precision@4 es-
timation on ESCI with N = 60, 000 unlabeled queries and
n = 30 gold samples. We measure Bias and Std. Error of the
estimator as performance metrics.

Query Reformulation System Design We developed two
LLM-based query reformulation treatments using Claude 3
Sonnet with few-shot Chain-of-Thought prompting to address
the query defects identified in our analysis:

* Treatment 1 (T1): Basic query reformulation performing
Hinglish-to-English translation and correction of gram-
matical errors and typos (V1 Prompt).

¢ Treatment 2 (T2): Enhanced reformulation with Indian
ethnic context preservation (e.g., retaining “kurti”, “’sal-
war kameez”) (V2 Prompt) plus rule-based word-level
correction for cache misses.

Both treatments target Head and Body queries (covering
75% of search volume), while excluding Tail queries due to
their uniqueness (the vast majority are searched only once)
and prohibitive size (several million queries). The system pro-
cesses queries through a reformulation cache for fast realtime
processing.

PPI-Based Pre-Deployment Evaluation Prior to produc-
tion deployment, we applied PRECISE to estimate Preci-
sion@K improvements across treatments. Using our instance-
level formulation on 8,500 Body queries (n=100 gold,
N=8,400 unlabeled with 84x ratio), we obtained rapid evalu-
ation results within 2 hours of human annotation by domain
experts.

Table 2 shows the Precision@K estimates of various ap-

proaches. Under strict relevance criteria, T1 demonstrates
clear improvements over the control (C) across all K values
(+13.4% relative improvement in Precision@4). T2 shows
similar but slightly lower gains. Notably, our PPI estimates
predicted T1 would outperform T2, which was later con-
firmed in production deployment.

This offline analysis using PRECISE provided crucial
confidence for deployment decisions, demonstrating that our
method accurately estimates true performance improvements
even when the relative differences between treatments are
subtle.

Production A/B Test Results We conducted an A/B exper-
iment comparing Control (C), Treatment 1 (T1), and Treat-
ment 2 (T2) across the entire application. The A/B test results
validated estimates from our method and demonstrated sig-
nificant business impact from the T1 treatment, which was
finally deployed.

Business Impact Validation The production deployment
results presented in Table 4 demonstrate significant busi-
ness impact across all key application metrics, validating
our PRECISE-based estimates: T1 achieved superior per-
formance compared to both the control and T2, exhibiting
a 407bps improvement in daily business-as-usual sales. No-
tably, customer purchasing behavior improved with a 90bps
increase in orders per customer, while the average selling
price increased by 137bps, indicating that customers were
successfully discovering higher-value products through im-
proved query reformulation. Treatment 2 showed positive but
comparatively weaker improvements with a 174bps increase
in daily sales, confirming our method’s ability to accurately
predict relative treatment preference.

Search Quality Improvements The query-level analysis
presented in Table 5 reveals consistent improvements in
search quality metrics for Treatment 1 across all measured di-
mensions. Most notably, T1 achieved a 571bps improvement
in click-through rates for reformulated queries, accompanied
by a 304bps increase in clicks per query session, indicating
enhanced user engagement with search results.



Metric T1 T2
Avg. orders per customer +90 bps  +42 bps
Avg. add-to-cart per customer +6 bps +5 bps
BAU Daily Sales +407 bps  +174 bps
Avg. Sale Price +137bps  +11 bps

Table 4: Application-level business impact metrics from an
equal-allocation A/B test comparing two query reformulation
approaches. Treatment 1 (T1) applies query reformulation on
Head and Body queries, while Treatment 2 (T2) uses rule-
based correction. Results show improvements in basis points
(bps) across key business indicators, with T1 consistently
outperforming T2 (bolded values indicate best performance).

Metric T1 T2

ALL CORRECTED QUERIES
(CTR) Click-through rate +571 bps  +426 bps
(CPQ) Clicks per query session  +304 bps  +93 bps
(CPC) Clicks per customer +404 bps +174 bps
Avg. Browse Depth +782bps +614 bps

HINGLISH QUERIES

(CTR) Click-through rate +77bps  -154 bps
(CPQ) Clicks per query session  +406 bps  -259 bps
(CPC) Clicks per customer +494 bps  -233 bps

Avg. Browse Depth +579 bps +214 bps

Table 5: Search quality metrics comparing two treatments
(T1 and T2) against baseline. Results show improvements in
basis points (bps) across key search experience indicators. T1
consistently outperforms T2 across all metrics (bolded values
indicate best performance). For Hinglish queries specifically,
T1 shows positive gains while T2 shows negative impact on
several metrics.

Perhaps most significantly, the results demonstrate im-
proved search engagement: customers browsed 7.82% deeper
into search pages and clicked more per query session, sug-
gesting that reformulated queries better captured user intent
and reduced the need for query refinement. For Hinglish
queries, T1 demonstrated particularly strong performance
with 579bps improvement in browsing depth and 494bps in-
crease in clicks per customer, validating the effectiveness of
our Hinglish-to-English translation approach.

These improvements are particularly noteworthy given that
T1 represents a relatively simple reformulation strategy com-
pared to the more sophisticated T2 treatment, highlighting the
counterintuitive finding that basic translation and error correc-
tion can outperform more complex contextual preservation
approaches.

Economic Impact and Scalability The deployment
demonstrated exceptional economic viability with signifi-
cant return on investment. The implementation required a
one-time reformulation cost for millions of Head and Body
queries, resulting in substantial annualized revenue improve-
ments that yielded a several-fold return on investment. Exam-

ples of the query reformulations produced by each treatment
are provided in the Appendix.

The deployment success has enabled expansion to addi-
tional query types and search improvements, demonstrating
the practical scalability of PPI-guided ML deployment in
real-world e-commerce environments.

Lessons Learned During Development,
Deployment, and Maintenance

Throughout the development and deployment process, several
lessons were learned:

1. PRECISE enables rapid deployment decisions. The
A/B test demonstrated that PRECISE-PPI based esti-
mation can be completed in 2 hours of domain expert
annotation versus weeks for traditional approaches. Our
offline estimates correctly predicted treatment preference
(T1 > T2 > Control) and relative performance magni-
tudes, which were subsequently validated in production
A/B testing.

2. Cultural context preservation requires domain exper-
tise. Treatment 2’s enhanced prompting with Indian ethnic
context (preserving terms like “kurti”, ’salwar kameez”)
initially appeared superior in offline analysis but was out-
performed by simpler Treatment 1 in production. This
counterintuitive finding suggests that basic translation and
error correction can be more effective than complex con-
textual preservation, highlighting the importance of A/B

testing to validate PRECISE-guided decisions.

3. PRECISE plateaus with unlabeled data size. Increas-
ing unlabeled data from 10x to 2000x the gold set size
showed diminishing returns. With n=30 gold samples, us-
ing 100x unlabeled data (3,000 queries) provided nearly
identical performance to 2000x unlabeled data (60,000
queries) while reducing costs by 95%. This suggests that
investing in more gold data is more beneficial than scaling
unlabeled data beyond 100x.

4. Calibration is critical for LLM-based judges. Our ex-
periments showed that calibrated relevance scores us-
ing isotonic regression consistently outperformed uncali-
brated scores across all judge models. Even with as few
as 30 gold datapoints, calibration provided better PPI esti-
mates with lower variance. LLM-based evaluators (Claude
3 Sonnet/Haiku) demonstrated well-calibrated behavior
with most true positives receiving scores > 0.5, while
cross-encoder models (Jina Turbo) showed poor calibra-
tion with many true positives receiving low scores < 0.4.

5. Model choice significantly impacts cost-performance
tradeoffs. Claude 3 Haiku achieved comparable perfor-
mance to Sonnet (bias: 0.29 vs 0.70, standard error: 3.86
vs 3.50) at 12x lower cost ($79 vs $946 for 60k queries).
Off-the-shelf cross-encoder models showed poor calibra-
tion and barely improved variance compared to gold-only
estimation, making prompt-based uncertainty elicitation
in LLMs more effective than cross-encoder confidence
scores for PPI applications.
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Figure 4: Calibration comparison across LLM evaluator models. Left: Claude 3 Sonnet (well-calibrated), Center: Claude 3
Haiku (moderately calibrated), Right: Jina Turbo (poorly calibrated). Blue bars represent true positives, red bars represent true

negatives.

Conclusion

We presented PRECISE, a statistical framework that signif-
icantly reduces the human annotation burden in evaluating
ranking systems by combining minimal human judgments
with LLM-based assessments.

Our approach achieves reliable metric estimation using
as few as 100 human-annotated queries while correcting for
inherent LLM biases. Through our novel formulation using
sparse K-hot vectors and rank-level decomposition, we made
prediction-powered inference computationally tractable for
large-scale ranking evaluation.

The success of PRECISE opens up new possibilities for
efficient, scalable evaluation of information retrieval systems
while maintaining high confidence in the resulting metrics.
As LLM capabilities continue to advance, we expect frame-
works like PRECISE (and more generally, PPI-style estima-
tion) to become increasingly valuable in both research and
production environments.

Future Work

Several promising directions remain for future work. We
describe a few of them below:

1. The reliance on a “gold” (human-labelled) set is the ma-
jor bottlenecks of any estimation method. Instead, LLM-
generated synthetic datasets can provide “silver” labels
which may still be usable for estimation (Kowshik, Di-
vekar, and Malik 2024; Divekar and Durrett 2024).

2. Extending PRECISE to handle dynamic corpus updates,
where new documents are continuously added to the re-
trieval system, would enhance its practical utility in pro-
duction environments. Recent approaches in generative
retrieval over evolving corpora (Zhang et al. 2025) high-
light the need for statistically robust metrics that can adapt
without full re-annotation.

3. Multi-turn conversational search and multi-modal re-
trieval provide an alternate scope for investigating the
framework’s applicability to sub-example level estimates.

Evaluating these complex modalities often requires intri-
cate user simulation or comprehensive multi-modal bench-
marks (Fu et al. 2023), presenting unique challenges for
bias correction in metric estimation.

4. Another promising direction involves developing methods
to combine judgments from multiple LLMs with differ-
ent strengths and biases. Ensembling LLM judges has
been shown to align better with human preferences than
single-model evaluators (Zheng et al. 2023b), potentially
leading to more robust assessments within the PRECISE
framework.

5. Finally, adapting the framework for online evaluation set-
tings where relevance assessments need to be generated in
real-time would broaden its applicability. Doubly robust
estimation for online ranking (Oosterhuis 2023) shares
theoretical grounds with LLM bias and could offer a path-
way toward real-time, bias-corrected metric inference.

LLM-as-a-Judge Calibration Analysis

Here, we provide a detailed analysis of the calibration proper-
ties of different LLM judge models used in our experiments.

Calibration Methodology

We evaluate calibration by examining the distribution of con-
fidence scores assigned by each judge model to true posi-
tive (actually relevant) and true negative (actually irrelevant)
query-document pairs. In an ideally calibrated system, all ac-
tually relevant pairs should receive scores close to 1.0, while
irrelevant pairs should receive scores close to 0.0.

LLM Judges

Claude 3 Sonnet Claude 3 Sonnet demonstrates excel-
lent calibration behavior. Nearly all true positives receive
scores > (.5, with the majority concentrated at higher con-
fidence levels (0.8-1.0). True negatives are well-separated,
with most receiving scores < 0.4. This clear separation be-
tween relevant and irrelevant items contributes to the model’s
effectiveness in PPI estimation.



Claude 3 Haiku Claude 3 Haiku shows slightly weaker
calibration compared to Sonnet, with some true positives
receiving lower scores (0.6-0.8 range). However, the overall
calibration is still reasonable, with most true positives above
0.5 and most true negatives below 0.4. The reduced cali-
bration quality compared to Sonnet may explain its slightly
higher standard error in PPI estimation.

Cross-Encoder Model

Jina-reranker-vl-turbo-en The Jina Turbo cross-encoder
shows poor calibration, with a high proportion of true posi-
tives receiving scores < 0.4. While true negatives are well-
calibrated (correctly receiving low scores), the systematic un-
derestimation of relevance for actually relevant pairs severely
impacts the model’s utility for PPI. This poor calibration
explains why Jina Turbo barely improves variance compared
to gold-only estimation.

Impact on PPI Performance

The calibration quality directly correlates with PPI effective-
ness:

* Better-calibrated models (Claude 3 Sonnet, Haiku) pro-
vide substantial variance reduction and accurate bias cor-
rection

* Poorly calibrated models (Jina Turbo) offer minimal
improvement over gold-only estimation

 Calibration correction using isotonic regression on the
gold set improves performance for all models, but the
improvement is most pronounced for poorly calibrated
models

Recommendations

Based on our calibration analysis, we recommend:

1. Prefer LLM judges with prompted uncertainty over off-
the-shelf cross-encoder models

2. Apply calibration correction (e.g., isotonic regression)
when possible, especially for weaker models

3. Evaluate calibration quality before deploying any LLM
judge in a PPI-style framework

4. Consider cost-performance trade-offs: Claude 3 Haiku
provides good calibration at significantly lower cost than
Sonnet

Relevance Annotation Prompt

Table 6 presents the relevance judge prompt used in our
production deployment.
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LLM-as-a-Judge Relevance Annotation Prompt

<role>

You are an expert product judge who works for e-commerce website
Amazon. Your job is to determine if a particular product is
relevant to a search query asked by Amazon customers. This is
to improve the experience and safety of the customers. Make
sure you output XML when asked.

</role>

<task>

The customer’s search query is mentioned in
<search-query></search-query> XML tags. The product details
are mentioned in <product-details></product-details> XML
tags.

1. First, output your thoughts in <thinking></thinking> XML
tags. Here, enter your justification and reasoning for your
evaluation.

2. Secondly, output your evaluation of the relevance of the
product to the search query. Your evaluation of the response
should be output in <evaluation></evaluation> XML tags. Conduct
your evaluation of the relevance between the search query and
product as follows:

- Relevant: If the product details exactly or partially relates
to the search query, output <evaluation>Relevant</evaluation>.
Consider partial matches which fulfill some but not all
criterion in the search query, should be considered Relevant.
- Irrelevant: If the product details does not have any match to
the search query, output <evaluation>Irrelevant</evaluation>.
Unrelated products and complementary products which do not
match the search query, should be considered Irrelevant.

3. Finally, provide your best guess for how confident you are
that your evaluation is correct in <confidence></confidence>
XML tags. Give ONLY your confidence, no other words or
explanation. Provide your confidence label as exactly following
expressions (ordered from least confident to most confident):
- About Even

- Slightly Better than Even

- Probably

- Pretty Good Chance

- Highly Likely

- Almost Certain

</task>

Table 6: LLM-as-a-Judge Relevance Annotation Prompt
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