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Abstract

Consumer products contribute to >75% of global greenhouse gas (GHG) emissions,
primarily through indirect contributions from the supply chain. Measurement of
GHG emissions associated with products is crucial to quantify the impact of GHG
emission abatement actions. Life cycle assessment (LCA), the scientific discipline
for measuring GHG emissions, estimates the environmental impact of a product.
Scaling LCA to millions of products is challenging as it requires extensive manual
analysis by domain experts. To avoid repetitive analysis, environmental impact
factors (EIF) of common materials and products are published for use by experts.
However, finding appropriate EIFs for even a single product can require hundreds
of hours of manual work, especially for complex products. We present Flamingo,
an algorithm that leverages neural language models to automatically identify an
appropriate EIF given a text description. A key challenge in automation is that
EIF databases are incomplete. Flamingo uses industry sector classification as an
intermediate layer to identify when there are no good matches in the database. On
a dataset of 664 products, Flamingo achieves an EIF matching precision of 75%.

1 Introduction

Life cycle assessment (LCA) is a standard method used to estimate GHG emissions associated with
an activity or a product. These emissions are often referred to as its carbon footprint, and are reported
in terms of global-warming potential in units of mass of carbon dioxide equivalent [Gao et al.(2014)].
LCA estimates emissions in each stage of a product: raw material extraction, manufacturing, trans-
portation, use, and disposal/reuse. The effort to acquire direct measurements for each aspect can
be prohibitively expensive [Tasaki et al.(2017)||, and therefore, domain experts use the outputs of
existing LCA studies to estimate emissions of common materials, products, and activities associated
with the life cycle of their subject [Wernet et al.(2016)]. E.g., an LCA on the "production of a cotton
t-shirt" might rely on the results of LCAs focused on "cotton production” or "transport by truck". We
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Figure 1: Environmental impact factor (EIF) selection is a key aspect of product carbon footprinting.
Flamingo automates selection of an EIF using pre-trained neural language models. It uses industry
sector codes to identify when an EIF is not available in the database.

refer to the outputs of these reference LCA studies as environment impact factors (EIFs). Databases
such as Ecoinvent [Wernet et al.(2016)|] collate these EIFs for use by LCA practitioners.

There is a lack of automation tools that integrate with EIF datasets. Often, EIFs are shared as
spreadsheets, and experts use string matching or explicit rules to match an activity to an appropriate
EIF [Rovelli et al.(2022)]. It can take hundreds of hours to match EIFs for LCA of even a single
product [Meinrenken et al.(2012)]]. To mitigate manual overhead, we propose using natural language
processing (NLP) based machine learning (ML) methods to perform this matching. To our knowledge,
we are the first to study use of neural ML based EIF matching. A simple approach is to use neural
language models trained on web data for semantic textual similarity [Reimers and Gurevych(2019)],
where the EIFs can be matched based on the distance between the embedding of the query and the
EIF texts. A major advantage of this approach is that no training data is required, as off-the-shelf
pre-trained models can capture synonyms and conceptual relationships.

A key characteristic of the EIF matching problem is that the databases are incomplete. Many products
such as mushrooms or socks do not have an EIF, because either no LCA study exists or the published
LCAs have not been ingested into the database. LCA experts search across multiple databases for a
match, and use an approximate value with higher uncertainty when no match exists, e.g., average EIF
of vegetables as a proxy for red bell peppers [Clark et al.(2022)]. However, pre-trained ML models
are not trained to identify when an appropriate match does not exist.

We present a novel zero-shot ML algorithm, called Flamingo, that introduces an intermediate classifi-
cation layer in semantic search to identify when an EIF is missing, and improves the performance of
EIF matches. Flamingo classifies the input query text to a standard industry code, and uses semantic
text matching to identify the closest EIFs within the industry code. When there are no EIFs available
for an industry code, Flamingo predicts that no appropriate match exists. We use an industry sector
classification called the Harmonized System (HS) code [Chaplin(1987)||, which is specifically de-
signed for categorizing products based on their material composition and manufacturing complexity.
HS codes are hierarchically organized, are used globally for import/export taxes, and are refreshed by
the World Customs Organization every 5 years [Wolffgang and Dallimore(2011)]. Flamingo exploits
the HS code hierarchy to navigate the precision versus recall trade-off associated with an EIF match.

We evaluate Flamingo on a dataset of 664 products from an e-commerce retailer. We use annotations
from crowd workers to identify if an EIF predicted by Flamingo is an appropriate match, or if no
match exists. Our results show that Flamingo matches EIFs to products with a precision of 75%,
and outperforms the semantic text similarity baseline by 8.4%. We open-source our code with a
permissive license. Background on LCA and comparison to related work is given in Appendix [A]

2 Problem Statement

Given a query text ¢; € Q, our objective is to find an appropriate EIF e; from a given set of EIFs £.
The query text can be a product description or a specific aspect of a product that an LCA expert will
attach an EIF to such as the material a product is made of. All EIF datasets include text metadata that



describes its characteristics, and we assume the text is available for query matching. It is possible
that there is no appropriate EIF available for a given query, and the algorithm should output &, i.e.
‘no match’, for such cases.

We assume there is no training dataset available that matches query text to EIFs. It is difficult to
obtain high-quality annotations for a dataset that is large enough to train models which generalize to
all queries and EIFs. Although we do have a small dataset, we only use it for validation of methods.
Even for few-shot methods, we need to have a few labeled examples per EIF, which are in the
thousands. It is possible to use EIF text descriptions to reduce the reliance on labeled examples for
every class [Zhang et al.(2018)|], we leave exploration of such methods for future work.

3 Methods

Given a query text g;, our objective is to both predict if a matching EIF exists in the database, and
retrieve the matching EIF e; when one exists. Critically, we do not rely on a supervised dataset of
query to EIFs commonly used in prior works [Sun et al.(2021)} [Hu et al.(2019)]. Zero-shot matching
algorithms, such as SBERT [Reimers and Gurevych(2019)|], can identify the best matching EIF but
are inadequate at identifying when the EIF is not a good match based on a distance threshold. We
improve on SBERT using industry sector classification as defined through HS codes [Chaplin(1987)].
We only consider the first 6 digits of the HS codes, called HS6, as they are globally applicable.

We use a model My that predicts the HS6 code for a given text input 7;. Given a HS6 code, we
can lookup the corresponding HS4 and HS2 codes from the code hierarchy. Therefore, we have:
h¢ = Mg (r;,H). We use a zero-shot method that leverages the text description of HS6 codes and
finds the best match using SBERT. For a given query text g;, we first predict its HS codes hg if not
provided. Next, we find the best EIF e; that matches the given query ¢; using the SBERT model
Mpg. We then predict the corresponding HS code h? for the EIF e; using the model M. If the
HS codes of both the EIF and the query match, and the cosine similarity score is higher than the
threshold, we output the best match EIF e; as the final prediction. Otherwise, the output is ‘no match’
<. We include three variants of the algorithm, where we match EIFs to query based on their HS2,
HS4, and HS6 codes respectively. Reducing the number of digits in the HS code helps reduce the
specificity of the classification. Therefore, a higher-level HS code increases the precision of finding an
appropriate EIF match at the expense of reducing the precision of predicting ‘no match’. We append
the HS code we use to the name of algorithm to specify the variants, e.g., FlamingoHS4. We use
the ‘all-mpnet-base-v2’ model from sbert.net as it has the highest performance in semantic text
similarity benchmarks. We use the default hyper-parameters throughout, where the input sentence is
cutoff after 128 tokens (about 100 words).

We use the same model to predict both the HS codes (M), and to rank the best match EIFs (Mg).
For example, to predict the EIF match for a given query text, the model will output the EIF embedding
that is closest to the query embedding as measured through cosine similarity. It is possible that there
is a ‘no match’ even after filtering out EIFs. We use a threshold on cosine similarity distance to
further filter out unrelated EIFs, and show the impact of using both a conservative and an aggressive
threshold on the algorithm performance.

4 Evaluation

We evaluate EIF predictions by BM25 and SBERT as our baseline algorithms. For BM25, we use the
implementation by [Trotman et al.(2014)], and use default hyper-parameters. For both BM25 and
SBERT, we use a distance threshold that maximizes their overall performance. For Flamingo, we
include the HS2, HS4, and HS6 based predictions of Flamingo. We consider two cosine similarity
thresholds for SBERT, O (conservative) and 0.5 (aggressive). These choices show the trade-offs in
design choices of the Flamingo algorithm, and we avoid tuning these parameters on our dataset.

We consider a dataset of 664 products labeled by the annotation team. As the annotation is performed
on a ranked list of EIFs provided by FlamingoZero, recall cannot be accurately measured. Therefore,
we report overall Precision@1, Macro Precision, and Weighted Precision scores. Precision@1, or
simply precision, indicates the metric is for the top-ranked candidate, and could be generalized to
Precision@K for top-K items. It is a common metric used for text ranking [Joulin et al.(2017)]. We



Table 1: Evaluation results for Flamingo with a dataset of 664 products. Ground truth is obtained by
majority vote on three annotations per product.

Distance Precision@1 (%) Macro Weighted
Method threshold Precisi Precisi
resho Overall No Match Match recision recision
BM25 35 53.0 87.1 5.4 7.8 46.0
SBERT 0.5 66.6 85.8 39.7 13.9 66.8
SBERT + BM25 0.5 59.0 99.0 3.2 8.1 44.5
FlamingoHS2 0.0 67.2 78.3 51.6 18.0 71.3
FlamingoHS4 0.0 75.0 96.3 45.1 16.4 64.0
FlamingoHS6 0.0 614 98.7 9.4 11.0 55.2
FlamingoHS2 0.5 67.8 93.8 314 17.3 62.9
FlamingoHS4 0.5 70.2 99.2 29.6 15.7 60.7
FlamingoHS6 0.5 59.5 99.7 3.2 94 54.2
Human Performance
Human (Mean) - 76.4 76.1 75.5 42.0 86.2

also breakdown the overall precision by ‘No match’ and ‘Match’. By design, >50% of the products in
the dataset do not have a matching EIF to reflect the importance of predicting ‘No match’ in practice.

Table |1| shows the results. Both BM25 and SBERT perform quite well, giving 53.0% and 66.6%
Precision@]1 respectively. The choice of threshold determines the trade-off between increasing the
precision of ‘Match’ vs ‘No match’. Flamingo provides an additional method to navigate the same
trade-off with HS codes based classification as an intermediate layer, and helps improve performance
by increasing the ‘No match’ precision, and filtering out erroneous EIFs based on their HS code
sector. Flamingo increases the probability of ‘No match’ as we increase the specificity of HS codes
from 2 to 6 digits. However, it comes at the cost of decreased ‘Match’ precision. HS4 codes provide a
good trade-off between the two extremes, and yield the best overall performance. Addition of cosine
similarity threshold on EIF selection further increases the probability of a ‘No match’ prediction. The
threshold can be adjusted based on the requirements of downstream applications.

The human performance metrics show there is a significant room for improvement in EIF matching
algorithms, especially in selection of an appropriate EIF when it is available in the database. Even
when cosine similarity threshold is set to 0, and no EIFs are filtered based on HS codes, the best
‘Match’ precision is ~50%, far below the human-level precision of 75.5%. This observation points to
an opportunity to improve on the SBERT model, perhaps by fine-tuning on sentences used in EIFs.

Appendix [D]includes additional results on a food ingredient dataset, analysis of errors, and impact on
carbon footprint estimates.

5 Conclusion and Future Work

We have presented an algorithm that automates EIF matching for a given query text. Our algorithm,
Flamingo, requires no training data and exploits industry codes to predict whether an EIF exists in the
database as well as identifies the best matching EIF when it exists. While we have focused on GHG
emissions throughout the paper, the EIF databases include impact estimates for additional categories
such as hazardous wastes, fresh water use, and air pollution. Our algorithms can be easily extended
to these impacts.

We can extend text-based matching to image-based matching using CLIP [Radford et al.(2021)],
which generates an embedding with an image-to-text correspondence. The key to further improvement
in EIF matching performance is to improve the prediction of HS codes from EIF metadata. Future
work can consider zero-shot contrastive learning approaches such as MACLR [Xiong et al.(2022)|]
that can exploit EIF text descriptions to learn correspondence with HS codes. Flamingo provides a
promising start on a critical aspect of LCA, but a number of challenges remain in scaling to millions
of consumer products. As seen from our results, EIFs of most consumer products in the market are
not available in the database, and more EIFs are added manually from publicly available documents.
Automation of EIF extraction from documents is a promising avenue of future work.
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Figure 2: Life cycle assessment of a paper towel made with 75% recycled materi-
als [Ingwersen et al.(2016)].

A Background and Related Work

In this section, we briefly explain how LCA is used for carbon footprint estimation, and the role of
EIFs in performing LCAs. We summarize the prior works on automation of matching EIFs for a given
query in the LCA literature, and the key challenges that remain unaddressed. We then summarize the
relevant text-matching literature, along with its applicability to the EIF matching problem.

A.1 Life cycle assessment

LCA was introduced as a systematic method to compare product design choices in terms of en-
ergy use, waste, and other environmental impacts [Hunt(1974), |Guinée et al.(2011)|]. It has since
been adopted as a standard method for carbon footprinting by both the International Standards
Organization [for Standardization(2006)|] and the GHG Protocol [Standard(2011)]. LCA can be
categorized into two types: Economic Input-Output LCA (EIO-LCA) and Process-LCA. EIO-LCA
uses transactions across industries in an economy to obtain an approximate impact assessment at an
industry sector level [Yang et al.(2017)]]. This type of LCA is associated with aggregation issues, as
for example, different types of paper products are assumed to have the same GHG impact per unit
of sale price regardless of how they were manufactured. Process-LCA, on the other hand, produce
higher granularity carbon footprints through detailed tracking of emissions from each life-cycle
stage of a product. Figure 2]shows a Process-LCA of a paper towel as an example, which requires
accounting of how the pulp was sourced, how it was processed across multiple suppliers, how ma-
terials were transported between stakeholders, what percentage of products sold was returned, and
whether the paper roll was composted, landfilled, or recycled. As it is challenging, and sometimes
infeasible, to collect direct emissions data in such high detail, LCA experts use EIFs published in
prior studies as an estimate of the GHG emissions associated with a product, material, or activ-
ity for which they do not have direct measurements [Meinrenken et al.(2012), [Rovelli et al.(2022)].
Ecoinvent [Wernet et al.(2016)]], GaBi [Sphera(2023)], and AGRIBALYSE [Colomb et al.(2015)|]
are some of the common EIF databases used in the industry.

Finding the right EIF can be time consuming [Meinrenken et al.(2012)] as exact string match does
not capture synonyms (e.g., milk and dairy, maize and corn), abbreviations (e.g., Ni-Cd and Nickel
Cadmium), technical terms (e.g., sodium chloride is same as salt), or category relationships (e.g.,
basmati is a type of rice). A few solutions have been proposed to overcome this challenge in the
literature [Meinrenken et al.(2012), [Clark et al.(2022), Rovelli et al.(2022)]. meinrenken2012fast
propose a linear regression algorithm, where they categorize the query text to an industry sector, and
use a regression based on price to estimate the GHG emissions. However, the categorization is done
manually, all the EIFs within an industry sector are averaged together which increases the variance of



the estimate, and heuristics are used to remove outliers. clark2022estimating matched ingredients to
EIFs for food products. They also rely on a mapping of EIFs to pre-defined food categories (e.g.,
berries, cheese). In addition, they manually create search terms which are synonyms or sub-types of a
given food category (e.g., pecorino is a cheese) so they can improve exact string matches. To reduce
variance of emission estimates, they use a three-level hierarchical categorization so that specificity of
a match increases when possible, e.g., use strawberry instead of berries. Our algorithm uses a similar
hierarchical industry classification, but does not require manual specification of search terms. As a
result, our solution scales to all EIFs in the database, and is not limited to food EIFs. In contrast to
these prior works, Flamingo does not require manual steps or heuristics, and can match to specific
EIFs in the database instead of industry sectors.

ML has been used to automate other aspects of LCA, as covered in a survey by algren2021machine.
Specific to EIF estimation, sousa2006product directly estimate carbon dioxide emissions based on
product attributes to inform design decisions. They used neural network regression on carefully
chosen product descriptors to estimate emissions. They train different models for high and low
energy use products. The model was trained on EIFs of 53 products, and predictions on a test set
of six products gave an error of 40%. However, their product descriptor required details such as
mass, percentage contribution from different type of materials (ceramics, fibers, metals, plastics, etc.),
energy source and more. In contrast, we identify if an EIF in the database can be matched to a given
text description and do not place any restrictions on the input. We also test our predictions on a much
larger dataset of 664 products.

A.2 Text Matching

Text search algorithms were envisioned with the advent of digital computers [Bush et al.(1945),
Singhal et al.(2001)]. Much of the early search algorithms were based on exact string match-
ing [Thompson(1968), Boyer and Moore(1977)], and is still prevalent in spreadsheets used for
EIF searching by LCA experts. Exact matches work well for small strings, but have poor
recall with long search queries. BM25 [Robertson et al.(1995), Robertson et al.(2009)] and
TFIDF [Ramos et al.(2003), |Sparck Jones(1972)|] are probabilistic algorithms that overcome this
challenge by weighting words with their relative frequency of occurrence. They support both long
search queries and rank results based on a relevance score. BM25 is the default search algorithm in
modern databases such as Elastic Search [[Gormley and Tong(2015)]. To our knowledge, BM25 has
not been considered for EIF search in the literature, and we include it as a baseline algorithm in our
evaluation. We do not include exact match as a baseline as it is challenging to identify the keyword to
use for the query, and use of the entire product description leads to spurious matches with close to 0%
precision.

Neural search algorithms improve on exact string match by learning semantics such as syn-
onyms and contextual relationships [Mitra et al.(2018)]. However, they require a large dataset
of queries with matched results for training the model [Huang et al.(2013), |Hu et al.(2014)]. No
such dataset exists for searching EIFs, and therefore, we focus on zero-shot methods that do
not require training data. Neural language models such as BERT [Kenton and Toutanova(2019)]
and GPT [Radford et al.(2018)]] reduce the reliance on training data by using a self-supervised
objective such as predicting the next word in a sentence. Use of the Transformer architecture en-
ables training on web-scale datasets [[Vaswani et al.(2017)]]. Sentence transformers, called SBERT,
build on these works, and have emerged as a strong zero-shot algorithm for semantic text match-
ing [Reimers and Gurevych(2019), | Xiong et al.(2022)]. They are trained on web text to create a
vector representation (a.k.a embedding) of an input sentence. We can identify if two sentences are
similar by measuring the distance between their embeddings. Using SBERT, we can find the closest
EIF that matches a query text by identifying the EIF text embedding that is closest to the query
embedding. balaji2023caml use SBERT to find EIFs for EIO-LCA, while we focus on finding EIFs
for Process-LCA. Unlike Process-LCA EIF databases, EIO-LCA EIF databases are complete by
definition as the EIF corresponds to industry sectors defined by the national governments. Therefore,
balaji2023caml do not address the problem of identifying when no EIF matches exist in the database.
We include SBERT as a baseline in our evaluation.

One of the challenges with a neural search solution is that they are not designed to identify when
an appropriate match does not exist [Sun et al.(2021), [Dhamija et al.(2018)]. A simple method
is to threshold the distance between embeddings beyond which an EIF is not an appropriate
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match [Zeng et al.(2021)]. However, as we show in our evaluation, a threshold based solution
leads to incorrect predictions due to distance miscalibration. The SBERT model can be fine-tuned on
a search dataset so that the distances are calibrated [Sun et al.(2021)]]. Another method is to train a
separate model that determines if the predicted match is correct or incorrect [Hu et al.(2019)]. But
these solutions require labeled training data, and do not meet our zero-shot objective. We propose a
novel solution, where we first classify the EIFs and the query text to an industry sector. If the industry
sector of the query does not match with any entry in the EIF database, we can predict that there is no
suitable match for this query.

We use the HS codes for our industry sector classification, which is hierarchically organized from
2 digits to up to 12 digits, where the level of hierarchy is indicated with a 2-digit increment
[Chaplin(1987)||. Figure [3] shows an example. A major advantage of HS codes is that they are
already used for import/export taxation worldwide, and therefore, datasets that map products to HS
codes are readily available. We use up to 6 digits of the HS code (HS6), which translates to ~5.4K
unique codes. We leverage an existing dataset of products mapped to HS6 codes to learn a supervised
classifier that can predict the HS code for any text input.

Prior works have proposed ML approaches to automate HS code classification as it is used to determine
customs tax rate [Ding et al.(2015), [Du et al.(2021), |Chen et al.(2021)]]. chen2021neural consider
a neural machine translation approach with a hierarchical loss function, and obtain an accuracy of
85% on a dataset of ~1M records. lee2021classification use a supervised, hierarchical sentence
retrieval approach to classify 129K electrical products with an accuracy of 89.6%. du2021hscodenet
use two parallel neural networks in a Siamese architecture for classifying HS codes, one network
uses a hierarchical sequence of LSTM modules on word vectors of text input, and another uses
graph attention network based on word co-occurrence. On a dataset of ~400K samples, they
obtain an average accuracy of 85%. We treat HS code classification problem as an example of
extreme label classification [Bhatia et al.(2015), [Bhatia et al.(2016)|]. We use the PECOS algorithm,
which leverages the label hierarchy and semantic similarity of labels to improve classification
performance [Yu et al.(2022)]. Flamingo is agnostic to the method used to classify HS codes, we
use PECOS in our experiments as it achieves state-of-the-art in multiple extreme label classification
benchmarks. On our dataset of 746K products, we obtain a classification accuracy of 82% which is
commensurate to the results reported in prior works. We also use SBERT to identify the best matching
HS codes for a given text description with a zero-shot approach. To our knowledge, zero-shot methods
to classify HS codes have not been studied in the literature.

10



Table 2: Summary of datasets used in the paper

Type Size #Match # No Match # No clear label # Used
Product to EIF (small) 100 22 68 10 90
Product to EIF (large) 967 277 387 303 664
Food ingredient to EIF 272 87 177 8 264
Product to HS code 746K  No filter 746K
HS code descriptions 6709  Filter for HS6 codes 5388
Ecoinvent EIFs 19128  Filter for reference products 27170
B Dataset

In this section, we describe the dataset we use to evaluate the performance of Flamingo in matching a
query text to an EIF. Table 2] summarizes the datasets used in the paper.

The dataset—which we refer to as Dg—is a set of 967 products sold by an e-commerce retailer.
It includes a variety of products such as ice makers, electric fans, toasters, adhesives, etc. Given a
product, we concatenate its title, description, and additional attributes into a single string as input
to the classifier. For each product, the dataset includes the ground truth HS6 code as well as a
matching EIF from the Ecoinvent dataset [Wernet et al.(2016)], if a match exists. We use the 2017
version of HS codes, and EIFs from the Ecoinvent v3.7. Human annotations are used to validate
the EIF matches in the dataset: the annotation process is described in Section [C} All the product
descriptions are in English—while the text-similarity models we use can generalize to any language,
we restrict the language because our annotation team only understands English fluently. We annotate
a subset of 100 products by LCA experts to evaluate the quality of annotations by non-experts. To
evaluate generalization beyond products, we introduce another dataset of 272 food ingredients that
are matched to EIFs with annotations.

Ecoinvent EIFs include metadata such as impact factor name, reference product, units, data quality,
valid years, geographic specificity, and industry classification. We use the attribute ‘reference product’
as the basis for matching EIFs because it provides a non-technical but precise description of the EIF
(e.g., wheat, yogurt). Once the EIFs with the reference product are identified, it is easy to add rules to
increase specificity by additional attributes such as location. Ecoinvent contains 19K EIFs, but only
3.2K unique reference products. The dataset includes EIFs that are not related to carbon footprint of
consumer products such as those related to construction, operation of equipment or transportation of
goods. We filter these out to get 2.7K unique EIFs.

We refer to an individual HS code as hf € H, where ¢ refers to the number of digits in the code. We
obtain the text description of HS6 codes from https://unstats.un.org/. We use a dataset that
maps 746K products to their corresponding HS6 codes for learning a supervised model to predict
HS6 code given text as input: we refer to this dataset as D . The dataset consists of a variety of
products (e.g., shoes, watch, coat), and comprises 2.5K unique HS6 codes. Note that this is a subset
of the full set of HS6 codes, |H| = 5400. The distribution of the number of products per HS6 code is
skewed, with 10% of HS6 codes accounting for 86% of the products. Despite the skew and reduced
cardinality, the HS6 codes in Dy contain a representative set of products, and we expect a large
overlap with a generic product query.

C Annotation

In this section, we describe the process of collecting ground truth data of product to EIF mappings
via manual annotations. Identifying the best match from thousands of EIFs is a challenging and
time-consuming task. To reduce burden, we rank the top-5 EIFs using FlamingoZero, and ask
annotators if any of these are a match. In case there are <5 EIFs after filtering based on HS codes,
we add the top ranked EIFs from the full set until we have a total of 5 options. We also include
the option ‘No match’ and ‘Not sure’ to capture both missing EIFs in the database and uncertainty
in annotation. We acknowledge that such an annotation system does not measure recall accurately
as there could be EIFs in the database which may be an appropriate match, but are not captured
in the top ranked EIFs by Flamingo. Nevertheless, it does capture the precision of the algorithm
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Table 3: Performance of EIF matching using different industry sector codes

Industry Code Distance threshold Accuracy (%) MacroF1 Weighted F1

HS4 0.0 75.0 14.3 68.0
HS4 0.5 70.2 12.2 62.1
ISIC 0.0 63.4 4.4 62.4
ISIC 0.5 68.7 5.1 62.7
CPC 0.0 52.7 5.5 45.7
CPC 0.5 59.9 6.6 48.9
CPC to HS2 0.0 50.6 11.0 42.4
CPC to HS2 0.5 57.8 10.3 45.4

accurately. The recall of the ranked list can be further improved by using a mix of different algorithms
such BM25 [Trotman et al.(2014)]], universal sentence encoder [Cer et al.(2018)]], or with use of late
interaction models such as ColBERT [Khattab and Zaharia(2020)] that re-rank a candidate list. Our
contribution and focus here is on improving the precision of identifying if an EIF is an appropriate
match after it has been ranked by a search method. We defer measuring and improving recall of EIF
ranking to future work, we expect our results to improve further if recall improves. All our baseline
methods, except BM25, rely on the same SBERT model for EIF ranking. Therefore, the results still
provide a controlled experiment to compare methods.

In our instructions to annotators, we provide multiple examples of product to EIF mapping, including
those with ‘no match’. More than 80% of randomly sampled products do not have an appropriate EIF
in the database. To balance this skew, our dataset for annotation includes all the products for which
we find an EIF, and randomly sample an equivalent number of products for which there is no match.
We use the top-5 ranked EIFs without an HS code filter for these products for a consistent annotation
experience.

We use three independent annotations per product and use the majority vote to reduce labeling noise.
Our annotators are experienced in labeling tasks. Each annotation took 30 seconds on average.
Despite our efforts to reduce annotation burden, our annotators provided feedback that the task was
challenging. They had to constantly look up technical terms, such as ‘kenaf’ and ‘mercerizing’: some
tasks took as much as 5 minutes. Of the 967 products annotated, 28% had unanimous agreement,
44% had a valid majority vote, and the remaining had split votes with no clear majority. Another
5.6% of the products had ‘Not sure’ as the majority vote. We only consider the 664 products which
have a valid majority, and use the majority voted label as the ground truth for our experiments. The
final product dataset has 58% ‘no match’, and 48 unique EIFs with a long-tail distribution.

Krippendorf’s Alpha is a measure of inter-annotator agreement for classification tasks, with 0 and 1
representing perfect disagreement and agreement respectively [Krippendortf([n. d.])]. The Alpha for
our annotations is 0.28, which is similar to values reported for long-tailed classification tasks in the
literature [Jalalzai et al.(2020)].

To further validate our dataset, we asked two LCA experts to annotate a subset of 90 products. Picking
one of the experts arbitrarily as the ground truth, we measure the precision of both our expert and
non-expert annotations. We find that non-experts have a precision of 78.6% on average, and are
comparable to expert precision of 76.1%. With majority vote, the non-expert agreement with expert
annotations increase to 85.9%. Therefore, we consider our non-expert annotations to be of sufficient
quality to be considered as ground truth. We present the full results in Table ??.

D Additional Results

D.1 Alternatives to HS code prediction

There are multiple industry classification systems that can be an alternative to HS codes. We look
at two choices: International Standard Industrial Classification (ISIC) [Nations(1969)|] and Central
Product Classification (CPC) [Pariag(2009)]. They are pertinent choices as they are already included
as part of the EIF metadata in the Ecoinvent database [Wernet et al.(2016)|]. However, we do not have
the ISIC or CPC codes of the products in our dataset, so we use the SBERT model to predict the best
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Table 4: Performance of EIF matching using different industry sector codes

Industry Code Distance threshold Precision@1 (%)

HS4 0.0 75.0
HS4 0.5 70.2
ISIC 0.0 63.4
ISIC 0.5 68.7
CPC 0.0 52.7
CPC 0.5 59.9
CPC to HS2 0.0 50.6
CPC to HS2 0.5 57.8

Best EIF by

Product Description Product HS code Semantic EIF HS code
Matching

10k Gold Imported . .
Precious metal for Precious metal for
Crystal March Jewelry ewelr Jewelry ewelr
Birthstone Ring ] y ) ¥
Dark Roast Whole Bean Coffee, green Coffee; not Coffee, green
Coffee; roasted
Coffee bean roasted bean
. Brooms, brushes,
Car tire brush mops Vacuum cleaner  Vacuum cleaners No match
Women's Belice Ballet Footwear Textile, non- Fabrics. woven No match
Flat 100% synthetic woven polyester !

Figure 4: Examples of errors by Flamingo. Most errors can be categorized into the five types shown.

ISIC and CPC codes for each product using text descriptions. The United Nations also publishes
correspondence tables between CPC and HS codes, we include this as an additional option to identify
HS codes for EIFs instead of predicting with the SBERT model. Table 4 shows the performance
metrics on the 664 product dataset.

EIF matching based on HS codes outperform the rest of the options across all metrics. Upon manual
inspection, we find that HS6 codes are more granular with a deeper hierarchy compared to ISIC
and CPC. The assignment of ISIC and CPC codes in the EIF database is also subjective, e.g., some
mappings correspond to 3 digit CPC codes while others correspond to 5 digits. There are also errors
in mapping between CPC and HS codes in the correspondence tables, and directly predicting the HS
codes reduces the errors compared to mapping correspondence data across two sources.

D.2 Analysis of errors

We randomly sampled 50 data points incorrectly predicted by the FlamingoZeroHS4 from Table|l}
and manually analyzed them to understand the reasons behind the erroneous outputs. Figure ] shows
a few examples of the errors, categorized into five types. A majority of the errors (40%) corresponded
to electronic cables such as those for charging or connecting components (row 4 in the figure). There
is an EIF in Ecoinvent, called ‘cable, unspecified’, which captures all of these different types of
cables. We find that SBERT is poor at matching text such as these, where it needs to understand
the set relationship across closely related EIFs or HS codes. Some HS codes contain descriptions
of similar nature, e.g., ‘not elsewhere classified’, and are a common source of errors in matching.
Methods which capture such set relationships or exploit the hierarchy in a different manner could
overcome this issue.
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Figure 5: Impact of EIF misprediction error on downstream carbon footprint estimate. In most cases,
the error in prediction does not lead to a large error in carbon emissions, however, there are a few
outliers that cause large deviations.

In some cases (22%, row 2 in figure), the error is due to mismatch between HS codes even when the
EIF predicted is the same as the selected ground truth. For example, a toner module is mapped to
the HS code ‘ink for printing’ by the SBERT model, whereas the product maps it to a related HS
code ‘printing machinery’. In this case, the two related HS codes are not close to each other in the
hierarchy, so using a 2-digit or 4-digit version of the code did not remove the error. A related source
of error (8%, row 5 in figure) is when EIF predicted is not a match even when the HS codes match. In
this case, the HS code category is too broad and does not differentiate between unrelated EIFs. Such
errors point to the limitation of using HS codes as an imperfect classification system. A data-driven
knowledge base can potentially address such issues by capturing relationships across concepts in a
multi-dimensional manner.

About 20% of the errors were due to semantic matching errors (row 1 of figure), and point to
opportunities for improving on SBERT models. There were a few errors due to human mislabeling as
well (10%, row 3 of figure), which could be reduced by improving the annotation procedure. Finally,
we found an intriguing but rare error not shown in Figure [ In one case, the product was a package
of keyboard and mouse. The humans annotated the ground truth EIF as keyboard, whereas Flamingo
predicts the EIF as mouse. Such errors can be addressed if we break down composite products to
their individual items.

D.3 Impact of prediction error on carbon footprint

We analyze the impact of an EIF misprediction on downstream use cases using the corresponding
greenhouse gas emission values in units of kilograms of carbon dioxide equivalent (kgCO2e). We used
the ‘reference product name’ metadata in the Ecoinvent dataset to represent an EIF, but there could
be multiple entries for a single reference product based on variations such as region of manufacture
or system boundary. For this analysis, we compute the average of these individual values following
similar practice from prior works [Meinrenken et al.(2012), |Clark et al.(2022)]]. We use the metrics
Pearson’s correlation (Pearson R), mean absolute percentage error (MAPE), and median absolute
deviation (MAD) to characterize the errors.

We use the predictions by FlamingoZeroHS4 variant of the algorithm for this evaluation. Our analysis
is limited by the known EIFs in the dataset. Of the 664 products in our dataset, we only have ground
truth EIF for 277 products as the rest do not have a match. Of these 227 products, 130 are predicted
to have a match by FlamingoZeroHS4. 125 of the 130 products are predicted correctly, and yield low

14



Table 5: Evaluation results for Flamingo with a dataset of 264 food ingredients. Ground truth is
obtained through annotation by a non-expert worker.

Distance Precision@1 (%) Macro Weighted
Method threshold Precision Precision
Overall No Match Match
BM25 0.1 23.1 19.8 30.0 13.4 56.9
SBERT 0.5 34.8 14.1 77.0 26.1 86.2
FlamingoZeroHS4 0.0 70.0 75.7 57.4 41.0 76.1

error — Pearson R: 0.95, MAPE: 18%, MAD: 0 kgCOse. This statistic indicates that misprediction of
‘no match’ are the major source of errors.

To further understand the impact of errors due to semantic matching, we analyze the error after remov-
ing the HS code based filter. Predictions for 172 of 277 products are correct, and the corresponding
error metrics are — Pearson R: 0.81, MAPE: 144%, MAD: 3.9 kgCOse. Figure [5|compares the carbon
emission values of the ground truth EIF to that of the predicted ones. We use a log/log plot to cover
the wide range of values, trends look similar in linear scale. Overall, there is a high correlation in
predicted and ground truth values, the errors are small in absolute terms but larger in relative terms.
There are a few anomalous predictions that cause an error in multiple orders of magnitude, four points
have >1000% error and an additional 5 points have >100% error. Some examples of errors include
predicting a microwave as HVAC unit (8118%), incorrect battery chemistry (324%), and incorrect
paper type (112%).

D.4 Generalization to food ingredients

LCA experts often match EIFs to materials, manufacturing processes, and not just products. We
evaluate if Flamingo generalizes to use cases beyond our product dataset using a separate dataset
of food ingredients. Unlike the product descriptions, the ingredients consist of only a few words,
e.g. ‘organic diced tomatoes’, ‘purified water’, ‘organic licorice’. Our dataset consists of 272
ingredients, and we follow the same steps as Section [C] to annotate the ground truth. Due to the
labor-intensive nature of annotations, we only use one worker for this micro-benchmark and do not
have a consensus based label. Unlike generic products, basic materials such as food ingredients
have a higher probability of finding a match in the EIF dataset. From the annotations, we find 87
ingredients that match to EIFs and 177 that do not have a match.

Table[5|summarizes the results. We report the results of the FlamingoZeroHS4 algorithm, and compare
it with SBERT and BM25 baselines. In this case, the HS code for the ingredient is provided as part
of the dataset, and we rely on Flamingo to predict the HS codes for both EIFs and ingredients. The
results follow the same trends as those from product dataset experiments, although the improvement
compared to baselines is even larger in this case (35.2%). As an example, the best semantic match
for ‘pineapple juice’ is ‘pineapple’. The HS codes for these two strings are different, and Flamingo
correctly predicts ‘No match’.

From an experience point of view, LCA experts find Flamingo to be useful and report significant
time savings. A skilled practitioner used Flamingo to complete LCA of 15K food products in just 15
minutes, a task that would have previously taken 40 hours of manually mapping EIFs.
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