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Abstract

Fine-grained classification is a challenging task that in-
volves identifying subtle differences between objects within
the same category. This task is particularly challenging in
scenarios where data is scarce. Visual transformers (ViT)
have recently emerged as a powerful tool for image classi-
fication, due to their ability to learn highly expressive rep-
resentations of visual data using self-attention mechanisms.
In this work, we explore Semi-ViT, a ViT model fine tuned
using semi-supervised learning techniques, suitable for sit-
uations where we have lack of annotated data. This is par-
ticularly common in e-commerce, where images are readily
available but labels are noisy, nonexistent, or expensive to
obtain. Our results demonstrate that Semi-ViT outperforms
traditional convolutional neural networks (CNN) and ViTs,
even when fine-tuned with limited annotated data. These
findings indicate that Semi-ViTs hold significant promise for
applications that require precise and fine-grained classifi-
cation of visual data.

1. Introduction

In recent years, the development of deep neural networks
has led to significant advancements in the field of com-
puter vision [16]. One such architecture is the Visual Trans-
former (ViT) [5], which utilizes the self-attention mech-
anism to model long-range dependencies between image
features. Unlike traditional convolutional neural networks
(CNN) [7, 10, 26], which rely on handcrafted hierarchical
feature extraction, visual transformers can learn global spa-
tial relationships among image features in a more efficient
and effective manner. This has enabled them to outper-
form state-of-the-art methods on various visual recognition
tasks [18]. However, in real-world scenarios labeled data
can be scarce and expensive to obtain. Therefore, semi-
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supervised learning (SSL) [40] has emerged as a powerful
technique for leveraging unlabeled data to improve the per-
formance of deep neural networks. CNN methods have sig-
nificantly advanced the field [1, 3, 15, 27, 32] while ViT ar-
chitectures have only recently demonstrated promising re-
sults [2, 33] with SSL.

In this paper, we investigate the effectiveness of SSL
when used with ViT architectures. Specifically, we utilize
the Semi-ViT architecture [2] to conduct transfer learning
for fine-grained classification of e-commerce data. The use
of e-commerce data presents a unique advantage for SSL as
unlabeled images are readily available. However, the labels
associated are often noisy or absent altogether. Tradition-
ally, this issue has been addressed through the use of manual
curators, which can be costly and predominantly accessible
for established marketplaces. In emerging markets, such as
in Latin America, the scarcity of reliable labelled data poses
an even greater challenge.

We collect three datasets from e-commerce data contain-
ing labeled and unlabeled images. We perform fine-grained
classification on the neck style of a vest (Vest Neck Style),
the pattern of a phone case (Phone Case Pattern), and the
pattern of aprons and food bibs (Apron Food Bib Pattern).
Each of the datasets contains 29K, 30K, and 33K labeled
images, and 227K, 287K, 284K unlabeled images, respec-
tively. Labels were gathered using crowd-sourced methods.
We fine tune three different models, the well-known ResNet
architecture [10], a ViT, and a Semi-ViT architecture; all of
them pretrained on ImageNet [4]. For the ViT and Semi-
ViT architectures, we additionally set different labeled data
regimes where they are additionally fine-tuned using 25%,
50%, and 75% of the labeled data for each of the datasets.
In total, we train 9 different models for each task.

2. Related Work
Visual Transformers Visual Transformers (ViT) have re-
cently achieved state-of-the-art performance in many com-
puter vision tasks [5, 19, 31]. They adapt self-attention



mechanisms to the image domain, allowing to better cap-
ture long-range dependencies and contextual information.
ViTs have been extended with knowledge distillation [29],
using token-level and patch-level transformer layers [8], or
progressively downsampling the image [37]. A comprehen-
sive review on ViTs can be found in the work of Khan et
al. [11]. In this work, we explore and compare the per-
formance of ViT architectures and traditional CNNs, fine-
tuned with supervised and semi-supervised techniques for
fine-grained classification.

Transfer Learning Transfer learning leverages pre-
trained models and adapts them to new domains [13, 22,
25, 41]. Yosinski et al. [35, 36] investigate the transferabil-
ity of features learned by deep neural networks on differ-
ent tasks, demonstrating their effectiveness. Transfer learn-
ing has also been applied for object detection and seman-
tic segmentation [6], and in unsupervised domain adapta-
tion [30]. We use fine tuning methods in ResNet, ViT, and
Semi-Vit [2] architectures to perform fine-grained classifi-
cation in three different datasets.

Semi-Supervised Learning Semi-Supervised Learning
(SSL) uses labeled and unlabeled data to improve model
performance when labeled data is scarce [14, 34, 38]. It
leverages intelligent data augmentation techniques paired
with consistency regularization to improve performance [1,
20,32,39]. Other approaches rely on pseudo-labelling [17],
teacher-student models [24, 28], ensembles [15], or adver-
sarial training [12, 21]. We apply SSL to e-commerce im-
ages, where labeled data is expensive, but we can retrieve
a large amount of unlabeled samples. We demonstrate the
applicability of SSL and showcase its efficacy at reducing
the need for labeled data.

3. Data Collection
Our goal is to compare the performance of traditional

CNNs and ViT architectures on e-commerce images that al-
low us to have large amounts of unlabelled data. However,
labelled data is noisy or nonexistent, therefore we would
need crowd-sourcing tasks to label them.

We use three different datasets to perform fine-grained
classification: predict the neck style of vests (Vest Neck
Style), the pattern of phone cases (Phone Case Pattern), and
the pattern of aprons and food bibs (Apron Food Bib Pat-
tern). All images come from Amazon’s marketplace. To
label images we rely on Amazon Mechanical Turk. Each
labelled image has answers from three different people. We
consider an image as labelled if two or more labels are the
same, otherwise, we would discard the labels and consider
it unlabelled. To ensure the quality of the annotations, we
only allowed workers that previously had passed a prelim-

DATASET SUMMARY

Dataset Labelled Unlabelled Classes

VestNeckStyle 29K 227K 13
PhoneCasePattern 37K 287K 21
ApronFoodBibPattern 39K 284K 26

Table 1. Summary of the number of images that are labelled, un-
labelled, and the number of classes for each of the datasets that
we collected from e-commerce data. All the datasets have a class
named as other. This class is used to label images that do not be-
long to the aforementioned data i.e., in Vest Neck Style, an image
showing something that is not a vest.

Figure 1. Examples of the images collected for our datasets. From
top to bottom, we can see examples for Vest Neck Style, Phone
Case Pattern, and Apron Food Bib Pattern.

inary test task. Table 1 shows a summary on the dataset
statistics. An example of images we collected for each of
the three tasks can be seen in Figure 1.

4. Methodology
Our goal is to compare the performance of CNNs and

modern ViT architectures. In addition, we will also study
the influence of semi-supervised learning with ViT (Semi-
ViT) during training using all available labeled data, and
investigate the influence of more restrictive data regimes in
ViT’s and Semi-ViT’s performance.

Models We employ three different models: A CNN (a
ResNet [10]) model, a ViT [5] model, and a semi-ViT
model [2] (a ViT model trained also with SSL). For the



CNN we use the well-know ResNet18 [10] model. This
model has shown remarkable performance across different
computer vision tasks while being the less parameter-heavy
ResNet model. In the ViT architecture, we have relied on
Masked Autoencoders (MAE) [9] ViT-Base model. Fol-
lowing a similar approach to ResNet, this is the most pa-
rameter efficient MAE. For the Semi-ViT model [2], we
also use the same MAE ViT-Base model. During the semi-
supervised stage, an exponential moving average (EMA)-
Teacher framework is adopted together with a probabilistic
pseudo mixup [39] method that allows for better regular-
ization by interpolating unlabeled samples and their pseudo
labels.

Data The labeled data is separated into train, validation,
and test. Since we gather e-commerce data, the underlying
label distribution is unknown, the train and validation sets
do not have a uniform distribution of the labels across im-
ages. We sample the test set to have the same number of
images for all labels. The distribution of the data is roughly
75%, 15%, and 10% for train, validation, and test respec-
tively.

Fine tuning All three models have been pre-trained on
ImageNet [4]. We fine-tune every model on 100% of the
labeled samples. For ViT and Semi-ViT, we also experi-
ment tuning them with 25%, 50%, and 75% of the training
data. The validation and test sets remains the same to have
a fair comparison of performance. For Semi-ViT, we fine
tune and later perform semi-supervised learning using both
labeled and unlabelled data. We orchestrate the fine tun-
ing of all models using SageMaker g5 instances, we rely
on their hyper-parameter tuner with Bayesian search [23]
configured to search hyper-parameters around the original
values given in the training code of the three models. On
Average, training a model took 1h for ResNet, 4h for ViT,
and 12h for Semi-ViT.

5. Results
In this Section we present the results obtained by the

fine-tuned models in all three tasks. Table 2 shows results
for all models in the Vest Neck Style, Phone Case Pattern,
and Apron Food Bib Pattern task. For each, we show the
percentage of data used for training, the accuracy top-1
(Acc@1) and top-5 (Acc@5), and the cross entropy (CE)
error. All values are obtained in the test set.

We observe that the Semi-ViT model outperforms others
in all three tasks, showcasing the benefits of SSL to achieve
better generalization. On the other hand, ResNet18 is the
model that obtains worst performances. Other interesting
finding is that, in general, the performance of ViT/50% is on
par with Semi-ViT/25%. Thus, using half the amount of an-

VEST NECK STYLE

Method Acc@1 Acc@5 Loss (CE)
ResNet18/100% 79.736 98.775 0.615
ViT/100% 81.244 99.246 0.631
ViT/75% 81.056 98.586 0.661
ViT/50% 80.584 98.586 0.704
ViT/25% 76.343 96.418 0.811

Semi-ViT/100% 85.297 99.246 0.549
Semi-ViT/75% 83.129 98.963 0.573
Semi-ViT/50% 81.433 98.115 0.637
Semi-ViT/25% 81.244 97.455 0.679

PHONE CASE PATTERN

Method Acc@1 Acc@5 Loss (CE)
ResNet18/100% 72.931 97.034 0.923
ViT/100% 79.005 98.613 0.685
ViT/75% 77.810 98.135 0.732
ViT/50% 77.571 97.513 0.758
ViT/25% 74.175 97.131 0.871

Semi-ViT/100% 81.540 98.613 0.618
Semi-ViT/75% 80.010 98.374 0.664
Semi-ViT/50% 79.149 98.422 0.700
Semi-ViT/25% 76.279 97.465 0.805

APRON FOOD BIB PATTERN

Method Acc@1 Acc@5 Loss (CE)
ResNet18/100% 73.766 95.598 0.987
ViT/100% 78.079 97.688 0.739
ViT/75% 78.301 97.821 0.757
ViT/50% 75.056 96.754 0.869
ViT/25% 69.898 94.309 1.070

Semi-ViT/100% 81.814 97.732 0.663
Semi-ViT/75% 81.547 97.866 0.685
Semi-ViT/50% 77.234 97.110 0.815
Semi-ViT/25% 73.499 94.620 0.981

Table 2. Results using the ResNet18, ViT, and Semi-ViT models
with different data regimes on the three datasets obtained from e-
commerce sources (images) and crowd-sourced experiments (la-
bels). We can see how Semi-ViT, the visual transformer model
that also uses SSL techniques, obtains the best performance for all
tasks (green highlighted). Moreover, we can see that the Semi-ViT
model with scarce data regimes (e.g., 50% of the training data),
which is a common scenario in e-commerce, obtain performances
comparable to ViT models trained with double the amount of data.

notated data. Similarly, the performance of Semi-ViT/50%,
is on par or superior to ViT/100%.



5.1. Performance per class

If we analyze the performance per class for each of the
three tasks using Semi-ViT/100%, we observe that the mod-
els, in general, achieve high values of accuracy top-1, usu-
ally above 90% per label. We find performances below 50%
on the labels that are underrepresented in the training set. In
the case of the Apron Food Bib Pattern task, three worse per-
forming labels: paisley, patched, and trellis; show an accu-
racy top-1 of 18.18%, 11.11%, 40.00% respectively. How-
ever, they only represent 0.17%, 0.07%, and 0.56% of the
training data. In the case of Phone Case Pattern, we also
observe paisley as an underperforming class, nevertheless,
in training it only represented 0.71% of the data. One in-
teresting case, is the inconclusive label, representing phone
cases that could not be labeled in any other class. The model
shows a 45.78% accuracy top-1 even when the class repre-
sents 3.17% of the samples. We argue that this low perfor-
mance comes due to the fact that this is a ”wildcard” class
in which we may find high degrees of variability between
images. Last, for Vest Neck Style, we only find the band
collar label to have low performance (17.65%), this label
only represented 0.82% of the training data.

5.2. Performance by marketplace

When downloading e-commerce data, we also stored
metadata such as the marketplace where this image was lo-
cated. In Latin America, we obtained data from Mexico and
Brazil. For Vest Neck Style, we found the accuracy top-1 of
the Semi-ViT/100% model to be on par to other regions,
with 85.18% in Mexico, and 82.92% in Brazil. For Phone
Case Pattern, the accuracy top-1 is 80.56% in Mexico, and
60.00% in Brazil. In this case, we found significantly less
images in Brazil than in others. Therefore, we have few
images to train, resulting in the model not properly learn-
ing the characteristics of the images for this marketplace.
For Apron Food Bib Pattern we find accuracy top-1 to be
78.88% in Mexico, and 81.91% in Brazil; on par with other
marketplaces.

5.3. Influence on the amount of unlabeled data

Since we use e-commerce data, obtaining new unlabeled
images is a fairly easy process. Therefore, we investigate
the effect of having additional unlabeled data in models’
performance. We selected the Semi-ViT model using 50%
of the labeled data (Semi-ViT/50%), and train it using SSL
with 200%, 300%, and 400% of the unlabeled data. In the
end, we have additionally collected a total of 1139K unla-
beled images for the Apron Food Bib Pattern task.

We observe in Table 3 that adding extra unlabeled im-
ages yields results that improve performance in the case of
200% and 300% of the available unlabeled images. How-
ever, it seems to collapse for 400% where performance de-
creases and is on par with using 100% of the unlabeled data.

ADDITIONAL UNLABELED

Unlabeled Acc@1 Acc@5 Loss (CE)

284K (100%) 77.234 97.110 0.815
569K (200%). 78.301 97.110 0.786
854K (300%) 79.146 96.843 0.781
1139K (400%) 77.679 96.843 0.801

Table 3. Results for Apron Food Bib Pattern using the Semi-
ViT/50% model and increasing the amount of unlabeled data. We
can see how the performance in terms of accuracy and loss im-
proves while adding more data. However, it collapses with 400%
of unlabeled data. We hypothesize that this may be due to the per-
centage of labeled data being significantly smaller with respect to
unlabeled data, thus, unlabeled data driving the training and not
allowing to further generalize.

We argue that the labeled data represents a very small per-
centage compared to unlabeled data, thus, the latter data
drives model’s training yielding worse performance.

6. Conclusion
We have run experiments with three models: ResNet,

ViT, and Semi-Vit on three datasets that were collected from
e-commerce data. The use of e-commerce data provided a
realistic setting to assess the impact of SSL with a combi-
nation of labeled and unlabeled images. Our experiments
showed that Semi-ViT can effectively leverage the benefits
of SSL to improve the performance in fine-grained clas-
sification tasks compared to other architectures. We can
see how Semi-ViT obtains accuracy values similar to ViT
models that have trained with double the amount of data.
Those results are shared across datasets showing promise
to reduce the need for labeled data while maintaining high
performance. Nevertheless, there are open venues worth
exploring: One could aim to integrate the noise from the
crowd-sourced labels into the loss function to create more
robust models, or explore the creation of SSL techniques
for multi-attribute models in which all three tasks would be
performed by a single model.
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