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ABSTRACT
Since 2015, Amazon has reduced the weight of its outbound
packaging by 36%, eliminating over 1,000,000 tons of pack-
aging material worldwide, or the equivalent of over 2 billion
shipping boxes, thereby reducing carbon footprint through-
out its fulfillment supply chain. In this position paper, we
share insights on using deep learning to identify the optimal
packaging type best suited to ship each item in a diverse
product catalog at scale so that it arrives undamaged, de-
lights customers, and reduces packaging waste. Incorporat-
ing multimodal data on products including product images
and class imbalance handling technique are important to
improving model performance.

1. INTRODUCTION
Amazon is committed to reaching net zero carbon by 2040,
a decade earlier than the goals of the Paris Agreement [1, 2,
3]. Amazon sells hundreds of millions of different products
and ships billions of items a year. Since 2015, Amazon has
reduced the weight of its outbound packaging by 36%, elimi-
nating over 1,000,000 tons of packaging material worldwide,
or the equivalent of over 2 billion shipping boxes thereby
reducing carbon footprint throughout its fulfillment supply
chain [1, 2, 3]. The reduction is in large part due to the
use of machine learning to identify the optimal packaging
type for each product so that it arrives undamaged, delights
customers, and reduces packaging waste [1, 2, 3]. The fol-
lowing examples of available package types are ranked from
most protective to least protective (see Figure 1): corrugate
boxes, padded mailers or envelopes, poly or paper bags, and
frustration free packaging (FFP) or ship in own container
(SIOC) which have only vendor provided packaging.

In this position paper, we highlight learnings from using
deep learning [4] to identify products that are suited for a
given package type. The novelty of this article is two-fold:
First, it contributes to sparse public literature on using ma-
chine learning to select outbound shipment packaging [5, 6].
Existing packaging literature are limited to either machine
learning on small datasets (less than one million products)
or using only textual/tabular information on products. In
contrast, our learnings are based on a larger dataset (several
million products) and use multimodal information on prod-
ucts, including product images. Second, the dataset in pack-
aging domain typically has class imbalance (minority group
is 1%-8% of sample data). There is little research on eval-

uating deep learning in the context of both class imbalance
and multimodal data [7]. We highlight learnings from using
different data-level and algorithm-level techniques to han-
dle class imbalance in the packaging domain. The broader
idea of using multimodal data including product images to
assess package suitability has been filed for patent [8] and
we limit details to business non-critical and non-confidential
information.

2. THE PACKAGING DOMAIN

2.1 Problem Statement
The problem we faced was how to create a scalable mech-
anism to identify optimal packaging across the hundreds of
millions of products shipped by Amazon, using the informa-
tion provided by vendors and Amazon systems (e.g., ware-
house technology that captures product images). An exam-
ple to contextualize the waste impact of pack type selection:
a padded paper mailer is 75% lighter and occupies 40% less
space when shipped compared to a similar size box [1]. How-
ever, we balance the trade-off between packaging waste con-
siderations versus the likelihood that a customer receives a
damaged item because of less protective/wasteful packaging.
For example, fragile products will necessitate more protec-
tive packaging such as a box, while sturdier products could
ship in flexible package types or in FFP/SIOC (Figure 1).

We pose optimal package selection as a binary classification
problem where the goal is to classify products suitable for a
given package type. We collect labeled training data through
various channels including manual labeling of products by
trained labelers and through direct customer feedback sig-
nals. We typically have several million training labels for
any given pack type and the data has extrinsic class im-
balance (typically 1% to 8%) where the minority group are
products that are unsuitable for a given pack type. We
use customer facing product features that include textual
data such as product title and product description, numer-
ical data such as product weight and dimensions, and cate-
gorical data such as product assignments to catalog product
categories. We also incorporate images on how the product
is packaged by the vendor (Figure 2). Product images are
crucial input features overlooked in earlier studies [e.g. Refs
5, 6]. For example, a machine learning model that solely re-
lies on textual features may predict a LED light bulb would
require box packaging; however, the product image may ac-
tually indicate the vendor already packed it safely in a box
thereby making it suitable for SIOC which has only the ven-
dor provided packaging (Figure 2).



Figure 1: Example outbound packing types at Amazon.

Figure 2: Some examples of product images.

2.2 Performance Metric and Multimodal Deep
Learning

As our data is highly skewed, we use Precision-Recall (PR)
curve as our primary performance metric following Ref. [9].
We also use a set of complementary performance metrics
(e.g., Brier score) to capture different aspects of model per-
formance [9]. For simplicity, we limit our discussion to PR
curve.

We use a multimodal deep model that learns from both
product images and textual/tabular descriptions of the prod-
ucts. We leverage existing deep learning backbones to ex-
tract features from each modality (Figure 3). We use a fuse-
late strategy [10] to combine feature representations from
each modality near the output layer. The technique allows
the model to extract higher level features from each modal-
ity before deciding how to fuse them. We pre-process the
product images using faster R-CNN [11] to crop an image to
the product area. To extract image features, we fine-tuned
a ResNet-50 architecture [12] that was pre-trained on Im-
ageNet data [13]. Given the diverse nature of the product
catalog, the product textual data (e.g., product descriptions
contributed by sellers) may have out-of-vocabulary words
such as jargon and abbreviations. Therefore, for textual
features, we used FastText [14] character-based word em-

Figure 3: Multimodal deep model that leverages existing
model backbones. We train the model end-to-end using im-
ages, text, and tabular (numerical and categorical) data.

beddings and use weighted averaging of word embeddings to
derive product level textual features. For tabular data (nu-
merical and categorical), we use one hidden-layer Multilayer-
Perceptron to generate vector representations. We concate-



Table 1: Summary of imbalance handling methods explored
with observed change in model performance. We measure
model performance using PR curve on the holdout set with
original skewed distribution. We report performance as %
change in PR-AUC when compared to the multimodality
baseline where class imbalance is not addressed. Range pro-
vided is across different pack types.
Technique Technique

Type
Relative
PR-AUC
Change

Borderline SMOTE Over Sampling Data 4% to 7%

Near-miss Under Sampling Data -7% to 0%

Hybrid of Random Over Sampling
and Random Under Sampling

Data 6% to 10%

Two-phase Learning with Random
Under Sampling

Data 18% to 24%

Mean Squared False Error Algorithm 9% to 14%

Focal Loss Algorithm 2% to 5%

nate the topmost vectors from each modality using two dense
layers to produce pack type predictions. Overall, using mul-
timodal data helped improve model performance (PR curve)
on pack type classification by as much as 30% across differ-
ent pack types compared to corresponding single modality
baselines. We observed that the multimodal deep model
performance is most sensitive to how we handle class imbal-
ance compared to other model hyper-parameters as well as
alternative deep learning backbones we tested.

2.3 Handling Class Imbalance
We summarize learnings from six different techniques to
handle class imbalance (see Table 1). Four are data tech-
niques and two are algorithm techniques. There are many
more approaches to handle class imbalance including hybrid
approaches [7]. The techniques we discuss were both practi-
cal to implement and satisfied our time and cost constraints
for long-term maintenance. For all techniques, we trained
the model to adequate epochs to minimize performance dif-
ferences that may arise from slow convergence [15].

Data techniques In data technique, we modified the train-
ing data to reduce class imbalance. We tested four ap-
proaches: Borderline SMOTE Over Sampling [16], Near-
miss Under Sampling [17], Hybrid of Random Over Sam-
pling and Random Under Sampling, and Two-phase Learn-
ing with Random Under Sampling [18]. In Borderline SMOTE
Over Sampling, we duplicated minority samples to achieve
class balance using Borderline SMOTE [16]. This approach
resulted in PR-AUC increase by 4%-7% across pack types.
The biggest disadvantage is the training took 25%-35% more
time to converge across pack types due to data duplica-
tion, although still falling within our time constraint. In
Near-miss Under Sampling, we discarded majority samples
(thereby throwing out data) to achieve class balance using
Near-miss Algorithm [17]. This approach resulted in either
PR-AUC parity or degradation of up to 7% across pack types
while simultaneously reducing training time by as much as
40%. In the Hybrid of Random Over Sampling and Random
Under Sampling approach, we evaluated on different hyper-
parameters to randomly over sample the minority class and
randomly under sample the majority class to achieve class
balance.

Overall, the best performing parameters were skewed to-

wards oversampling and resulted in 6%-10% improvement in
model performance across pack types while increasing model
training time by as much as 25%. In Two-phase Learning
with Random Under Sampling, we used the model trained
using under sampling as the pre-training phase and further
fine-tuned the model on original imbalance data in the sec-
ond phase. The first phase allows the minority group to
influence the learning, and in the second phase the model
still gets to see all data. This approach resulted in PR-AUC
increase by 18%-24% across pack types while maintaining
parity in training time compared to single modality base-
lines.

Algorithm Techniques In algorithm techniques, we modi-
fied the algorithm’s loss functions to handle class imbalance,
thereby allowing the minor samples to have more influence.
We discarded cost-sensitive learning approaches as they did
not satisfy our resource constraints. We tested two loss func-
tions: Mean Squared False Error [19] and Focal Loss on the
image modality alone [20]. Both approaches were easy to im-
plement and caused no substantial change in training time.
The mean squared false error loss function resulted in im-
proving the model performance by as much as 14%. The
focal loss functions have shown promising improvements on
image datasets. The function reduces the importance of easy
to classify samples thereby focusing on hard to classify sam-
ples. The focal loss improved model performance by 5% at
best when implemented on the image modality component
of our deep model (Table 1).

3. CONCLUSION
Our paper adds to sparse literature on how to use machine
learning to choose a suitable pack type to ship a given prod-
uct such that the products arrive undamaged, delight cus-
tomers, and reduce packaging waste. Machine learning is
crucial to make pack type decisions at scale given the hun-
dreds of millions of products in a catalog. Approaches such
as manual inspection of each product in the catalog to select
a suitable pack type are non-scalable and impractical be-
cause both the catalog and pack types are dynamic; generic
rule-based decisions (e.g., all product in “vinyl toys” cate-
gory under $25 would go in a flexible mailer) fail to capture
exceptions as they are not product-specific. Furthermore,
our paper highlights what product-specific data we use is
crucial to assess pack type suitability; especially including
product images is important as text/tabular data lack in-
formation on how the product is currently packaged (e.g.,
LED bulb already packed in a box by the vendor) which
can help reduce wasteful packaging. Synthesis studies on
deep learning with class imbalance have found that the best
technique to handle class imbalance varies by problem do-
main [7]. In fact, there exist few such studies that use data
from either real-world applications or multimodal data [7].
In that regard, our learnings on imbalance handling tech-
niques contribute to both packaging domain and broader
literature on evaluating deep learning in the context of class
imbalance and big data.
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