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Abstract

We consider simulating quantum systems on digital quantum computers. We show that the
performance of quantum simulation can be improved by simultaneously exploiting the commu-
tativity of Hamiltonian, the sparsity of interactions, and the prior knowledge of initial state.
We achieve this using Trotterization for a class of correlated electrons that encompasses various
physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard
model. We estimate the simulation error by taking the transition amplitude of nested commu-
tators of Hamiltonian terms within the η-electron manifold. We develop multiple techniques for
bounding the transition amplitude and the expectation of general fermionic operators, which

may be of independent interest. We show that it suffices to use O
(
n5/3

η2/3
+ n4/3η2/3

)
gates to

simulate electronic structure in the plane-wave basis with n spin orbitals and η electrons up to a
negligible factor, improving the best previous result in second quantization while outperforming
the first-quantized simulation when η = Ω (

√
n). We also obtain an improvement for simulating

the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost
saturated, giving a nearly tight Trotterization of correlated electrons.
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1 Introduction

Simulating quantum systems to model their dynamics and energy spectra is one of the most promis-
ing applications of digital quantum computers. Indeed, the difficulty of performing such simulations
on classical computers led Feynman [22] and others to propose the idea of quantum computation.
In 1996, Lloyd proposed the first explicit quantum algorithm for simulating local Hamiltonians
[29]. Since then, various quantum simulation algorithms have been developed [7–10, 14, 17, 23, 31–
34, 38], with potential applications in simulating condensed matter physics, quantum chemistry,
and quantum field theories.

Lloyd’s original work considered the simulation of k-local Hamiltonians. This was subsequently
extended to the study of d-sparse Hamiltonians [1, 7], which provides a framework that highly
abstracts the design of quantum simulation algorithms from the actual physical settings. However,
despite their theoretical values, algorithms for sparse Hamiltonian simulation do not always provide
the fastest approach for simulating concrete physical systems. Hamiltonians arising in practice often
have additional features beyond sparseness, such as locality [23, 45], commutativity [18, 19, 42], and
symmetry [46], that can be used to improve the performance of simulation. Besides, prior knowledge
of the initial state [5, 20, 21, 41] and the norm distribution of Hamiltonian terms [14, 16, 24, 36]
have also been proven useful for quantum simulation.

We show that a combination of these features, in particular the sparsity, commutativity, and
initial-state information, can be used to give an even faster simulation. We achieve this improvement
for a class of correlated electronic Hamiltonians, which includes many physically relevant systems
such as the plane-wave-basis electronic-structure Hamiltonian and the Fermi-Hubbard model. Our
approach uses Trotterization—by far the most widely applied method in experimental realizations
of quantum simulation.

Our analysis proceeds by computing the transition amplitude of simulation error within the
η-electron manifold. To this end, we develop multiple techniques for bounding the transition
amplitude/expectation of a general fermionic operator, which may be of independent interest. For
an n-spin-orbital electronic-structure problem in the plane-wave basis, our result improves the best
previous result in second quantization [5, 19, 34] up to a negligible factor while outperforming
the first-quantized result [3] for η = Ω (

√
n). We also obtain an improvement for simulating the

Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated,
giving a nearly tight Trotterization of correlated electrons.

1.1 Combining sparsity, commutativity, and initial-state information

Sparsity can be used to improve quantum simulation in multiple ways. A common notion of d-
sparsity concerns the target Hamiltonian itself, where each row and column of the Hamiltonian con-
tains d nonzero elements accessed by querying quantum oracles. As aforementioned, this provides
an abstract framework for designing efficient simulation algorithms and is versatile for establishing
lower bounds [7], although it sometimes ignores other important properties of the target system,
such as locality, commutativity, and symmetry. Another notion of sparsity, closely related to our
paper, considers the interactions between the underlying qubits or modes [11, 39, 48]. The sparsity
of interactions does not in general imply the underlying Hamiltonian is sparse, but it provides a
tighter bound on the number of terms in the Hamiltonian and may thus be favorable to quantum
simulation.

Trotterization and its alternative variants [17, 19, 24, 33, 38] provide a simple approach to
quantum simulation and are by far the only known approach that can exploit the commutativity of
Hamiltonian. Indeed, in the extreme case where all the terms in the Hamiltonian commute, we can
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simultaneously diagonalize them and apply the first-order Lie-Trotter formula S1(t) without error.
Previous studies have also established commutator error bounds for certain low-order formulas [43]
and specific systems [18, 42]. An analysis of a general formula Sp(t) is, however, considerably more
difficult and has remained elusive until the recent proof of the commutator scaling of Trotter error
[19].

A different direction to speeding up quantum simulation is to exploit the initial-state informa-
tion. The error of quantum simulation is commonly quantified in previous work by the spectral-
norm distance, which considers all possible states in the underlying Hilbert space. But if the state
is known to be within some subspace throughout the simulation, then in principle this knowledge
could be used to improve the analysis. For instance, quantum simulation in practice often starts
with an initial state in the low-energy subspace of the Hamiltonian, so a worst-case spectral-norm
analysis will inevitably overestimate the error. To address this, recent studies have considered
a low-energy projection on the simulation error and provided improved approaches, using either
Trotterization [5, 20, 21, 41] or more advanced quantum algorithms [30], that can be advantageous
when the energy of initial state is sufficiently small.

Ideally, the sparsity of interactions, the commutativity of Hamiltonian, and the prior knowledge
about the initial state can be combined to yield an even faster quantum simulation. This combina-
tion, however, appears to be technically challenging to achieve. Indeed, the state-of-the-art analysis
of Trotterization represents simulation error in terms of nested commutators of Hamiltonian terms
with exponential conjugations [19, Theorem 10]. This error representation is versatile for computing
the commutator scaling of Trotter error, but it yields little information about the energy of initial
state. To the best of our knowledge, the only previous attempt to address this problem was made
by Somma for simulating bosonic Hamiltonians [41], whose solution unfortunately suffers from a
divergence issue. Instead, we combine the sparsity, commutativity and the initial-state information
to give an improved simulation of a class of correlated electrons.

1.2 Simulating correlated electrons

Simulating correlated electrons has emerged as one of the most important applications of digital
quantum simulation [6]. The first efficient quantum algorithm for simulating electronic Hamil-
tonians is developed by Aspuru-Guzik et al. [2] using phase estimation; later developments have
dramatically reduced the cost through various techniques [15, 35].

Here, we consider simulating the following class of correlated electrons by Trotterization:

H = T + V :=
∑
j,k

τj,kA
†
jAk +

∑
l,m

νl,mNlNm, (1)

where A†j and Ak are the fermionic creation and annihilation operators, Nl are the occupation-
number operators, τ and ν are coefficient matrices, and the summation is over n spin orbitals. The
specific definitions of these fermionic operators are given in Section 2.2. We say the interactions
are d-sparse if there are at most d nonzero elements within each row/column of τ and ν. This
model represents various systems arising in physics and chemistry, including the electronic-structure
Hamiltonians in the plane-wave basis [5] and the Fermi-Hubbard model [20, 26].

To apply Trotterization, we need to express the Hamiltonian as a sum of elementary terms, each
of which can be directly exponentiated on a quantum computer; see Section 2.1 for a review of this
algorithm. For the electronic Hamiltonian (1), it suffices to consider the two-term decomposition
H = T +V , as the exponentials of T and V can be directly implemented using various quantum cir-
cuits. For instance, all the terms in V commute with each other so e−itV =

∏
l,m e

−itνl,mNlNm , where
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each e−itνl,mNlNm corresponds to a two-qubit gate under the Jordan-Wigner transformation. On the
other hand, exponential e−itT can be implemented by diagonalization, i.e., e−itT = Ue−i

∑
λ`N`U †,

where U can be efficiently implemented using Givens rotations [27, 40]. In cases where τ and ν
are translationally invariant τj,k = τj+q,k+q, νl,m = νl+q,m+q, we can implement e−itT using the fast
fermionic Fourier transform [5] and a related circuit implementation exists for e−itV [34].

We now apply a pth-order Trotterization Sp(t) to approximate the evolution of the electronic
Hamiltonian (1) for time t. We prove the following bound on the error of this approximation.

Theorem 1 (Fermionic-seminorm of Trotter error). Let H =
∑

j,k τj,kA
†
jAk +

∑
l,m νl,mNlNm be a

correlated-electronic Hamiltonian (1) with n orbitals, which we simulate using a pth-order product
formula Sp(t). Then,∥∥Sp(t)− e−itH

∥∥
η

= O
(

(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η
2tp+1

)
. (2)

Furthermore, if the interactions are d sparse,∥∥Sp(t)− e−itH
∥∥
η

= O
(

(‖τ‖max + ‖ν‖max)p−1 ‖τ‖max ‖ν‖max d
p+1ηtp+1

)
. (3)

Here, ‖·‖ is the spectral norm, ‖·‖max is the max-norm denoting the largest matrix element in
absolute value, and

‖X‖η := max
|ψη〉,|φη〉

|〈φη|X|ψη〉| (4)

is the fermionic seminorm for number-preserving operator X, where |ψη〉, |φη〉 are quantum states
with η electrons.

This theorem follows from an inductive estimate of the fermionic seminorm of nested commu-
tators of Hamiltonian terms, and will be formally proved in Section 3 and Section 4. Note that in
order to use prior knowledge of the initial state, we have considered the fermionic seminorm ‖·‖η
of Trotter error with respect to the η-electron manifold. This seminorm is closely related to the
other metrics used by previous work to quantify the impact of initial-state information to quantum
simulation [5, 20, 21, 41]; see Section 2.3 for a detailed discussion. The resulting bound depends
on the number of electrons η, as well as the spectral norm ‖τ‖, the max-norm ‖τ‖max , ‖ν‖max, and
the sparsity d of interactions, but there is no dependence on the total number of spin orbitals n.
This improves over previous work [19, Theorem D.5] where an explicit n-scaling seems unavoidable.
Meanwhile, other prior estimates of the fermionic seminorm [5, Appendix G] [20, Theorem 13] did
not exploit the commutativity of Hamiltonian and would introduce an addition factor of ηp in the
Trotter error bound. Our result thus improves the performance of simulation by combining the
initial-state information, the interaction sparsity, and the commutativity of Hamiltonian.

A common issue with the Trotterization algorithm is that existing analyses can be very loose for
simulating specific physical systems. However, we address this with the following theorem, which
shows that the asymptotic scaling of our bound is nearly tight.

Theorem 2 (Tightness). For s, w > 0, there exists a correlated-electronic Hamiltonian H =

T + V =
∑

j,k τj,kA
†
jAk +

∑
l,m νl,mNlNm such that

‖τ‖ = s, ‖ν‖max = w,
∥∥ [T, . . . [T︸ ︷︷ ︸

p

, V ]]
∥∥
η

= Ω (spwη) ,
∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T ]]
∥∥
η

= Ω ((wη)p s/n) . (5)
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In addition, for u,w > 0 and positive integer 1 ≤ d ≤ η, there exists a d-sparse correlated-electronic
Hamiltonian such that

‖τ‖max = u, ‖ν‖max = w,
∥∥ [T, . . . [T︸ ︷︷ ︸

p

, V ]]
∥∥
η

= Ω ((ud)pwη) ,
∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T ]]
∥∥
η

= Ω ((wd)p u) .

(6)

We prove the above theorem by choosing T =
∑n−1

j,k=0A
†
jAk and V =

∑n/2−1
l,m=0 NlNm and com-

puting their rescaled nested commutators, both in the original basis and the Fourier basis; see
Section 5 for the proof. Note that both commutators [T, . . . [T, V ]] and [V, . . . , [V, T ]] contribute to
the Trotter error, as well as other types of nested commutators which do not dominate the error
scaling (Proposition 1). Modulo an application of the triangle inequality, Theorem 2 then shows
that our bound (2) overestimates the Trotter error by a factor of nη in the worst case, whereas (3)
overestimates a factor of at most η. For p sufficiently large, this only contributes no(1) and ηo(1) to
the gate complexity, respectively. In this sense, we have given a nearly tight Trotterization of the
correlated-electronic Hamiltonians (1).

1.3 Main techniques

The proof of Theorem 1 relies on multiple approaches we develop for bounding the fermionic
seminorm, which may be of independent interest. Recall from (4) that the fermionic seminorm
‖X‖η for a number-preserving operator X is the maximum transition amplitude of X within the
η-electron manifold.

Our first approach is based on the observation that the fermionic seminorm of a number-
preserving X can be alternatively represented using the expectation of X†X, i.e.,

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = max
|ψη〉

√
〈ψη|X†X|ψη〉. (7)

We then upper bound X†X in terms of the particle-number operator N =
∑

j Nj , so that the
expectation scales with the number of electrons η = 〈ψη|N |ψη〉 instead of the total number of
spin orbitals. Assuming X is a sum of product of fermionic operators, we contract the summation
indices in X†X by either diagonalization or using an operator Cauchy-Schwarz inequality, followed
by an application of a Hölder-type inequality. We perform this procedure recursively to simplify
X†X. We detail this recursive approach in Section 3 and apply it to prove (2).

Our second approach starts by bounding the fermionic seminorm of X in terms of its maximum
expectation value:

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| ≤ 2 max
|ψη〉
|〈ψη|X|ψη〉| . (8)

We then expand X and |ψη〉 and give a combinatorial argument to count the number of “paths”
which have nonzero contribution to the expectation. We discuss this path-counting approach in
more detail in Section 4 and use it to prove (3). The underlying idea of path counting is conceptually
simple and may have potential applications in other contexts beyond the analysis of Trotter error.

1.4 Applications

The nearly tight Trotterization of electronic Hamiltonian (1) gives improved simulations of many
systems arising in condensed matter physics and quantum chemistry, including the plane-wave-basis
electronic-structure Hamiltonian and the Fermi-Hubbard model.
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The electronic-structure problem considers electrons interacting with each other and some fixed
nuclei. An efficient simulation of such systems could help understand chemical reactions, and
provide insight into material properties. Here, we consider representing the electronic-structure
Hamiltonian in the plane-wave basis [5]:

H =
1

2n

∑
j,k,µ

κ2µ cos[κµ · rk−j ]A†jAk

− 4π

ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2µ

Nj +
2π

ω

∑
j 6=k
µ6=0

cos[κµ · rj−k]
κ2µ

NjNk,
(9)

where ω is the volume of the computational cell, κµ = 2πµ/ω1/3 are n vectors of plane-wave frequen-
cies, µ are three-dimensional vectors of integers with elements in [−n1/3, n1/3], rj are the positions
of electrons; ζι are nuclear charges; and r̃ι are the nuclear coordinates. For this Hamiltonian, we
have

‖τ‖ = O

(
n2/3

ω2/3

)
, ‖ν‖max = O

(
n1/3

ω1/3

)
. (10)

Assuming a constant system density η = O (ω), Theorem 1 then implies that

∥∥Sp(t)− e−itH
∥∥
η

= O

((
n2/3

η2/3
+ n1/3η2/3

)p
n1/3η2/3tp+1

)
. (11)

This approximation is accurate for a short-time evolution. To simulate for a longer time, we divide
the evolution into r steps and apply Sp(t/r) within each step, obtaining

∥∥S r
p (t/r)− e−itH

∥∥
η

= O

((
n2/3

η2/3
+ n1/3η2/3

)p
n1/3η2/3

tp+1

rp

)
. (12)

Therefore,

r = O

((
n2/3

η2/3
+ n1/3η2/3

)(
n2/3η1/3

)1/p)
(13)

steps suffices to simulate for constant time and accuracy with a pth-order Trotterization. Imple-
menting each step using the approach of [34, Sect. 5] and choosing p sufficiently large, we obtain
the gate complexity (

n5/3

η2/3
+ n4/3η2/3

)
no(1). (14)

Up to the negligible factor no(1), this improves the best previous result in second quantization
while outperforming the first-quantized simulation when η = Ω (

√
n). See Table 1 for a gate-count

comparison. We discuss this in detail in Section 6.1.
We also consider applications to the Fermi-Hubbard model, which is believed to capture the

physics of some high temperature superconductors. This model is classically challenging to simulate
[28, 49], but is a potential candidate for near-term quantum simulation [12, 13]. We have

H = −s
∑
〈j,k〉,σ

(
A†j,σAk,σ +A†k,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (15)
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Algorithm/Bound n, η η = n

Interaction-picture (Ref. [3], first quantization) Õ
(
n

1
3 η

8
3

)
Õ
(
n3
)

Qubitization (Ref. [3], first quantization) Õ
(
n

2
3 η

4
3 + n

1
3 η

8
3

)
Õ
(
n3
)

Interaction-picture (Ref. [34], second quantization) Õ
(
n8/3

η2/3

)
Õ
(
n2
)

Trotterization (Ref. [5], second quantization)
(
n5/3η1/3 + n4/3η5/3

)
no(1) n3+o(1)

Trotterization (Ref. [19], second quantization)
(
n7/3

η1/3

)
no(1) n2+o(1)

Trotterization (Theorem 1, second quantization)
(
n5/3

η2/3
+ n4/3η2/3

)
no(1) n2+o(1)

Table 1: Comparison of our result and previous results for simulating the plane-wave-basis electronic struc-
ture with n spin orbitals and η electrons. We use Õ (·) to suppress polylogarithmic factors in the gate
complexity scaling.

where 〈j, k〉 denotes a summation over nearest-neighbor lattice sites and σ ∈ {0, 1}. The Fermi-
Hubbard model represents a lattice system with nearest-neighbor interactions and, according to
[18], can be simulated with O

(
n1+1/p

)
gates using a pth-order Trotterization for constant time

and accuracy. On the other hand, recent work [20] shows that Trotterization algorithm has gate
complexity O

(
nη1+1/p

)
when restricted to the η-electron manifold. By simultaneously using the

sparsity of interactions, the commutativity of Hamiltonian and the initial-state information, we
show in Section 6.2 that O

(
nη1/p

)
gates suffices, improving both Trotterization results for the

Fermi-Hubbard model.1

We conclude the paper in Section 7 with a discussion of the results and some open questions.

2 Preliminaries

In this section, we summarize preliminaries of this paper, including a discussion of the Trotterization
algorithm and their error analysis in Section 2.1, a brief summary of the second-quantization
representation in Section 2.2, and an introduction to the fermionic seminorm and their properties
in Section 2.3.

2.1 Trotterization and Trotter error

The Trotterization algorithm approximates the evolution of a sum of Hamiltonian terms using
exponentials of the individual terms. For the correlated-electronic Hamiltonian (1), it suffices to
consider a two-term Hamiltonian H = T + V , as the exponentials of T and V can be directly
implemented on a quantum computer. Then, the ideal evolution under H for time t is given by
e−itH = e−it(T+V ), which can be approximated by a pth-order product formula Sp(t), such as the
first-order Lie-Trotter formula

S1(t) := e−itT e−itV (16)

and (2k)th-order Suzuki formulas [44]

S2(t) := e−i
t
2
V e−itT e−i

t
2
V ,

S2k(t) := S2k−2(ukt)
2 S2k−2((1− 4uk)t) S2k−2(ukt)

2,
(17)

1Note however that this does not significantly improve the approach based on Lieb-Robinson bounds [23], since

that approach has gate complexity Õ (nt) when using a high-precision quantum simulation algorithm as subroutine.
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where uk := 1/(4 − 41/(2k−1)). This approximation is accurate when t is small. To simulate for a
longer time, we divide the evolution into r Trotter steps and apply Sp(t/r) with Trotter error at
most ε/r. We choose r sufficiently large so that the simulation error, as quantified by the spectral
norm

∥∥S r
p (t/r)− e−itH

∥∥, is at most ε.
Trotterization provides a simple approach to quantum simulation and is by far the only known

approach that can exploit the commutativity of Hamiltonian. Indeed, in the extreme case where
all the Hamiltonian terms commute, Trotterization can implement the exact evolution without
error. Previous studies have also established commutator analysis of Trotter error for systems with
geometrical locality and Lie-algebraic structures, as well as certain low-order formulas, including
the first-order Lie-Trotter formula

S1(t)− e−itH =

∫ t

0
dτ1

∫ τ1

0
dτ2 e

−i(t−τ1)He−iτ1T eiτ2T [iT, iV ] e−iτ2T e−iτ1V (18)

and the second-order Suzuki formula

S2(t)− e−itH =

∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 e

−i(t−τ1)He−i
τ1
2
V

·
(
e−iτ3T

[
−iT,

[
−iT,−iV

2

]]
eiτ3T + ei

τ3
2
V

[
i
V

2
,

[
i
V

2
, iT

]]
e−i

τ3
2
V

)
e−iτ1T e−i

τ1
2
V .

(19)
An analysis of the general case is, however, considerably more difficult and has remained elusive
until the recent proof of commutator scaling of Trotter error [19]. Here, we introduce a stronger
version of [19, Theorem 11] which can be proved by combining their Theorem 8, 9, and 10 without
invoking the triangle inequality.

Proposition 1 (Commutator representation of Trotter error). Let H = T + V be a two-term
Hamiltonian and Sp(t) be a pth-order product formula. Define H0 = V and H1 = T . Then,

Sp(t)− e−itH =

∫ t

0
dτ1

∫ τ1

0
dτ2

∑
γ,j

aγ,j(τ1, τ2)e
−i(t−τ1)H

·Uγ,j(τ1, τ2)
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
Wγ,j(τ1, τ2),

(20)

where γ goes over all (p + 1)-dimensional binary vectors and j goes through a constant range of
numbers (depending on the order p). Here, Uγ,j(τ1, τ2) and Wγ,j(τ1, τ2) are products of evolutions
of T and V with time variables τ1 and τ2 and aγ(τ1, τ2) are coefficients such that∫ t

0
dτ1

∫ τ1

0
dτ2 |aγ,j(τ1, τ2)| = O

(
tp+1

)
. (21)

As an immediate application, we find that the spectral norm of Trotter error scales with nested
commutators of the Hamiltonian terms, i.e.,∥∥Sp(t)− e−itH

∥∥ = O
(

max
γ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥ tp+1

)
. (22)

Note that the use of maxγ in place of
∑

γ does not change the scaling as γ only ranges over constant
number of binary vectors. This approximation is accurate for a short-time evolution. To evolve for
a longer time, we divide the evolution into r steps and apply the triangle inequality to obtain∥∥S r

p (t/r)− e−itH
∥∥ ≤ r ∥∥∥Sp(t/r)− e−i

t
r
H
∥∥∥ = O

(
max
γ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥ tp+1

rp

)
. (23)
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It thus suffices to choose

r = O

((
maxγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥)1/p t1+1/p

ε1/p

)
(24)

to ensure that the error of simulation is no more than ε.
The above analysis is versatile for computing the commutator dependence of Trotter error.

Unfortunately, the resulting bound does not use prior knowledge of the initial state and will in
particular be loose if the initial state lies within a low-energy subspace. On the other hand,
recent work of Şahinoğlu and Somma proposed a Trotterization approach for simulating low-energy
initial states but the commutativity of Hamiltonian was ignored in their analysis [21]. Here, we
address this by simultaneously using the commutativity of Hamiltonian and the prior knowledge of
initial state to improve quantum simulation of a class of correlated electrons. In the following, we
introduce preliminaries about the second-quantization representation (Section 2.2) and the notion
of fermionic seminorm (Section 2.3), on which our analysis will be based.

2.2 Second-quantization representation

In this section, we review several facts about the second-quantization representation that are rele-
vant to our analysis. We refer the reader to the book of Helgaker, Jørgensen, and Olsen [25] for a
detailed discussion of this topic.

We use the abstract Fock space to represent electronic Hamiltonians. Specifically, for a system
of n spin orbitals, we construct a 2n-dimensional Fock space span{|`1, `2, . . . , `n〉} spanned by the
binary vectors |`1, `2, . . . , `n〉, where `j = 1 represents that mode j is occupied and `j = 0 otherwise.
General vectors in the Fock space, denoted by |ψ〉 or |φ〉, are then given by linear combinations of
these orthonormal basis vectors. We define the η-electron subspace as span{|`1, `2, . . . , `n〉,

∑
j `j =

η}. By considering all 0 ≤ η ≤ n, we obtain the decomposition

span {|`1, `2, . . . , `n〉} =

n⊙
η=0

span
{
|`1, `2, . . . , `n〉,

∑
j

`j = η
}
, (25)

where � denotes the orthogonal direct sum. We say that normalized vectors in the η-electron
subspace form the η-electron manifold and denote an arbitrary such vector by |ψη〉 or |φη〉.

The n elementary fermionic creation operators are defined through the relations

A†j |`1, `2, . . . , 0j , . . . , `n〉 = (−1)
∑j−1
k=1 `k |`1, `2, . . . , 1j , . . . , `n〉,

A†j |`1, `2, . . . , 1j , . . . , `n〉 = 0,
(26)

whereas the fermionic annihilation operators are defined by

Aj |`1, `2, . . . , 0j , . . . , `n〉 = 0,

Aj |`1, `2, . . . , 1j , . . . , `n〉 = (−1)
∑j−1
k=1 `k |`1, `2, . . . , 0j , . . . , `n〉.

(27)

The use of † is justified by the fact that A†j is indeed the Hermitian adjoint of Aj with respect to the

inner product in the Fock space. We also introduce the occupation-number operators Nj = A†jAj
and add them together to get the particle-number operator N =

∑n
j=1Nj .

Fermionic creation and annihilation operators satisfy the canonical anticommutation relations

A†jA
†
k +A†kA

†
j = AjAk +AkAj = 0, A†jAk +AkA

†
j = δj,kI, (28)
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where the Kronecker-delta function δj,k is one if j = k and zero otherwise. Applying these, we
obtain the following commutation relations of second-quantized fermionic operators.

Proposition 2 (Commutation relations of fermionic operators). The following commutation rela-
tions hold for second-quantized fermionic operators:

1.
[
A†lAm, A

†
j

]
= δj,mA

†
l ;

2.
[
A†lAm, Ak

]
= −δk,lAm;

3.
[
Nl, A

†
j

]
= δl,jA

†
j,
[
N,A†j

]
= A†j;

4. [Nl, Ak] = −δl,kAk, [N,Ak] = −Ak;

5. [Nl, Nm] = 0.

We say a fermionic operator is number-preserving if every η-electron subspace is invariant under
the action of this operator. Equivalently, operator X is number-preserving if and only if it commutes
with the particle-number operator, i.e., [N,X] = 0. Yet another equivalent definition is based on the
notion of η-electron projections: letting Πη be orthogonal projections onto the η-electron subspaces,
then X is number-preserving if and only if it commutes with every Πη, namely, [Πη, X] = 0. In the
matrix representation, X is block-diagonalized by the set of η-electron projections {Πη}.

A special example of number-preserving operator is the particle-number operator N , which acts
as a scalar multiplication by η within the η-electron subspace. Other examples include excitation

operators A†jAk, occupation-number operators Nl, and elementary exponentials e−it
∑
j,k τj,kA

†
jAk

that appear in the Trotterization algorithm. In fact, the following lemma shows that the set
of number-preserving operators are closed under linear combination, multiplication, Hermitian
conjugation, and taking limit.

Proposition 3 (Number-preserving operators as a closed †-subalgebra). The following operators
are respectively number-preserving:

1. λX + µY , if X and Y are number-preserving, and λ and µ are complex numbers;

2. XY , if X and Y are number-preserving;

3. X†, if X is number-preserving;

4. lim
i→∞

Xi, if Xi are number-preserving and the limit exists.

2.3 Fermionic seminorm

We now introduce the notion of fermionic seminorm, which we use to quantify the error of the
Trotterization algorithm that takes the prior knowledge of initial state into consideration.

For any number-preserving operator X and 0 ≤ η ≤ n, we define the fermionic η-seminorm as
the maximum transition amplitude within the η-electron manifold:

‖X‖η := max
|ψη〉,|φη〉

|〈φη|X|ψη〉| , (29)

where |ψη〉, |φη〉 are quantum states containing η electrons.2 When there is no ambiguity, we drop
the dependence on η and call ‖X‖η the fermionic seminorm of X. As the name suggests and the
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following proposition confirms, the fermionic seminorm is indeed a seminorm defined on the closed
†-subalgebra of number-preserving operators.

Proposition 4 (Seminorm properties). The following properties hold for the fermionic seminorm:

1. ‖λX‖η = |λ| ‖X‖η, if X is number-preserving and λ is a complex number;

2. ‖X + Y ‖η ≤ ‖X‖η + ‖Y ‖η, if X and Y are number-preserving;

3. ‖XY ‖η ≤ ‖X‖η ‖Y ‖η, if X and Y are number-preserving;

4. ‖I‖η = 1;

5. ‖UXW‖η = ‖X‖η, if U,X,W are number-preserving and U,W are unitary;

6.
∥∥X†∥∥

η
= ‖X‖η, if X is number-preserving;

Proof. We will only prove the third statement, as the remaining follow directly from the definition
of the fermionic seminorm. We consider

‖XY ‖η = max
|ψη〉,|φη〉

|〈φη|XY |ψη〉|

= max
|ψη〉,|φη〉

|〈φη|XΠηΠηY |ψη〉|

≤ max
|φη〉

∥∥∥ΠηX
†|φη〉

∥∥∥max
|ψη〉
‖ΠηY |ψη〉‖ ,

(30)

where the last step follows from the Cauchy-Schwarz inequality. To proceed, we optimize over
arbitrary state |ϕ〉 to get ∥∥∥ΠηX

†|φη〉
∥∥∥ = max

|ϕ〉

∣∣∣〈ϕ|ΠηX
†|φη〉

∣∣∣
= max
|ϕ〉
‖Πη|ϕ〉‖

∣∣∣∣ 〈ϕ|Πη

‖Πη|ϕ〉‖
X†|φη〉

∣∣∣∣
≤
∥∥∥X†∥∥∥

η
= ‖X‖η

(31)

assuming Πη|ϕ〉 6= 0, as the case Πη|ϕ〉 = 0 never leads to maximality. But on the other hand,

‖X‖η =
∥∥∥X†∥∥∥

η
= max
|φη〉,|ϕη〉

∣∣∣〈ϕη|X†|ψη〉∣∣∣
= max
|φη〉,|ϕη〉

∣∣∣〈ϕη|ΠηX
†|ψη〉

∣∣∣
≤ max
|φη〉,|ϕ〉

∣∣∣〈ϕ|ΠηX
†|ψη〉

∣∣∣ = max
|φη〉

∥∥∥ΠηX
†|φη〉

∥∥∥ ,
(32)

implying max|φη〉
∥∥ΠηX

†|φη〉
∥∥ = ‖X‖η. Similarly, we have max|ψη〉 ‖ΠηY |ψη〉‖ = ‖Y ‖η. This

completes the proof of the third statement.

2Note that it is possible to extend this to define ‖·‖η→ξ for operators that map the η-electron subspace to ξ-electron
subspace, although this is not needed in our analysis and will not be further pursued here.
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The fermionic seminorm, as defined in (29) by the maximum transition amplitude within an
η-electron manifold, provides a reasonable metric for quantifying the error of quantum simulation
with initial-state constraints. Indeed, a seminorm similar to our definition was used by Somma
[41] for analyzing quantum simulation of bosonic Hamiltonians. However, we point out that this
is not the only error metric that takes the prior knowledge of initial state into account. Recent
work [21] analyzed the low-energy simulation of k-local frustration-free Hamiltonians by computing
the spectral norm of Trotter error projected on the low-energy subspace. However, the following
proposition shows that these two error metrics are the same for fermionic systems.

Proposition 5 (Fermionic seminorm as a projected spectral norm). For number-preserving oper-
ator X, it holds that

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = ‖XΠη‖ . (33)

Proof. The underlying idea behind this proposition is already hinted in the proof of Proposition 4.
We have

max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = max
|ψη〉,|φη〉

|〈φη|ΠηXΠη|ψη〉|

≤ max
|ψ〉,|φ〉

|〈φ|ΠηXΠη|ψ〉| = ‖ΠηXΠη‖ .
(34)

But on the other hand,

‖ΠηXΠη‖ = max
|ψ〉,|φ〉

|〈φ|ΠηXΠη|ψ〉|

= max
|ψ〉,|φ〉

‖Πη|φ〉‖ ‖Πη|ψ〉‖
∣∣∣∣ 〈φ|Πη

‖Πη|φ〉‖
X

Πη|ψ〉
‖Πη|ψ〉‖

∣∣∣∣
≤ max
|ψη〉,|φη〉

|〈φη|X|ψη〉|

(35)

assuming Πη|φ〉 6= 0 and Πη|ψ〉 6= 0, as the zero vector will not lead to maximality. The proposition
then follows since number-preserving operator X commutes with the η-electron projection Πη.

Another common approach to quantify the simulation error is to take the expectation within
the η-electron subspace. This approach is used by previous work [5, 40] and appears to give a
natural metric when quantum simulation is used as a subroutine in phase estimation. We show
that this only differs from our definition (29) by at most a constant factor, reaffirming the fermionic
seminorm as a proper error metric for simulating fermionic systems.

Proposition 6 (Transition amplitude and expectation). For number-preserving operator X, the
following statements hold:

1. max|ψη〉,|φη〉 |〈φη|X|ψη〉| = max|ψη〉 |〈ψη|X|ψη〉|, if X is Hermitian;

2. max|ψη〉,|φη〉 |〈φη|X|ψη〉| = max|ψη〉
√
〈ψη|X†X|ψη〉;

3. max|ψη〉 |〈ψη|X|ψη〉| ≤ max|ψη〉,|φη〉 |〈φη|X|ψη〉| ≤ 2 max|ψη〉 |〈ψη|X|ψη〉|.

Proof. The first statement follows from the fact that ΠηXΠη is Hermitian and that the spectral
norm of a Hermitian operator is its largest eigenvalue in absolute value. For the second statement,

max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = ‖X‖η = ‖XΠη‖

=
√
‖ΠηX†XΠη‖

= max
|ψη〉

√
〈ψη|X†X|ψη〉.

(36)
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The first inequality of Statement 3 is trivial. For the second inequality, we apply the polarization
identity

〈φη|X|ψη〉 =
1

4

(
(〈φη|+ 〈ψη|)X (|φη〉+ |ψη〉)− (〈φη| − 〈ψη|)X (|φη〉 − |ψη〉)

− i (〈φη| − i〈ψη|)X (|φη〉+ i|ψη〉) + i (〈φη|+ i〈ψη|)X (|φη〉 − i|ψη〉)
) (37)

to obtain

|〈φη|X|ψη〉|

≤
max|ϕη〉 |〈ϕη|X|ϕη〉|

4

(
‖|φη〉+ |ψη〉‖2 + ‖|φη〉 − |ψη〉‖2 + ‖|φη〉+ i|ψη〉‖2 + ‖|φη〉 − i|ψη〉‖2

)
= 2 max

|ϕη〉
|〈ϕη|X|ϕη〉| ,

(38)
from which the claimed inequality follows by maximizing over |ψη〉 and |φη〉.

We now apply Proposition 1 to compute the fermionic seminorm of Trotter error, obtaining

∥∥Sp(t)− e−itH
∥∥
η

= O
(

max
γ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
. (39)

We find that the resulting error bound depends on the fermionic seminorm of nested commutators,
and the performance of quantum simulation can thus be potentially improved by simultaneously
exploiting the commutativity of Hamiltonian and the prior knowledge of initial state. However,
the main technical challenge here is to give a tight estimate of

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
, which has

not been addressed in previous literature. To this end, we develop two approaches for bounding
the expectation/transition amplitude of general fermionic operators in Section 3 and Section 4 to
prove our main result Theorem 1, establish the tightness of our bound in Section 5, and discuss
applications and further implications of our result in Section 6 and Section 7.

3 Bounding expectation of fermionic operators by recursion

In this section, we present the first approach for bounding the expectation of fermionic operators,
and thereby bounding the fermionic seminorm of Trotter error. We introduce in Section 3.1 the
main techniques used in our approach, including an operator Cauchy-Schwarz inequality, a diag-
onalization procedure, and a Hölder-type inequality for the expectation value. We then describe
our approach in detail and apply it to prove Eq. (2) of our main result Theorem 1. The proof is
based on induction: we analyze the base case in Section 3.2 and the inductive step in Section 3.3,
respectively.

3.1 Main techniques

Recall that the main technical challenge to estimate the simulation error of the electronic Hamil-
tonian (1) is to bound the fermionic seminorm

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
, where γ = 0, 1, H0 = V

and H1 = T . Applying the commutation relations in Proposition 2, we see that we need to analyze
a general fermionic operator of the form

X =
∑
j,k,l

wj,k,l · · ·A†jx · · ·Aky · · ·Nlz · · · (40)
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Our first approach starts by reexpressing the fermionic seminorm of X using expectation of
X†X:

‖X‖η = max
|ψη〉

√
〈ψη|X†X|ψη〉. (41)

We note that X†X is a positive semidefinite operator, and an upper bound of it with respect to the
partial ordering of positive semidefiniteness will therefore give a bound on the expectation value.
We achieve this by contracting the corresponding indices in X and X†, using either an operator
Cauchy-Schwarz inequality (Lemma 1) or diagonalization (Lemma 2).

Lemma 1 (Operator Cauchy-Schwarz inequality [37, Proposition 3.4]). For any finite lists of
operators {Bj} and {Cj} with the same cardinality, we have

−
∑
j,k

B†jC
†
kCkBj ≤

∑
j,k

B†jC
†
kCjBk ≤

∑
j,k

B†jC
†
kCkBj , (42)

where Hermitian operators are partially ordered according to the positive semidefiniteness.

Proof. We have

0 ≤
∑
j,k

(CkBj ∓ CjBk)† (CkBj ∓ CjBk)

=
∑
j,k

(
B†jC

†
kCkBj ∓B

†
kC
†
jCkBj ∓B

†
jC
†
kCjBk +B†kC

†
jCjBk

)
= 2

∑
j,k

B†jC
†
kCkBj ∓ 2

∑
j,k

B†jC
†
kCjBk.

(43)

This implies

±
∑
j,k

B†jC
†
kCjBk ≤

∑
jk

B†jC
†
kCkBj , (44)

from which the claimed inequality follows.

Lemma 2 (Diagonalization). For any finite list of operators {Bj} and Hermitian coefficient matrix
µ, we have

− ‖µ‖
∑
j

B†jBj ≤
∑
j,k

µj,kB
†
jBk ≤ ‖µ‖

∑
j

B†jBj , (45)

where Hermitian operators are partially ordered according to the positive semidefiniteness.

Proof. Since µ is Hermitian, we may diagonalize it to µ̃ by unitary transformation w as

µ = w†µ̃w, (46)

where µ̃ is a diagonal matrix with all eigenvalues of µ as the diagonal elements. We then define
B̃l :=

∑
k wl,kBk so that ∑

j,k

µj,kB
†
jBk =

∑
l

µ̃lB̃
†
l B̃l, (47)

which implies

− ‖µ‖
∑
l

B̃†l B̃l ≤
∑
j,k

µj,kB
†
jBk ≤ ‖µ‖

∑
l

B̃†l B̃l. (48)
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But
∑

l B̃
†
l B̃l has identity as the coefficient matrix which is invariant under a change of basis:∑

l

B̃†l B̃l =
∑
j

B†jBj . (49)

This completes the proof.

By applying Lemma 1 or Lemma 2, we can get a bound of X†X with respect to the partial
ordering of positive semidefiniteness, with one pair of the corresponding indices in X and X†

contracted. The following result then allows us to perform this contraction recursively to get a
desired bound on the expectation value.

Lemma 3 (Hölder-type inequality for expectation). For any finite lists of fermionic operators {Bj}
and {Ck} with the same cardinality,

max
|ψη〉
〈ψη|

∑
j

B†jC
†
jCjBj |ψη〉 ≤ max

|ψη〉
〈ψη|

∑
j

B†jBj |ψη〉max
k,|φξ〉
〈φξ|C†kCk|φξ〉, (50)

where we assume each Bj maps the η-electron subspace to the ξ-electron subspace. In terms of the
fermionic seminorm, we have∥∥∥∑

j

B†jC
†
jCjBj

∥∥∥
η
≤
∥∥∥∑

j

B†jBj

∥∥∥
η

max
k

∥∥∥C†kCk∥∥∥
ξ
. (51)

Proof. The claimed inequality follows from∥∥∥∑
j

B†jC
†
jCjBj

∥∥∥
η

=
∥∥∥∑

j

B†jΠξC
†
jCjΠξBj

∥∥∥
η

≤
∥∥∥∥∑

j

∥∥∥ΠξC
†
jCjΠξ

∥∥∥B†jBj∥∥∥∥
η

≤
∥∥∥∑

j

B†jBj

∥∥∥
η

max
k

∥∥∥ΠξC
†
kCkΠξ

∥∥∥
=
∥∥∥∑

j

B†jBj

∥∥∥
η

max
k

∥∥∥C†kCk∥∥∥
ξ
.

(52)

Using the above lemmas, we can now prove Eq. (2) of our main result Theorem 1 by induction.
We analyze the base case in Section 3.2 and the inductive step in Section 3.3.

3.2 Single-layer commutator

We now prove Eq. (2) of our main result Theorem 1 by induction. In the base case, we consider
simulating the correlated-electronic Hamiltonian (1) using the first-order formula S1(t). We know
from (18) that ∥∥S1(t)− e−itH

∥∥
η
≤ t2

2
‖[T, V ]‖η , (53)

where T =
∑

j,k τj,kA
†
jAk and V =

∑
l,m νl,mNlNm. Our goal is to show that

‖[T, V ]‖η = O
(
‖τ‖ ‖ν‖max η

2
)
. (54)
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To this end, we apply Proposition 2 to expand the single-layer commutator [T, V ] into linear
combinations of fermionic creation, annihilation, and occupation-number operators. We have

[T, V ] =
∑
j,k,l,m

τj,kνl,m

[
A†jAk, NlNm

]
=
∑
j,k,l,m

τj,kνl,mA
†
j [Ak, NlNm] +

∑
j,k,l,m

τj,kνl,m

[
A†j , NlNm

]
Ak

=
∑
j,k,m

τj,kνk,mA
†
jAkNm +

∑
j,k,l

τj,kνl,kA
†
jNlAk

−
∑
j,k,m

τj,kνj,mA
†
jNmAk −

∑
j,k,l

τj,kνl,jNlA
†
jAk.

(55)

At this stage, it is possible to directly bound the terms in the last equality using Lemma 1, Lemma 2,
and Lemma 3 from the previous subsection. However, we will further commute the occupation-
number operator in between the creation and annihilation operators, obtaining

[T, V ] =
∑
j,k,m

τj,kνk,mA
†
jNmAk +

∑
j,k

τj,kνk,kA
†
jAk +

∑
j,k,l

τj,kνl,kA
†
jNlAk

−
∑
j,k,m

τj,kνj,mA
†
jNmAk −

∑
j,k

τj,kνj,jA
†
jAk −

∑
j,k,l

τj,kνl,jA
†
jNlAk.

(56)

This additional commutation leads to an error bound with the same asymptotic scaling but a
slightly larger prefactor. The benefit is that the analysis can be directly extended to handle the
inductive step in the next subsection.

We now bound the asymptotic scaling for each of the six terms in the commutator expansion.

Proposition 7 (Structure of single-layer commutator). Let H = T + V =
∑

j,k τj,kA
†
jAk +∑

l,m νl,mNlNm be a correlated-electronic Hamiltonian (1). Then, the commutator [T, V ] has the
expansion (56), where

1.
∥∥∥∑j,k,m τj,kνk,mA

†
jNmAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

2.
∥∥∥∑j,k τj,kνk,kA

†
jAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η;

3.
∥∥∥∑j,k,l τj,kνl,kA

†
jNlAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

4.
∥∥∥∑j,k,m τj,kνj,mA

†
jNmAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

5.
∥∥∥∑j,k τj,kνj,jA

†
jAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η;

6.
∥∥∥∑j,k,l τj,kνl,jA

†
jNlAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2.

Proof. We describe the proof of the first two statements here. The remaining justifications proceed
in a similar way and are left to Appendix A.
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Letting X =
∑

j,k,m τj,kνk,mA
†
jNmAk, we have ‖X‖η =

√
‖X†X‖η. Now,

X†X =
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1Aj1A

†
j2
Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2 ,

(57)

where we have used the anti-commutation relation Aj1A
†
j2

+A†j2Aj1 = δj1,j2I. For the second term,

we define B†j1 =
∑

k1,m1
τ̄j1,k1 ν̄k1,m1A

†
k1
Nm1 and apply the operator Cauchy-Schwarz inequality

(Lemma 1):

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2

=−
∑
j1,j2

B†j1A
†
j2
Aj1Bj2 ≤

∑
j1,j2

B†j1A
†
j2
Aj2Bj1 =

∑
j1

B†j1NBj1

=
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1NNm2Ak2

=
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2N

−
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2 .

(58)

This implies

X†X ≤
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2N

=
∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

(∑
m1

ν̄k1,m1A
†
k1
Nm1

)(∑
m2

νk2,m2Nm2Ak2

)
N.

(59)

Note that
∑

j1
τ̄j1,k1τj1,k2 gives the (k1, k2) matrix element of τ †τ . Then, we define C†k1 =∑

m1
ν̄k1,m1A

†
k1
Nm1 and perform diagonalization (Lemma 2):

∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

(∑
m1

ν̄k1,m1A
†
k1
Nm1

)(∑
m2

νk2,m2Nm2Ak2

)

=
∑
k1,k2

(
τ †τ
)
k1,k2

C†k1Ck2 ≤
∥∥∥τ †τ∥∥∥∑

k1

C†k1Ck1

=
∥∥∥τ †τ∥∥∥∑

k1

∑
m1,m2

ν̄k1,m1νk1,m2A
†
k1
Nm1Nm2Ak1 .

(60)

Now that the indices k1 and k2 are contracted, we can apply the Hölder-type inequality for
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expectation (Lemma 3). To this end, we let D†k1 =
∑

m1
ν̄k1,m1A

†
k1
Nm1 and compute∥∥∥∥∥∥

∑
k1

∑
m1,m2

ν̄k1,m1νk1,m2A
†
k1
Nm1Nm2Ak1

∥∥∥∥∥∥
η

=

∥∥∥∥∥∥
∑
k1

A†k1D
†
k1
Dk1Ak1

∥∥∥∥∥∥
η

≤

∥∥∥∥∥∥
∑
k1

A†k1Ak1

∥∥∥∥∥∥
η

max
k1

∥∥∥D†k1Dk1

∥∥∥
η−1

.

(61)

The first factor can be directly bounded as∥∥∥∥∥∥
∑
k1

A†k1Ak1

∥∥∥∥∥∥
η

= ‖N‖η = η. (62)

For the second factor, we have

D†k1Dk1 =
∑
m1,m2

ν̄k1,m1νk1,m2Nm1Nm2 =
∑
m1,m2

ν̄k1,m1νk1,m2Nm1Nm2Nm1

≤ ‖ν‖2max

∑
m1,m2

Nm1Nm2Nm1 = ‖ν‖2maxN
2,

(63)

which implies ∥∥∥D†k1Dk1

∥∥∥
η−1
≤ ‖ν‖2max η

2. (64)

Combining (59), (60), (61), (62), and (64) establishes the first statement.

For the second statement, we let X =
∑

j,k τj,kνk,kA
†
jAk and compute

X†X =
∑

j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
Aj1A

†
j2
Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
Ak2 −

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
A†j2Aj1Ak2 .

(65)

Applying Lemma 1,

X†X ≤
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
Ak2 +

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
A†j2Aj2Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
Ak2 +

∑
j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
NAk2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
Ak2N

=
∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

 ν̄k1,k1νk2,k2A
†
k1
Ak2N.

(66)

Performing diagonalization using Lemma 2, we have

X†X ≤ ‖τ‖2
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1N. (67)
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Note that we could directly bound the above operators as ‖τ‖2 ‖ν‖2maxN
2 and thereby completes

the proof. But we choose to instead apply Lemma 3 so that the analysis can be directly extended
to analyze multilayer nested commutators. We have∥∥∥X†X∥∥∥

η
≤

∥∥∥∥∥∥‖τ‖2
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1N

∥∥∥∥∥∥
η

= ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1

∥∥∥∥∥∥
η

≤ ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

A†k1Ak1

∥∥∥∥∥∥
η

max
k1
‖ν̄k1,k1νk1,k1I‖η−1 ≤ ‖τ‖

2 ‖ν‖2max η
2.

(68)

The proof of the second statement is now completed. See Appendix A for the proof of the remaining
statements.

3.3 Multilayer nested commutators

We now analyze the error of simulating the correlated-electronic Hamiltonian (1) using a general
pth-order formula Sp(t). We know from (39) that∥∥Sp(t)− e−itH

∥∥
η

= O
(

max
γ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
, (69)

where H0 = V =
∑

l,m νl,mNlNm and H1 = T =
∑

j,k τj,kA
†
jAk. Our goal is to show that∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η

= O
(

(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η
2
)

(70)

for each multilayer nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
.

To this end, we assume that
[
Hγp , · · · [Hγ2 , Hγ1 ]

]
is expressed as a fermionic operator of the

form ∑
j,k,l

wj,k,l · · ·A†jx · · ·Aky · · ·Nlz · · · (71)

and analyze its commutator with either T or V . For the commutator with T , we have from
Proposition 2[

A†jAk, A
†
jx

]
= δk,jxA

†
j ,

[
A†jAk, Aky

]
= −δky ,jAk,

[
A†jAk, Nlz

]
= δk,lzA

†
jAk − δj,lzA

†
jAk. (72)

To develop some intuitions about these commutations, we introduce the notion of fermionic chain,
which refers to a product of fermionic operators that has a creation operator on the left and
an annihilation operator on the right. Then, the above commutations either extend an existing
fermionic chain (in the case where commutator is taken with A†jx or Aky), or create a new chain (in
the case where commutator is taken with Nlz). On the other hand, we can also apply Proposition 2
to compute the commutator with V :[

NlNm, A
†
jx

]
= δm,jxNlA

†
jx

+ δl,jxA
†
jx
Nm = δm,jxA

†
jx
Nl + δl,jxA

†
jx
Nm + δm,jxδl,jxA

†
jx
,

[NlNm, Akx ] = −δm,kxNlAkx − δl,kxAkxNm = −δm,kxNlAkx − δl,kxNmAkx − δm,kxδl,kxAkx .
(73)

Unlike the commutator with T , these commutations do not extend an existing chain or create a
new chain. Rather, their effect is to append V to an existing chain.

We now apply (72) and (73) iteratively to compute a general multilayer nested commuta-
tor

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
. We summarize the structure of the resulting operator in the following

proposition.
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Proposition 8 (Structure of multilayer nested commutators). Let H = T + V =
∑

j,k τj,kA
†
jAk +∑

l,m νl,mNlNm be a correlated-electronic Hamiltonian (1). Then, each
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
where

H0 = V and H1 = T is a linear combination of fermionic chains:

X =
∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (74)

Comment: add for some q < p. Here, each Bx,y either equals
∑

l νl,jxNl,
∑

m νjx,mNm, νjx,jxI,
or defines a fermionic subchain:

Bx,u =
∑
j̃,k̃

q̃∏
x̃=1

τ
j̃x̃,k̃x̃

q̃−1∏
x̃=1

δ
k̃x̃+1 ,̃jx̃

·A†
j̃q̃

q̃∏
x̃=1

∏
ỹ

B̃x̃,ỹ
∏
z̃

C̃x̃,z̃

A
k̃1
, (75)

similar to the definition of fermionic chain, except one and only one B̃x̃,ỹ equals νj̃x̃,jxI, νjx ,̃jx̃I, or

C̃x̃,z̃ equals ν
k̃x̃,jx

I, ν
jx,k̃x̃

I. Operators Cx,z are defined similarly. Furthermore, all operators Bx,y,
Cx,z and hence the entire chain X are number-preserving. It holds

‖X‖η ≤ ‖τ‖
q η

q∏
x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)
. (76)

Proof. We will analyze the structure of multilayer nested commutators by induction. In the base
case where p = 1, we have [Hγ2 , Hγ1 ] = [T, V ]. This commutator has the expansion (56), where
each term is indeed a fermionic chain and number-preserving. This completes the proof of the base
case.

Assuming the claim holds for the nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
, we now consider the

structure of
[
Hγp+2 , · · · [Hγ2 , Hγ1 ]

]
. By induction, this nested commutator is a linear combination

of either ∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
[
T,A†jq

] q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

[T,Bx,y]
∏
z

Cx,z

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

[T,Cx,z]

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
[T,Ak1 ] ,

(77)

21



or ∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
[
V,A†jq

] q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

[V,Bx,y]
∏
z

Cx,z

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

[V,Cx,z]

)
Ak1 ,

∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
[V,Ak1 ] .

(78)

In each case, we see from (72) and (73) that the result is again a fermionic chain. Specifically,

commutators
[
T,A†jq

]
and [T,Ak1 ] increase the “length” of the current fermionic chain from q to

q + 1; commutators [T,Bx,y] and [T,Cx,z] either create a fermionic subchain or give zero operator,
or they can be computed recursively when Bx,y and Cx,z are fermionic subchains; commutators[
V,A†jq

]
and [V,Ak1 ] do not increase the length q of the current fermionic chain, but they increase

the number of Bx,y and Cx,z by one; commutators [V,Bx,y] and [V,Cx,z] either give zero operator,
or they can be computed recursively if Bx,y and Cx,z are fermionic subchains. The claim about the
number preservation can be verified directly. This completes the inductive step.

It remains to bound ‖X‖η for an arbitrary fermionic chain X in (74). This can be done in a
similar way as in the proof of Proposition 7, using Lemma 1, Lemma 2, and Lemma 3. We leave
the detailed justification to Appendix B.

We now apply Proposition 8 to analyze each nested commutator
∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η
. We

already have the correct spectral-norm ‖τ‖ scaling from Proposition 8. To proceed, we need to
further bound each ‖Bx,y‖η−1 and ‖Cx,z‖η−1 separately. We have∥∥∥∑

l

νl,jxNl

∥∥∥
η−1

=

√∥∥∥∑
l1,l2

ν̄l1,jx1νl2,jx2Nl1Nl2

∥∥∥
η−1
≤ ‖ν‖max η,

∥∥∥∑
m

νjx,mNm

∥∥∥
η−1

=

√∥∥∥ ∑
m1,m2

ν̄jx1 ,m1νjx2 ,m2Nm1Nm2

∥∥∥
η−1
≤ ‖ν‖max η,

‖νjx,jxI‖η−1 ≤ ‖ν‖max

(79)

for Bx,y and similar estimates hold for Cx,z. In the case where Bx,y or Cx,z creates a fermionic sub-
chain, we can bound the subchain recursively using Proposition 8. In particular, we will introduce
a factor of ‖ν‖max η each time a subchain is created. This completes the proof of Eq. (2) of our
main result Theorem 1.

4 Bounding expectation of fermionic operators by path counting

We now present an alternative strategy for bounding the Trotterization error of Fermionic simula-
tion. We will illustrate this strategy by proving a bound for the d-sparse Fermionic Hamiltonian,

H = T + V =
∑
j,k

τj,kA
†
jAk +

∑
l,m

νl,mNlNm, (80)
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where each column and row of τ, ν has at most d non-zero elements. Recall from (39) that

∥∥Sp(t)− e−itH
∥∥
η

= O
(

max
γ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
, (81)

where H0 = V =
∑

l,m νl,mNlNm and H1 = T =
∑

j,k τj,kA
†
jAk. Hence to estimate the simulation

error of electronic Hamiltonian (1) using a general pth-order formula Sp(t), we need to bound the
fermionic seminorm ∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η
, (82)

where γp ∈ {0, 1}, H0 = V and H1 = T .

4.1 Path counting bound

Using Proposition 6, we can bound the transition amplitude between any two states by at most
two times the expectation value.∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η
≤ 2 max

|ψη〉
|〈ψη|

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
|ψη〉|. (83)

We now aim to bound the term

X = |〈ψη|
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
|ψη〉| (84)

for any |ψη〉. First, we write out the superposition of |ψη〉 in the second-quantization picture:

|ψη〉 =
∑

C∈{0,1}n,|C|=η

αC |C〉, (85)

where C is a configuration of the occupation number with η electrons, and we represent the number
of ones in C as |C|. We also define the following notations

µ0 = ν, µ1 = τ, h0jk = NjNk, h1jk = A†jAk. (86)

We can expand everything to give

X =

∣∣∣∣∣∣
∑

jp+1,kp+1

. . .
∑
j1,k1

∑
C1

∑
C2

α∗C1
αC2µ

γp+1

jp+1kp+1
. . . µγ1j1k1〈C1|

[
h
γp+1

jp+1kp+1
, . . .

[
hγ2j2k2 , h

γ1
j1k1

]]
|C2〉

∣∣∣∣∣∣ (87)

≤ ‖τ‖
∑p+1
q=1 γq

max ‖ν‖
∑p+1
q=1(1−γq)

max

∑
C1

∑
C2

|αC1 | |αC2 | × (88)

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∣∣∣〈C1|
[
h
γp+1

jp+1kp+1
, . . .

[
hγ2j2k2 , h

γ1
j1k1

]]
|C2〉

∣∣∣ , (89)

where C1, C2 are configurations of the occupation number with η electrons, and 〈j, k〉 only sum
over indices such that the corresponding µj,k 6= 0 (could be τ or ν depending on γ).

Using the commutation relations in Equation (72) and (73), we know that the nested commu-

tator
[
h
γp+1

jp+1kp+1
, . . .

[
hγ2j2k2 , h

γ1
j1k1

]]
can be written as a sum of

(−1)a . . . A†j . . . Ak . . . Nl . . . , (90)
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for some a ∈ {0, 1} and a sequence of Fermionic operators. We call each term a Fermionic path

P and write P B
(
h
γp+1

jp+1kp+1
, . . . , hγ1j1k1

)
if P is one of the terms in the expansion of the nested

commutator. If the nested commutator evaluates to zero, then we consider the set{
P such that P B

(
h
γp+1

jp+1kp+1
, . . . , hγ1j1k1

)}
(91)

to be an empty set. The detailed expansion of the nested commutator is presented in Proposition 8.
This allows us to make a further expansion to yield

X ≤ cτν
∑
C1

∑
C2

|αC1 | |αC2 |
∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) |〈C1|P |C2〉| , (92)

where cτν = ‖τ‖
∑p+1
q=1 γq

max ‖ν‖
∑p+1
q=1(1−γq)

max . We use the following proposition to characterize |〈C1|P |C2〉|.

Proposition 9. For any computational basis state |C〉, where C represents the second-quantized
configuration for whether an electron occupies each of the n sites, and Fermionic path

P = (−1)a . . . A†j . . . Ak . . . Nl . . . , (93)

for some a ∈ {0, 1} and a sequence of Fermionic operators. We have P |C〉 is a computational basis
state with some phase ±1 or P |C〉 = 0.

Proof. The proof follows from a simple induction. For the base case, we have P = (−1)a without
any Fermionic operator, so P |C〉 is a computational basis state with some phase ±1. Now we

consider the three cases: P = NlP
′, P = AkP

′, or P = A†jP
′. By induction, we have P ′|C〉 is a

computational basis state |C ′〉 with some phase ±1 or P ′|C〉 = 0. The latter is trivial. For the
former case, we go through the following three cases.

• If Nl is applied on |C ′〉, we check if site-l has an electron in configuration C ′. If site-l has an
electron, then Nl|C ′〉 = |C ′〉. If site-l does not have an electron, then Nl|C ′〉 = 0.

• If Ak is applied on |C ′〉, we check if site-k has an electron in configuration C ′. If site-k has
an electron, then Ak|C ′〉 will remove the site-k electron and add some phase according to the
rule given in Equation (27). If site-k does not have an electron, then Ak|C ′〉 = 0.

• If A†j is applied on |C ′〉, we check if site-j has an electron in configuration C ′. If site-j does not

have an electron, then A†j |C ′〉 will create an electron at site-j and add some phase according

to the rule given in Equation (26). If site-j does have an electron, then A†j |C ′〉 = 0.

Therefore, P |C〉 will be a computational basis state with some phases±1 or otherwise P |C〉 = 0.

Corollary 1. |〈C1|P |C2〉| is either 0 or 1.

Corollary 2. For any set S of configurations, we have
∑

C1∈S |〈C1|P |C2〉| ≤ ‖P |C2〉‖.

Next, we define a graph G = (V,E) where the vertices V are the second-quantized configurations
with η electrons, and the weighted adjacency matrix for the edges E is defined as

wC1,C2 =
∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) |〈C1|P |C2〉| . (94)
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The weight wC1,C2 counts the number of Fermionic paths that can take |C2〉 to |C1〉. Note that
this graph may contain self-loop (equivalent to wC1,C1 > 0) as there are Fermionic path that leaves
|C1〉 unchanged or simply add a phase of −1. We now define the degree of C2 as

deg(C2) =
∑
C1

wC1,C2 + wC2,C1

2
(95)

=
∑
C1

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

)
|〈C1|P |C2〉|+ |〈C2|P |C1〉|

2
(96)

=
∑
C1

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

)
|〈C1|P |C2〉|+

∣∣〈C1|P †|C2〉
∣∣

2
(97)

≤
∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

)
‖P |C2〉‖+

∥∥P †|C2〉
∥∥

2
, (98)

which is equivalent to counting how many Fermionic paths exist that do not evaluate to zero on
the initial state |C2〉. The last inequality follows from Corollary 2.

Lemma 4. For any symmetric, nonnegative matrix W ∈ Rk×k, we have∑
ij

Wijvivj ≤ max
i

∑
j

Wij , (99)

for all v ∈ Rk with vT v = 1.

Proof. Let us consider the eigenvector u1 corresponding to the largest eigenvalue λ1 of W . Because

u1 = argmax
u∈Rk,uTu=1

uTWu, (100)

we have vTWv ≤ uT1Wu1. Let us consider i∗ = argmaxj(u1)j . We can always multiply u1 by −1
and still remains as the eigenvector corresponding to eigenvalue λ1. Hence, we can always assume
(u1)i∗ > 0. Therefore, we have

uT1Wu1 = λ1 =
(Wu1)i∗

(u1)i∗
≤
∑

jWi∗j(u1)j

(u1)i∗
≤
∑
j

Wi∗j ≤ max
i

∑
j

Wij . (101)

This concludes the proof.

Using Lemma 4, we can now simplify the upper bound of X to obtain

X ≤ cτν
∑
C1

∑
C2

|αC1 | |αC2 |
∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) |〈C1|P |C2〉| (102)

= cτν
∑
C1

∑
C2

wC1,C2 |αC1 | |αC2 | (103)

= cτν
∑
C1

∑
C2

wC1,C2 + wC2,C1

2
|αC1 | |αC2 | (104)

≤ cτν max
C2

∑
C1

wC1,C2 + wC2,C1

2
(105)

≤ cτν max
C

deg (C) . (106)
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Hence the error of Fermionic simulation can be upper bounded by the maximum degree of the
graph G. Finally, we arrive at the following proposition by combining with Equation (98).

Proposition 10. We have the following path counting bound,∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
≤ cτν max

Cη
deg (Cη) , (107)

where the degree is defined as

deg (Cη) =
∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

)
1

2
(‖P |Cη〉‖+ ‖P †|Cη〉‖). (108)

Recall the following definitions, cτν = ‖τ‖
∑p+1
q=1 γq

max ‖ν‖
∑p+1
q=1(1−γq)

max . Cη is any one of the
(
n
η

)
second-

quantized occupation number configurations with η electrons. For all q = 1, . . . , p + 1, 〈jq, kq〉 sum
over indices jq, kq such that {

τjq ,kq 6= 0 if γq = 1,

νjq ,kq 6= 0 if γq = 0.
(109)

We use the following short-hand notation for local Fermionic terms: h0jk = NjNk, h
1
jk = A†jAk.

Finally, we denote P B
(
h
γp+1

jp+1kp+1
, . . . , hγ1j1k1

)
if

P = (−1)a . . . A†j . . . Ak . . . Nl . . . (110)

is one of the terms in the expansion of the nested commutator
[
h
γp+1

jp+1kp+1
, . . .

[
hγ2j2k2 , h

γ1
j1k1

]]
. We

refer to P as a Fermionic path.

4.2 Counting the number of Fermionic paths in d-sparse Hamiltonians

As an illustrative example, let us consider an upper bound of maxC deg(C) for d-sparse Hamilto-
nians. We will use the commutation relation in Equation (72) and (73), restated below[
A†jAk, A

†
jx

]
= δk,jxA

†
j ,

[
A†jAk, Aky

]
= −δky ,jAk,

[
A†jAk, Nlz

]
= δk,lzA

†
jAk − δj,lzA

†
jAk. (111)[

NlNm, A
†
jx

]
= δm,jxNlA

†
jx

+ δl,jxA
†
jx
Nm, [NlNm, Akx ] = −δm,kxNlAkx − δl,kxAkxNm. (112)

We start with an intuitive argument. For every q = 2, . . . , p+ 1, we have[
h
γq
jqkq

, . . .
[
hγ2j2k2 , h

γ1
j1k1

]]
=

∑
PB
(
h
γq−1
jq−1kq−1

,...,h
γ1
j1k1

)
[
h
γq
jqkq

, P
]
. (113)

Because P only contains Fermionic operator acting on sites j1, k1, . . . , jq−1, kq−1, from the commuta-
tion relation, we see that at least one of jq, kq must be equal to one of the indices j1, k1, . . . , jq−1, kq−1.
Furthermore, for every jq, there are at most d kq’s that have non-zero coefficient in τjq ,kq (for γq = 1)
or νjq ,kq (for γq = 0). Hence, we have the following bound∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) 1 ≤ O(ndp+1). (114)
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The n factor comes from the fact that only one index can freely choose between 1, . . . , n. And
for any two indices jq, kq, one of them has to be the same as the previous indices, while the other
one can only choose from the d indices as required when summing over 〈jq, kq〉. Hence we have
the dp contribution for the rest of the indices. Furthermore, we will later show that the rightmost
Fermionic operator in P will never be a creation operator A†. Hence, when we include the term
‖P |Cη〉‖, the Fermionic path P must begin with a Fermionic operator that acts on one of the η
sites with an electron in the configuration Cη. Therefore, we have∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) ‖P |Cη〉‖ ≤ O(ηdp+1). (115)

Similarly, we have the following bound∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) ‖P †|Cη〉‖ ≤ O(ηdp+1). (116)

Combining with Trotter simulation bound (39) and the path counting bound (107), we have ob-
tained the result ∥∥Sp(t)− e−itH

∥∥
η

= O
(
cτνd

p+1ηtp+1
)
. (117)

Finally, because 1 ≤
∑p+1

q=1 γq ≤ p, we also have

cτν = ‖τ‖
∑p+1
q=1 γq

max ‖ν‖
∑p+1
q=1(1−γq)

max ≤ (‖τ‖max + ‖ν‖max)p ‖τ‖max ‖ν‖max . (118)

This gives an overview for proving the scaling stated in Equation (3) of Theorem 1. We now present
a rigorous proof by induction.

Proposition 11. When each column and row of τ, ν has at most d non-zero elements, for any
constant integer p ≥ 1, we have∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) ‖P |Cη〉‖ ≤ O(ηdp+1). (119)

Proof. We will prove the following induction hypothesis on q = 2, . . . , p+ 1.

• All Fermionic path P will start with either N or A, but will never start with A† (we refer to
the rightmost operator as the starting point).

• All Fermionic path P will have at most q + 1 Fermionic operators.

• The total number of Fermionic path P is at most (Πq
z=22z)d

qn.

• The number of Fermionic path P that start with a Fermionic operator acting on site i is at
most (Πq

z=22z)d
q.

The base case q = 2 can be easily verified by noting that we only need to consider [T, V ] or [V, T ].
Using the commutation relations given in Equation (111) and (112), we can see that both cases
result in at most 4d2n different Fermionic paths and all start with either N or A. For every site
i, there are at most 4d2 Fermionic paths starting with site i. Furthermore, every Fermionic path
consists of 3 Fermionic operators. These results established the induction hypothesis (all four bullet
points) for the base case of q = 2.
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For every q > 2, we can use the induction hypothesis for q − 1 to prove the desired result. If
γq = 1, then we will be adding another commutator with T =

∑
jq ,kq

τjq ,kqA
†
jq
Akq . We can see that

all Fermionic path P B
(
h
γq
jqkq

, . . . , hγ1j1k1

)
comes from the expansion of

[A†jqAkq , P
′], ∀〈jq, kq〉, ∀P ′ B

(
h
γq−1

jq−1kq−1
, . . . , hγ1j1k1

)
. (120)

Note that the commutator of [X,Y1 . . . YK ] =
∑K

k=1 Y1 . . . Yk−1[X,Yk]Yk+1 . . . YK . Using this rule,
we can easily show that the induction hypothesis holds for q. First of all, if all the Fermionic

path P ′ B
(
h
γq−1

jq−1kq−1
, . . . , hγ1j1k1

)
start with either N or A, then all the Fermionic path P B(

h
γq
jqkq

, . . . , hγ1j1k1

)
will start with either N or A. This is because of the commutation relations:

[A†jAk, Akq ] = −δky ,jAk and
[
A†jAk, Nlz

]
= δk,lzA

†
jAk − δj,lzA

†
jAk. Furthermore, because P ′ have

at most (q − 1) + 1 = q Fermionic operators, the expansion of [A†jqAkq , P
′] will have at most q + 1

Fermionic operators. Using the fact that the commutation relation always create a delta function
between jq or kq with an existing index in P ′ and the fact that every jq connects to at most d kq’s
and every kq connects to at most d jq’s, there can only be 2dq different Fermionic paths for a fixed
P ′. Hence, there will be at most a total of

2dq ×

(
q−1∏
z=2

2z

)
dq−1n =

(
q∏
z=2

2z

)
dqn (121)

Fermionic paths for q. We now obtain an upper bound for the Fermionic paths starting from some
site i. If we take the commutator of A†jqAkq with a Fermionic operator that is not the starting
operator in P , then the starting operator is not affected. Because of the sparsity constraint and
the delta function created by the commutation relation in Equation (111), we have created at most

2d(q − 1)× more Fermionic paths starting with site i. Now if we take the commutator of A†jqAkq
with the starting operator Aky (for some index ky) in the Fermionic path P ′, then the starting
operator becomes Akq and we have an additional delta function δky ,jq . In this case, kq can start
from any site, but there will be at most d choices of jq, hence d choices of ky. This means we have
created at most 2d× more Fermionic paths starting with each site. Together, we have created at
most 2dq× more Fermionic paths starting with each site. This leads to an upper bound of

2dq ×

(
q−1∏
z=2

2z

)
dq−1 =

(
q∏
z=2

2z

)
dq (122)

Fermionic paths starting with each site. The inductive step for γq = 0 follows from a similar
argument. Hence, the induction hypothesis holds for q.

Performing the induction over q from 2 to p + 1 shows that the number of Fermionic paths
starting with site i is at most (

p+1∏
z=2

2z

)
dp+1 = O(dp+1). (123)

Because P start with either A or N , ‖P |Cη〉‖ would be nonzero if the starting Fermionic operator
acts on one of the η sites with an occupying electron in the configuration Cη. Hence there are at
most ηO(dp+1) Fermionic paths with non-zero ‖P |Cη〉‖. Finally, recall from Proposition 9 that
‖P |Cη〉‖ is either 0 or 1. Hence∑

〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
h
γp+1
jp+1kp+1

,...,h
γ1
j1k1

) ‖P |Cη〉‖ ≤ O(ηdp+1), (124)
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which is the desired bound on the number of Fermionic paths for d-sparse Hamiltonians.

5 Tightness

We have already established in Theorem 1 multiple bounds on the fermionic seminorm of Trotter
error. However, a common issue with the Trotterization algorithm is that its error estimate can
be very loose for simulating specific systems. Here, we prove Theorem 2 that demonstrates the
tightness of our analysis.

Specifically, we construct concrete examples of correlated-electronic Hamiltonian H = T + V
and lower-bound the fermionic seminorm of nested commutators: ‖[T, . . . [T, V ]]‖η in Section 5.1
and ‖[V, . . . [V, T ]]‖η in Section 5.2. We show that the results almost match the upper bounds in
Theorem 1. Since Trotter error depends on these nested commutators, this shows that our result
is nearly tight modulo an application of the triangle inequality.

5.1 Lower-bounding ‖[T, . . . [T, V ]]‖η
We construct the electronic Hamiltonian H = T + V , where

T =

n−1∑
j,k=0

A†jAk, V =

n
2
−1∑

u,v=0

NuNv. (125)

Comparing with the definition of correlated-electronic model (1), we see that the coefficient matrix
τ is an all-ones matrix with spectral norm ‖τ‖ = n, whereas ν contains an all-ones submatrix on
the top left corner with max-norm ‖ν‖max = 1. Our goal is to lower-bound the fermionic seminorm
‖[T, . . . [T, V ]]‖η.

Due to the complicated commutation relations between T and V , a direct computation of
[T, . . . [T, V ]] seems technically challenging. Instead, we perform a change of basis by applying the
fermionic Fourier transform

FFFT† ·A†j · FFFT =
1√
n

∑
l

e−
2πijl
n A†l , FFFT† ·Ak · FFFT =

1√
n

∑
m

e
2πikm
n Am. (126)

This gives

T̃ = FFFT† · T · FFFT = nN0,

Ṽ = FFFT† · V · FFFT =
1

n2

∑
j,k,l,m

n
2
−1∑

u=0

e
2πiu(k−j)

n

n
2
−1∑

v=0

e
2πiv(m−l)

n

A†jAkA
†
lAm.

(127)

We also define the η-electron states

|ψ̃η〉 =
|010 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉+ |100 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉√

2
, |φ̃η〉 =

|010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉+ i|100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉√
2

.
(128)

The following proposition shows that the above choice of operators and states almost saturates the
fermionic seminorm of nested commutators.
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Proposition 12. Define T̃ , Ṽ as in (127) and |ψ̃η〉, |φ̃η〉 as in (128). Then,

∣∣〈ψ̃η|
p︷ ︸︸ ︷[

T̃ , . . .
[
T̃ , Ṽ

]]
|ψ̃η〉

∣∣, p odd∣∣〈φ̃η| [T̃ , . . . [T̃︸ ︷︷ ︸
p

, Ṽ
]]
|φ̃η〉

∣∣, p even

 =
npη

π
+O

(
np + np−1η

)
. (129)

A proof of this proposition is given in Appendix C. By rescaling the Hamiltonian constructed
in (127), we can demonstrate the tightness of our bound as follows. For any s, w > 0, we define the
rescaled Hamiltonian

T =
s

n

n−1∑
j,k=0

A†jAk, V = w

n
2
−1∑

u,v=0

NuNv. (130)

Comparing with the definition of the correlated-electronic model (1), we see that ‖τ‖ = s and
‖ν‖max = w. The above proposition then shows that∥∥∥ [T, . . . [T︸ ︷︷ ︸

p

, V
]]∥∥∥

η
=
∥∥∥ [T̃ , . . . [T̃︸ ︷︷ ︸

p

, Ṽ
]]∥∥∥

η
= Ω (spwη) , (131)

where we have used the unitary invariance of the fermionic seminorm in the first equality. This
establishes the claimed tightness result (5) of Theorem 2.

Note that a similar example can be constructed to demonstrate the tightness of our bound for
simulating sparse electronic Hamiltonians. Specifically, for t, w > 0 and positive integer 1 ≤ d ≤ η,
we define

T = t

d−1∑
j,k=0

A†jAk, V = w

d
2
−1∑

u,v=0

NuNv. (132)

Comparing with the definition of the correlated-electronic model (1), we see that ‖τ‖max = t and

‖ν‖max = w. We also perform a fermionic Fourier transform to define T̃ and Ṽ , but only to the
first d spin orbitals

FFFT† ·A†j · FFFT =

{
1√
d

∑d−1
l=0 e

− 2πijl
n A†l , 0 ≤ j ≤ d− 1,

A†j , j ≥ d.

FFFT† ·Ak · FFFT =

{
1√
d

∑d−1
m=0 e

2πikm
n Am, 0 ≤ k ≤ d− 1,

Ak, k ≥ d.

(133)

The above proposition then shows that∥∥∥ [T, . . . [T︸ ︷︷ ︸
p

, V
]]∥∥∥

η
=
∥∥∥ [T̃ , . . . [T̃︸ ︷︷ ︸

p

, Ṽ
]]∥∥∥

η
= Ω ((td)pwη) . (134)

This proves the claimed tightness result (6) of Theorem 2.

5.2 Lower-bounding ‖[V, . . . [V, T ]]‖η
Recall from the previous section that we will consider the electronic Hamiltonian (125). Comparing
to the definition of correlated-electronic model (1), we see that the coefficient matrix τ has spectral
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norm ‖τ‖ = n, whereas coefficient matrix ν has max-norm ‖ν‖max = 1. Our goal is to lower-bound
the fermionic seminorm ‖[V, . . . [V, T ]]‖η. To this end, we define the η-electron states

|ψη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ i|

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

,

|φη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

.

(135)

Similar to the previous section, we have the following proposition showing that the fermionic
seminorm of nested commutators is nearly attained.

Proposition 13. Define T , V as in (125) and |ψη〉, |φη〉 as in (135). Then,

∣∣〈ψη|
p︷ ︸︸ ︷[

V, . . .
[
V , T

]]
|ψη〉

∣∣, p odd∣∣〈φη| [V, . . . [V︸ ︷︷ ︸
p

, T
]]
|φη〉

∣∣, p even

 = 2pηp +O
(
ηp−1

)
. (136)

A proof of this proposition is given in Appendix D. By rescaling the Hamiltonian constructed
in (127), we can demonstrate the tightness of our bound as follows. For any s, w > 0, we define the
rescaled Hamiltonian as in (130). Comparing with the definition of the correlated-electronic model
(1), we see that ‖τ‖ = s and ‖ν‖max = w. The above proposition then shows that∥∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T
]]∥∥∥

η
= Ω ((wη)ps/n) . (137)

This establishes the claimed tightness result (5) of Theorem 2.
Note that a similar example can be constructed to demonstrate the tightness of our bound for

simulating sparse electronic Hamiltonians. Specifically, for t, w > 0 and positive integer 1 ≤ d ≤ η,
we define the electronic Hamiltonian as in (132). Comparing with the definition of the correlated-
electronic model (1), we see that ‖τ‖max = t and ‖ν‖max = w. We may then use the states

|ψη,d〉 =

|
d︷ ︸︸ ︷

01 · · · 1︸ ︷︷ ︸
d
2

10 · · · 0 0 · · · 0 1 · · · 1︸ ︷︷ ︸
η− d

2

〉+ i|
d︷ ︸︸ ︷

11 · · · 1︸ ︷︷ ︸
d
2

00 · · · 0 0 · · · 0 1 · · · 1︸ ︷︷ ︸
η− d

2

〉

√
2

,

|φη,d〉 =

|
d︷ ︸︸ ︷

01 · · · 1︸ ︷︷ ︸
d
2

10 · · · 0 0 · · · 0 1 · · · 1︸ ︷︷ ︸
η− d

2

〉+ |
d︷ ︸︸ ︷

11 · · · 1︸ ︷︷ ︸
d
2

00 · · · 0 0 · · · 0 1 · · · 1︸ ︷︷ ︸
η− d

2

〉

√
2

(138)

to show that ∥∥∥ [V, . . . [V︸ ︷︷ ︸
p

, T
]]∥∥∥

η
= Ω ((wd)pt) . (139)

This proves the claimed tightness result (6) of Theorem 2.
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6 Applications

The class of correlated electronic Hamiltonian (1) encompasses various quantum systems arising in
physics and chemistry, for which the performance of quantum simulation can be improved using our
result. As for illustration, we consider improving quantum simulation of plane-wave-basis electronic
structure in Section 6.1 and the Fermi-Hubbard model in Section 6.2.

6.1 Plane-wave-basis electronic structure

Simulating the electronic-structure Hamiltonians is one of the most promising applications of digital
quantum computers. Recall that in the second-quantized plane-wave basis, such a Hamiltonian
takes the form

H =
1

2n

∑
j,k,µ

κ2µ cos[κµ · rk−j ]A†jAk

− 4π

ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2µ

Nj +
2π

ω

∑
j 6=k
µ6=0

cos[κµ · rj−k]
κ2µ

NjNk,
(140)

where ω is the volume of the computational cell, κµ = 2πµ/ω1/3 are n vectors of plane-wave
frequencies, µ are three-dimensional vectors of integers with elements in [−n1/3, n1/3], rj are the
positions of electrons, ζι are nuclear charges, and r̃ι are the nuclear coordinates. We further rewrite
the second term as

−4π

ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2µ

Nj = − 4π

ωη

∑
j,k,ι,µ 6=0

ζι cos[κµ · (r̃ι − rj)]
κ2µ

NjNk, (141)

which is valid since we estimate the simulation error within the η-electron manifold. Comparing
with the definition of correlated electronic model (1), we see that

τj,k =
1

2n

∑
µ

κ2µ cos[κµ · rk−j ],

νl,m = − 4π

ωη

∑
ι,µ 6=0

ζι cos[κµ · (r̃ι − rl)]
κ2µ

+
2π

ω

∑
µ6=0

cos[κµ · rl−m]

κ2µ
(1− δl,m) .

(142)

To proceed, we need to bound the spectral norm ‖τ‖ and the max-norm ‖ν‖max of the coefficient
matrices. We have

‖τ‖ = O

(
n2/3

ω2/3

)
, ‖ν‖max = O

(
n1/3

ω1/3

)
, (143)

where the first equality follows from [5, Eq. (F10)] and the second equality follows from [5, Eq.
(F7) and (F9)]. We also consider a constant system density η = O (ω) following the setting of [5].
Applying Theorem 1, we find that a pth-order formula Sp(t) can approximates the evolution of
electronic-structure Hamiltonian with Trotter error∥∥Sp(t)− e−itH

∥∥
η

= O
(

(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η
2tp+1

)
= O

((
n2/3

η2/3
+ n1/3η2/3

)p
n1/3η2/3tp+1

)
.

(144)
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This approximation is accurate for sufficiently small t. To evolve for a longer time, we divide the
evolution into r steps and use Sp(t/r) within each step, which gives an approximation with error

∥∥S r
p (t/r)− e−itH

∥∥
η
≤ r

∥∥∥Sp(t/r)− e−i
t
r
H
∥∥∥
η

= O

((
n2/3

η2/3
+ n1/3η2/3

)p
n1/3η2/3

tp+1

rp

)
. (145)

To simulate with accuracy ε, it suffices to choose

r = O

((
n2/3

η2/3
+ n1/3η2/3

)
n1/3pη2/3p

t1+1/p

ε1/p

)
. (146)

To simplify our discussion, we choose the order p sufficiently large and consider quantum sim-
ulation with constant time and accuracy, obtaining

r = O

((
n2/3

η2/3
+ n1/3η2/3

)
no(1)

)
. (147)

We further implement each Trotter step using the approach of [34, Sect. 5], and obtain a quantum
circuit with gate complexity

g = O

((
n5/3

η2/3
+ n4/3η2/3

)
no(1)

)
. (148)

In the little-o limit, this gate complexity improves the best previous result of electronic-structure
simulation in the second-quantized plane-wave basis. This is because our approach improves the
performance of quantum simulation by simultaneously exploiting the commutativity of Hamil-
tonian and the prior knowledge of initial state, whereas previous results were only able to em-
ploy at most one of these information. Indeed, previous work [5] gave a simulation with cost
O
((
n5/3η1/3 + n4/3η5/3

)
no(1)

)
by computing the Trotter error within the η-electron manifold, but

the commutativity of Hamiltonian was ignored in their analysis. On the other hand, the work
[19] used the commutativity of Hamiltonian to give a Trotterization algorithm with complexity

O
(
n7/3

η1/3
no(1)

)
, whereas [34] gave an interaction-picture approach with cost O

(
n8/3

η2/3
polylog(n)

)
.

Our new result matches these when η and n are comparable to each other, but can be much more
efficient in the regime where η is much smaller than n.

Interestingly, our result remains conditionally advantageous even when compared with the first-
quantized simulations. There, the best previous approach is the interaction-picture approach [3]

with gate complexity O
(
n

1
3 η

8
3 polylog(n)

)
, larger than our new complexity in the little-o limit

when η = Ω (
√
n). A related approach was described in [3] based on qubitization, which has a

similar performance comparison with our result. See Table 1 for details.
We mention however that there is one caveat when taking the little-o limit in our above dis-

cussion. This limit is achieved by choosing the order p of Trotterization sufficiently large, which
can result in a gate complexity with an unrealistically large prefactor due to the definition (17)
of higher-order formulas. Nevertheless, recent work suggests that Trotterization remains advanta-
geous for simulating the plane-wave-basis electronic structure even with a low-order formula [26],
to which our paper provides new theoretical insights.
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6.2 Fermi-Hubbard model

We also consider applications of our result to the simulation of Fermi-Hubbard Hamiltonian, which
models many important properties of correlated electrons. This Hamiltonian is defined as

H = −s
∑
〈j,k〉,σ

(
A†j,σAk,σ +A†k,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (149)

where 〈j, k〉 denotes a summation over nearest-neighbor lattice sites and σ ∈ {0, 1}.
We note that this Hamiltonian can be represented in terms of a sparse correlated Hamiltonian.

Indeed, in the one-dimensional case, we have

H = −s
∑
j,σ

(
A†j,σAj+1,σ +A†j+1,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (150)

where j = 0, 1, . . . , n−1 and σ = 0, 1. Comparing with the definition of correlated electronic model
(1), we see that

τ = −s
∑
j

(|j〉〈j + 1|+ |j + 1〉〈j|)⊗ (|0〉〈0|+ |1〉〈1|), ν =
v

2

∑
j

|j〉〈j|⊗ (|0〉〈1|+ |1〉〈0|) , (151)

so the coefficient matrices τ and ν are indeed 2-sparse. Similar analysis holds for the higher-
dimensional Fermi-Hubbard model, with the sparsity d = 2m where m is the dimensionality of the
lattice.

We can therefore apply Theorem 1 to conclude that a pth-order formula Sp(t) approximates
the evolution of Fermi-Hubbard Hamiltonian with Trotter error∥∥Sp(t)− e−itH

∥∥
η

= O
(
(s+ v)p−1sv2mpηtp+1

)
= O

(
ηtp+1

)
, (152)

assuming s, v, and m are constant. For r steps of Trotterization, we apply the triangle inequality
to get ∥∥S r

p (t/r)− e−itH
∥∥
η
≤ r

∥∥∥Sp(t/r)− e−i
t
r
H
∥∥∥
η

= O
(
η
tp+1

rp

)
. (153)

To simulate with constant time and accuracy, it thus suffices to choose

r = O
(
η1/p

)
, (154)

giving gate complexity

g = O
(
nη1/p

)
. (155)

The Fermi-Hubbard model only contains nearest-neighbor interactions and, according to [18],
can be near optimally simulated with O

(
n1+1/p

)
gates. On the other hand, recent work [20] shows

that Trotterization algorithm has gate complexity O
(
nη1+1/p

)
when restricted to the η-electron

manifold. Our result again improves over these previous work by combining the commutativity of
Hamiltonian and the initial-state information.
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7 Discussion

We have given improved quantum simulations using Trotterization for a class of correlated electrons,
by simultaneously exploiting the commutativity of Hamiltonian, the sparsity of interactions, and
the prior knowledge of initial state. We identified applications to simulating the plane-wave-basis
electronic structure, improving the best previous result in second quantization up to a negligi-
ble factor while conditionally outperforming the first-quantized simulation. We obtained further
speedups when the electronic Hamiltonian has d-sparse interactions, using which we gave faster
Trotterization of the Fermi-Hubbard model. We constructed concrete electronic systems for which
our bounds are almost saturated, providing a provable guarantee on the tightness of our analysis.

Our focus has been on the asymptotic performance of quantum simulation throughout this
paper. However, we believe that the techniques we have developed can also be used to give quantum
simulations with low constant-prefactor overhead. Such improvements would especially benefit
the simulation of plane-wave-basis electronic structure, where many pairs of Hamiltonian terms
commute and the number of spin orbitals can be significantly larger than the electron number.
Previous work on such problems almost exclusively used the second-order Suzuki formula [4, 26,
47], and we hope future work could consider other low-order Trotterizations that are still easy to
implement but may offer advantages over the second-order formula in practice.

Our analysis is applicable to a class of electronic Hamiltonians of the form H =
∑

j,k τj,kA
†
jAk+∑

l,m νl,mNlNm. By imposing further constraints on the coefficients, we may somewhat sacrifice
this generality but instead get further improvement on the simulation performance. One possibil-
ity is to consider the subclass of systems that are translation-invariant, i.e., τj,k = τj+q,k+q and
νl,m = νl+q,m+q. This translational invariance is used in the circuit implementations for both
our applications (electronic-structure Hamiltonians and Fermi-Hubbard model), but is nevertheless
ignored in the proof of our upper bounds (Theorem 1) and tightness result (Theorem 2). By in-
corporating additional features of the Hamiltonian such as translational invariance, it is plausible
that our current complexity estimate can be further improved.

A natural problem that has yet to be addressed is the simulation of electronic-structure Hamil-
tonians in a more compact molecular basis. Such Hamiltonians typically take the form H =∑

j,k hj,kA
†
jAk +

∑
j,k,l,m hj,k,l,mA

†
jAkA

†
lAm, more complex than the electronic model (1) consid-

ered here. In this case, the exponential of the two-body terms
∑

j,k,l,m hj,k,l,mA
†
jAkA

†
lAm does

not have a convenient circuit implementation and our current approach is not directly applicable.
This may motivate further developments of hybrid quantum simulation, in which Trotterization is
combined with more advanced quantum algorithms to speed up quantum simulation. We leave a
detailed study of such problems as a subject for future work.

More generally, we could consider quantum simulations of other physical systems. For example,
previous work by Somma considered simulating bosonic systems by combining the commutativity of
Hamiltonian and the initial-state information, although his solution seems to have a divergent issue
in general. We hope our techniques could offer insights to such issues and find further applications
in quantum simulation beyond what have been discussed here.
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A Analysis of single-layer commutators

In this appendix, we complete the proof of Proposition 7 on bounding the terms arising in the
commutator analysis of first-order formula.

For the third statement of Proposition 7, we let X =
∑

j,k,l τj,kνl,kA
†
jNlAk and compute

X†X =
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj2,k2νl2,k2A
†
k1
Nl1Aj1A

†
j2
Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2

−
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj2,k2νl2,k2A
†
k1
Nl1A

†
j2
Aj1Nl2Ak2 .

(156)

Applying the operator Cauchy-Schwarz inequality Lemma 1,

X†X ≤
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2

+
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1A

†
j2
Aj2Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2N.

(157)

We now perform diagonalization using Lemma 2, obtaining

X†X ≤ ‖τ‖2
∑
k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1N. (158)

Using the Hölder-type inequality for expectation Lemma 3, we have

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥‖τ‖2
∑
k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1N

∥∥∥∥∥∥
η

= ‖τ‖2 η

∥∥∥∥∥∥
∑
k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1

∥∥∥∥∥∥
η

≤ ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

A†k1Ak1

∥∥∥∥∥∥
η

max
k1

∥∥∥∥∥∥
∑
l1,l2

ν̄l1,k1νl2,k1Nl1Nl2

∥∥∥∥∥∥
η−1

,

(159)

where
∥∥∥∑k1

A†k1Ak1

∥∥∥
η

= η and
∥∥∥∑l1,l2

ν̄l1,k1νl2,k1Nl1Nl2

∥∥∥
η−1
≤ ‖ν‖2max η

2. This completes the proof

of the third statement of Proposition 7.
For the fourth statement, we let X =

∑
j,k,m τj,kνj,mA

†
jNmAk and compute

X†X =
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj2,k2νj2,m2A
†
k1
Nm1Aj1A

†
j2
Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj2,k2νj2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2 .

(160)
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Applying the operator Cauchy-Schwarz inequality Lemma 1,

X†X ≤
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2

+
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1A

†
j2
Aj2Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2N.

(161)

We now use the Hölder-type inequality for expectation Lemma 3 to get

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2N

∥∥∥∥∥∥
η

≤ η

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1

∥∥∥∥∥ ∑
m1,m2

ν̄j1,m1νj1,m2Nm1Nm2

∥∥∥∥∥
η−1

.

(162)

The second fermionic seminorm can be directly bounded as
∥∥∥∑m1,m2

ν̄j1,m1νj1,m2Nm1Nm2

∥∥∥
η−1
≤

‖ν‖2max η
2, whereas the first seminorm can be bounded using diagonalization Lemma 2∥∥∥∥∥∥

∑
j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤

∥∥∥∥∥∥
∑
k1

∥∥∥τ †τ∥∥∥A†k1Ak1
∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥ η. (163)

This completes the proof of the fourth statement of Proposition 7.
For the fifth statement, we let X =

∑
j,k τj,kνj,jA

†
jAk and compute

X†X =
∑

j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj2,k2νj2,j2A
†
k1
Aj1A

†
j2
Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2 −

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj2,k2νj2,j2A
†
k1
A†j2Aj1Ak2 .

(164)

Applying the operator Cauchy-Schwarz inequality Lemma 1,

X†X ≤
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2 +

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j2A
†
k1
A†j2Aj2Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2N.

(165)

We now use the Hölder-type inequality for expectation Lemma 3 to get

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2N

∥∥∥∥∥∥
η

= η

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1
‖ν̄j1,j1νj1,j1I‖η−1 .

(166)
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The second fermionic seminorm can be directly bounded by ‖ν‖2max, whereas we perform diagonal-
ization to the first seminorm Lemma 2:∥∥∥∥∥∥

∑
j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥

∥∥∥∥∥∥
∑
k1

A†k1Ak1

∥∥∥∥∥∥
η

=
∥∥∥τ †τ∥∥∥ η. (167)

This completes the proof of the fifth statement of Proposition 7.
For the sixth statement, we let X =

∑
j,k,l τj,kνl,jA

†
jNlAk and compute

X†X =
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj2,k2νl2,j2A
†
k1
Nl1Aj1A

†
j2
Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2

−
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj2,k2νl2,j2A
†
k1
Nl1A

†
j2
Aj1Nl2Ak2 .

(168)

Applying the operator Cauchy-Schwarz inequality Lemma 1,

X†X ≤
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2

+
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1A

†
j2
Aj2Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2N.

(169)

We now use the Hölder-type inequality for expectation Lemma 3 to get∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2N

∥∥∥∥∥∥
η

= η

∥∥∥∥∥∥
∑

j1,k1,k2

τj1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1

∥∥∥∥∥∥
∑
l1,l2

νl1,j1νl2,j1Nl1Nl2

∥∥∥∥∥∥
η−1

.

(170)

The second fermionic seminorm can be directly bounded by ‖ν‖2max η
2, whereas we perform diago-

nalization to the first seminorm Lemma 2:∥∥∥∥∥∥
∑

j1,k1,k2

τj1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥

∥∥∥∥∥∥
∑
k1

A†k1Ak2

∥∥∥∥∥∥
η

=
∥∥∥τ †τ∥∥∥ η. (171)

This completes the proof of the sixth statement of Proposition 7.

B Analysis of multilayer nested commutators

In this appendix, we complete the proof of Proposition 8 on bounding the terms arising in the
commutator analysis of pth-order formulas. Recall from Proposition 8 that operator X is called a
fermionic chain if

X =
∑
j,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 , (172)
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where all Bx,y, Cx,z and hence the entire chain X are number-preserving. Our goal is to prove the
bound

‖X‖η ≤ ‖τ‖
q η

q∏
x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)
. (173)

We will prove this bound using Lemma 1, Lemma 2, and Lemma 3 in a similar way as in
Proposition 7. Specifically, we write X =

∑
jq
A†jqDjq , where

Djq =
∑
j1,...,
jq−1,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
q∏

x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (174)

Then,

X†X =
∑
jq1 ,jq2

D†jq1
Ajq1A

†
jq2
Djq2

=
∑
jq1

D†jq1
Djq1

−
∑
jq1 ,jq2

D†jq1
A†jq2

Ajq1Djq2
. (175)

Applying the operator Cauchy-Schwarz inequality (Lemma 1), we obtain

X†X ≤
∑
jq1

D†jq1
Djq1

+
∑
jq1 ,jq2

D†jq1
A†jq2

Ajq2Djq1
=
∑
jq1

D†jq1
Djq1

N. (176)

Next, we write Djq =
∏
y Bq,yEjq , where

Ejq =
∑
j1,...,
jq−1,k

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
∏
z

Cq,z

q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (177)

Invoking the Hölder-type inequality for expectation (Lemma 3), we get

‖X‖η =
√
‖X†X‖η ≤ η

1/2

√∥∥∥∑
jq1

D†jq1
Djq1

∥∥∥
η
≤ η1/2

√∥∥∥∑
jq1

E†jq1
Ejq1

∥∥∥
η

∏
y

max
jq
‖Bq,y‖η−1 . (178)

We now write Ejq =
∑

kq
τjq ,kqFkq , where

Fkq =
∑

j1,...,jq−1,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
∏
z

Cq,z

q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (179)

Then, ∑
jq1

E†jq1
Ejq1 =

∑
kq1 ,kq2

∑
jq1

τ̄jq1 ,kq1 τjq1 ,kq2

F †kq1
Fkq2 . (180)

We perform diagonalization using Lemma 2, obtaining∑
jq1

E†jq1
Ejq1 ≤

∥∥∥τ †τ∥∥∥∑
kq1

F †kq1
Fkq1 . (181)

Next, we write Fkq =
∏
z Cq,zGkq , where

Gkq =
∑

j1,...,jq−1,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (182)
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Invoking again the Hölder-type inequality for expectation (Lemma 3), we get

‖X‖η ≤ ‖τ‖ η
1/2

√∥∥∥∑
kq1

G†kq1
Gkq1

∥∥∥
η

∏
y

max
jq
‖Bq,y‖η−1

∏
z

max
kq
‖Cq,z‖η−1 . (183)

Note that we can write Gkq =
∑

jq−1
δkq ,jq−1Hjq−1 with

Hjq−1 =
∑

j1,...,jq−2,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−2∏
x=1

δkx+1,jx ·
q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 , (184)

which implies ∑
kq

G†kqGkq =
∑
jq−1

H†jq−1
Hjq−1 . (185)

We can now iterate this procedure q times to get

‖X‖η ≤ ‖τ‖
q η1/2

√∥∥∥∑
k1

A†k1Ak1

∥∥∥
η

q∏
x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)

= ‖τ‖q η
q∏

x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)
.

(186)

This completes the proof of Proposition 8.

C Lower-bounding ‖[T, . . . [T, V ]]‖η
In this appendix, we prove Proposition 12 that lower-bounds the fermionic seminorm ‖[T, . . . [T, V ]]‖η
for the electronic Hamiltonian (125). After the fermionic Fourier transform (126), we have

T̃ = FFFT† · T · FFFT = nN0,

Ṽ = FFFT† · V · FFFT =
1

n2

∑
j,k,l,m

n
2
−1∑

u=0

e
2πiu(k−j)

n

n
2
−1∑

v=0

e
2πiv(m−l)

n

A†jAkA
†
lAm,

(187)

which gives the commutator[
T̃ , Ṽ

]
=

1

n

∑
k,l,m

τ0klmA
†
0AkA

†
lAm −

1

n

∑
j,l,m

τj0lmA
†
jA0A

†
lAm

+
1

n

∑
j,k,m

τjk0mA
†
jAkA

†
0Am −

1

n

∑
j,k,l

τjkl0A
†
jAkA

†
lA0

(188)

with

τjklm :=

n
2
−1∑

u=0

e
2πiu(k−j)

n

n
2
−1∑

v=0

e
2πiv(m−l)

n

 . (189)

We will choose the initial state from the two-dimensional subspace spanned by

|ψ̃0〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉, |ψ̃1〉 = |100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉. (190)
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Denoting the projection to this subspace as Π̃ = |ψ̃0〉〈ψ̃0|+ |ψ̃1〉〈ψ̃1|, we have that Π̃ commutes with
T̃ = nN0, which means Π̃[T̃ , . . . [T̃ , Ṽ ]]Π̃ = [T̃ , . . . Π̃[T̃ , Ṽ ]Π̃]. We simplify the effective commutator
Π̃[T̃ , Ṽ ]Π̃ based on the following observations:

1. A†0AkA
†
lAm: This will always nullify |ψ̃0〉 from left. For 〈ψ̃1|A†0AkA

†
lAm|ψ̃1〉 to be nonzero,

we must let one of {k,m} be 0, while the other is equal to l. For 〈ψ̃1|A†0AkA
†
lAm|ψ̃0〉 to be

nonzero, we must let one of {k,m} be 1, while the other is equal to l.

2. A†jA0A
†
lAm: For 〈ψ̃0|A†jA0A

†
lAm|ψ̃0〉 to be nonzero, we must let l = 0 and j = m. For

〈ψ̃0|A†jA0A
†
lAm|ψ̃1〉 to be nonzero, we must let one of {j, l} be 1, while the other is equal to m.

For 〈ψ̃1|A†jA0A
†
lAm|ψ̃1〉 to be nonzero, we must let j = 0 and l = m. For 〈ψ̃1|A†jA0A

†
lAm|ψ̃0〉

to be nonzero, we must let j = 0, l = 0 and m = 1.

3. A†jAkA
†
0Am: For 〈ψ̃0|A†jAkA

†
0Am|ψ̃0〉 to be nonzero, we must let k = 0 and j = m. For

〈ψ̃1|A†jAkA
†
0Am|ψ̃0〉 to be nonzero, we must let one of {k,m} be 1, while the other is equal to j.

For 〈ψ̃1|A†jAkA
†
0Am|ψ̃1〉 to be nonzero, we must let m = 0 and j = k. For 〈ψ̃0|A†jAkA

†
0Am|ψ̃1〉

to be nonzero, we must let m = 0, k = 0 and j = 1.

4. A†jAkA
†
lA0: This will always nullify |ψ̃0〉 from right. For 〈ψ̃1|A†jAkA

†
lA0|ψ̃1〉 to be nonzero,

we must let one of {j, l} be 0, while the other is equal to k. For 〈ψ̃0|A†jAkA
†
lA0|ψ̃1〉 to be

nonzero, we must let one of {j, l} be 1, while the other is equal to k.

After removing double-counting and canceling redundant terms, we obtain

Π̃
[
T̃ , Ṽ

]
Π̃

=
����������1

n

∑
l

τ00llA
†
0A0A

†
lAl +

1

n

∑
l

τ01llA
†
0A1A

†
lAl

������������
+

1

n

∑
k

τ0kk0A
†
0AkA

†
kA0 +

1

n

∑
k

τ0kk1A
†
0AkA

†
kA1

����������

− 1

n
τ0000A

†
0A0A

†
0A0 −

1

n
τ0111A

†
0A1A

†
1A1

������������
− 1

n

∑
j

τj00jA
†
jA0A

†
0Aj −

1

n

∑
l

τ10llA
†
1A0A

†
lAl −

1

n

∑
j

τj01jA
†
jA0A

†
1Aj

�����������
− 1

n

∑
l

τ00llA
†
0A0A

†
lAl −

1

n
τ0001A

†
0A0A

†
0A1

����������

+
1

n
τ0000A

†
0A0A

†
0A0 +

1

n
τ1011A

†
1A0A

†
1A1︸ ︷︷ ︸

0

������������
+

1

n

∑
j

τj00jA
†
jA0A

†
0Aj +

1

n

∑
j

τjj01A
†
jAjA

†
0A1 +

1

n

∑
j

τj10jA
†
jA1A

†
0Aj

������������
+

1

n

∑
j

τjj00A
†
jAjA

†
0A0 +

1

n
τ1000A

†
1A0A

†
0A0

����������

− 1

n
τ0000A

†
0A0A

†
0A0−

1

n
τ1101A

†
1A1A

†
0A1︸ ︷︷ ︸

0

������������
− 1

n

∑
k

τ0kk0A
†
0AkA

†
kA0 −

1

n

∑
j

τjj10A
†
jAjA

†
1A0

������������
− 1

n

∑
j

τjj00A
†
jAjA

†
0A0 −

1

n

∑
k

τ1kk0A
†
1AkA

†
kA0

����������

+
1

n
τ0000A

†
0A0A

†
0A0 +

1

n
τ1110A

†
1A1A

†
1A0.

(191)
We merge the remaining twelve terms into four groups:
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1. The first group contains terms

1

n

∑
l

τ01llA
†
0A1A

†
lAl −

1

n

∑
l

τ10llA
†
1A0A

†
lAl +

1

n

∑
j

τjj01A
†
jAjA

†
0A1 −

1

n

∑
j

τjj10A
†
jAjA

†
1A0

=N

n
2
−1∑

u=0

e
2πiu
n

A†0A1 −N

n
2
−1∑

u=0

e−
2πiu
n

A†1A0.

(192)
We will see that this is the dominant contribution to the effective commutator that is at least
Ω (nη).

2. The second group contains terms

− 1

n
τ0111A

†
0A1A

†
1A1 −

1

n
τ0001A

†
0A0A

†
0A1 +

1

n
τ1000A

†
1A0A

†
0A0 +

1

n
τ1110A

†
1A1A

†
1A0

=−

n
2
−1∑

u=0

e
2πiu
n

A†0A1 +

n
2
−1∑

u=0

e−
2πiu
n

A†1A0.
(193)

These terms have asymptotic scaling O (n) and thus do not dominate the result.

3. The third group contains terms

1

n

∑
k

τ0kk1A
†
0AkA

†
kA1 −

1

n

∑
k

τ1kk0A
†
1AkA

†
kA0

=
1

n
τ0001A

†
0A1 +

1

n

∑
k

τ0kk1AkA
†
kA
†
0A1

− 1

n
τ1110A

†
1A0 −

1

n

∑
k

τ1kk0AkA
†
kA
†
1A0

=
1

n
τ0001A

†
0A1 +

1

n

∑
k

τ0kk1A
†
0A1 −

1

n

∑
k

τ0kk1A
†
kAkA

†
0A1

− 1

n
τ1110A

†
1A0 −

1

n

∑
k

τ1kk0A
†
1A0 +

1

n

∑
k

τ1kk0A
†
kAkA

†
1A0,

(194)

where

1

n
τ0001A

†
0A1 −

1

n
τ1110A

†
1A0 =

1

2

n
2
−1∑

u=0

e
2πiu
n

A†0A1 −
1

2

n
2
−1∑

u=0

e−
2πiu
n

A†1A0 = O (n) ,

(195)
and

1

n

∑
k

τ0kk1A
†
0A1 −

1

n

∑
k

τ1kk0A
†
1A0

=
1

n

∑
k

n
2
−1∑

u=0

e
2πiuk
n

n
2
−1∑

v=0

e
2πiv(1−k)

n

A†0A1 −
1

n

∑
k

n
2
−1∑

u=0

e
2πiu(k−1)

n

n
2
−1∑

v=0

e−
2πivk
n

A†1A0

=

n
2
−1∑

u=0

e
2πiu
n

A†0A1 −

n
2
−1∑

u=0

e−
2πiu
n

A†1A0 = O (n) ,

(196)
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We rewrite the remaining terms as

− 1

n

∑
k

τ0kk1A
†
kAkA

†
0A1 +

1

n

∑
k

τ1kk0A
†
kAkA

†
1A0

=− 1

n

∑
k

n
2
−1∑

u=0

e
2πiuk
n

n
2
−1∑

v=0

e
2πiv(1−k)

n

A†kAkA
†
0A1 +

1

n

∑
k

n
2
−1∑

u=0

e
2πiu(k−1)

n

n
2
−1∑

v=0

e−
2πivk
n

A†kAkA
†
1A0.

(197)

4. The fourth group contains terms

− 1

n

∑
j

τj01jA
†
jA0A

†
1Aj +

1

n

∑
j

τj10jA
†
jA1A

†
0Aj

=− 1

n
τ1011A

†
1A0 +

1

n

∑
j

τj01jA
†
jAjA

†
1A0 +

1

n
τ0100A

†
0A1 −

1

n

∑
j

τj10jA
†
jAjA

†
0A1.

(198)

Similar to the previous case, we have

− 1

n
τ1011A

†
1A0 +

1

n
τ0100A

†
0A1 = O (n) , (199)

whereas the remaining terms can be rewritten as

1

n

∑
j

τj01jA
†
jAjA

†
1A0 −

1

n

∑
j

τj10jA
†
jAjA

†
0A1

=
1

n

∑
j

n
2
−1∑

u=0

e−
2πiuj
n

n
2
−1∑

v=0

e
2πiv(j−1)

n

A†jAjA
†
1A0 −

1

n

∑
j

n
2
−1∑

u=0

e
2πiu(1−j)

n

n
2
−1∑

v=0

e
2πivj
n

A†jAjA
†
0A1.

(200)

To summarize, the effective commutator Π̃
[
T̃ , Ṽ

]
Π̃ has action

Π̃
[
T̃ , Ṽ

]
Π̃

=N

n
2
−1∑

u=0

e
2πiu
n

A†0A1 −N

n
2
−1∑

u=0

e−
2πiu
n

A†1A0

− 2

n

∑
k

n
2
−1∑

u=0

e
2πiuk
n

n
2
−1∑

v=0

e
2πiv(1−k)

n

A†kAkA
†
0A1 +

2

n

∑
k

n
2
−1∑

u=0

e
2πiu(k−1)

n

n
2
−1∑

v=0

e−
2πivk
n

A†kAkA
†
1A0.

(201)
We now take the expectation of this operator with respect to the state

|ψ̃η〉 =
|010 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉+ |100 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉√

2
. (202)
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We have

〈ψ̃η|

N
n

2
−1∑

u=0

e
2πiu
n

A†0A1 −N

n
2
−1∑

u=0

e−
2πiu
n

A†1A0

 |ψ̃η〉
=η〈ψ̃η|

(
2

1− e
2πi
n

A†0A1 −
2

1− e−
2πi
n

A†1A0

)
|ψ̃η〉+O (n)

=− nη

πi
〈ψ̃η|

(
A†0A1 +A†1A0

)
|ψ̃η〉+O (n+ η) = −nη

πi
+O (n+ η) .

(203)

On the other hand,

〈ψ̃η|

− 1

n

∑
k

n
2
−1∑

u=0

e
2πiuk
n

n
2
−1∑

v=0

e
2πiv(1−k)

n

A†kAkA
†
0A1 +

1

n

∑
k

n
2
−1∑

u=0

e
2πiu(k−1)

n

n
2
−1∑

v=0

e−
2πivk
n

A†kAkA
†
1A0

 |ψ̃η〉
=〈ψ̃η|

− 1

n

n−1∑
k=n−η+1

1− eπik

1− e
2πik
n

1− eπi(1−k)

1− e
2πi(1−k)

n

A†0A1 +
1

n

n−1∑
k=n−η+1

1− eπi(k−1)

1− e
2πi(k−1)

n

1− e−πik

1− e−
2πik
n

A†1A0

 |ψ̃η〉+O (n) = O (n) ,

(204)
where the last equality holds since for integer k exactly one of k and k − 1 is even. We have thus
proved

〈ψ̃η|
[
T̃ , Ṽ

]
|ψ̃η〉 = −nη

πi
+O (n+ η) . (205)

The above argument can be extended to analyze multilayer nested commutators. Indeed, for
initial state

|φ̃η〉 =
|010 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉+ i|100 · · · 0

η−1︷ ︸︸ ︷
1 · · · 1〉√

2
, (206)

we have

〈φ̃η|
[
T̃ ,
[
T̃ , Ṽ

]]
|φ̃η〉 = −n

2η

πi
〈φ̃η|

(
A†0A1 −A†1A0

)
|φ̃η〉+O

(
n2 + nη

)
=
n2η

π
+O

(
n2 + nη

)
,

(207)

and similar results hold for general nested commutators [T̃ , . . . [T̃ , Ṽ ]]. This completes the proof of
Proposition 12.

D Lower-bounding ‖[V, . . . [V, T ]]‖η
In this appendix, we prove Proposition 13 that lower-bounds the fermionic seminorm ‖[V, . . . [V, T ]]‖η
for the electronic Hamiltonian (125). Recall that we have H = T + V with

T =

n−1∑
j,k=0

A†jAk, V =

n
2
−1∑

u,v=0

NuNv, (208)

which implies the commutator

[V, T ] =
∑

0≤u≤n
2
−1

Nu

( ∑
0≤j≤n

2
−1

n
2
≤k≤n−1

−
∑

n
2
≤j≤n−1

0≤k≤n
2
−1

)
A†jAk +

( ∑
0≤j≤n

2
−1

n
2
≤k≤n−1

−
∑

n
2
≤j≤n−1

0≤k≤n
2
−1

)
A†jAk

∑
0≤v≤n

2
−1

Nv.

(209)
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We will choose the initial state from the two-dimensional subspace spanned by

|ψ0〉 = |

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉, |ψ1〉 = |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉. (210)

Denoting the projection to this subspace as Π = |ψ0〉〈ψ0| + |ψ1〉〈ψ1|, we have that Π commutes
with

∑
0≤u≤n

2
−1Nu. Meanwhile,

Π

( ∑
0≤j≤n

2
−1

n
2
≤k≤n−1

−
∑

n
2
≤j≤n−1

0≤k≤n
2
−1

)
A†jAkΠ = A†0An

2
−A†n

2
A0. (211)

This shows that the effective commutator Π[V, T ]Π has the action

Π[V, T ]Π =
∑

0≤u≤n
2
−1

Nu

(
A†0An

2
−A†n

2
A0

)
+
(
A†0An

2
−A†n

2
A0

) ∑
0≤v≤n

2
−1

Nv. (212)

We now take the expectation of this operator with respect to the state

|ψη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ i|

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

, (213)

which gives

〈ψη|[V, T ]|ψη〉 = 〈ψη|

 ∑
0≤u≤n

2
−1

Nu

(
A†0An

2
−A†n

2
A0

)
+
(
A†0An

2
−A†n

2
A0

) ∑
0≤v≤n

2
−1

Nv

 |ψη〉
= 2η〈ψη|

(
A†0An

2
−A†n

2
A0

)
|ψη〉+O (1) = −2iη +O (1) .

(214)
This proves the desired scaling for the single-layer commutator. This argument can be extended to
analyze multilayer nested commutators. Indeed, for initial state

|φη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

, (215)

we have

〈φη|[V, [V, T ]]|φη〉 = 〈φη|

 ∑
1≤p≤η

Np

2 (
A†0An

2
+A†n

2
A0

)
|φη〉

+ 2〈φη|

 ∑
1≤p≤η

Np

(A†0An
2

+A†n
2
A0

) ∑
1≤q≤η

Nq

 |φη〉
+ 〈φη|

(
A†0An

2
+A†n

2
A0

) ∑
1≤q≤η

Nq

2

|φη〉

= 4η2 +O (η) ,

(216)

45



and similar results hold for general nested commutators [V, . . . [V, T ]]. This completes the proof of
Proposition 13.
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