
Choice Modeling and Pricing for Scheduled Services
Adam N. Elmachtoub

Amazon and Columbia University
New York City, NY, USA
machtoub@amazon.com

Kumar Goutam
Amazon

Seattle, WA, USA
kggoutam@amazon.com

Roger Lederman
Amazon

Seattle, WA, USA
rllederm@amazon.com

Abstract
We describe a novel framework for discrete choice modeling and
price optimization for settings where scheduled service options
(often hierarchical) are offered to customers, which is applicable
across many businesses including some within Amazon. In such
business settings, the customers would see multiple options, often
substitutable, with their features and their prices. These options
typically vary in the start and/or end time of the service requested,
such as the date of service or a service time window. The costs and
demand can vary widely across these different options, resulting in
the need for different prices. We propose a system which allows for
segmenting the marketplace (as defined by the particular business)
using decision trees, while using parametric discrete choice models
within each market segment to accurately estimate conversion
behavior. Using parametric discrete choice models allows us to
capture important behavioral aspects like reference price effects
which naturally occur in scheduled service applications. In addition,
we provide natural and fast heuristics to do price optimization.
For one such Amazon business where we conducted a live A/B
experiment, this new framework outperformed the existing pricing
system in every key metric, increasing our target performance
metric by 19%, while providing a robust platform to support future
new services of the business. The model framework has now been
in full production for this business since Q4 2023.

CCS Concepts
• Computing methodologies → Classification and regression
trees; Supervised learning by regression;Model development
and analysis; Feature selection; • Theory of computation→
Computational pricing and auctions; • Applied computing
→ Online shopping; Transportation; Decision analysis.

Keywords
decision trees; choice models; pricing; service options offerings;
business analytics

ACM Reference Format:
Adam N. Elmachtoub, Kumar Goutam, and Roger Lederman. 2026. Choice
Modeling and Pricing for Scheduled Services. In Proceedings of the 32nd
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD
’26), August 09–13, 2026, Jeju Island, Republic of Korea. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3770854.3783932

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’26, Jeju Island, Republic of Korea
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2258-5/2026/08
https://doi.org/10.1145/3770854.3783932

1 Background
There are many businesses that require customers to choose among
options for a scheduled service. For instance, a customer may pick
a day (also called lead time) and/or time window for delivering
their groceries, for a technician to come to their location, or to
bring a vehicle to a repair center. Accordingly, different days or
time windows (and lengths) may have different prices in some of
these applications. In this paper, we describe how to formulate
such a problem, leverage customer choice data properly, and price
the different service options. Our framework has been deployed
successfully within Amazon, and this paper provides an overview
of the approach and the results from our implementation.

1.1 Customer Journey
We begin by describing the problem from a customer’s perspective.
The standard customer experience for any of such businesses would
look like the following: many customers would go to the business
website, enter a few details of their requirements, and then expect
to see prices of various options which would fulfill their needs and
requirements. These prices need to be shown fairly quickly after
entering the details, so latency is a crucial aspect. The Amazon
business we worked with shows the customer a set of options and
their prices simultaneously. Notably, for some customers, some
of the options might be considered substitutable. If the customer
likes the price of a particular option, they select and book it (a
conversion). In many cases, there will also be a second level where
more options are provided after selecting an option from the first
level. The second level options will provide more flexibility and
details to match the user preferences, and these secondary options
need to be priced as well. For this paper, we suppose that the first
level option corresponds to a particular day (also called lead time),
and the second level option is a time window within that day.

An example of such a use-case is when customers are shopping
on a grocery store website and they have to choose their desired
delivery date and time. At the first level, the customer may see
possible delivery dates a few days into the future (which are usually
called lead-times). Once they click on a particular date, the customer
will see possible delivery windows for that day. Each day and time
may have a different delivery cost associated with it, which may
need to be optimized based on cost and demand information.

Depending upon which time window the customer chooses, it
will affect the cost of service for the business while providing value
to the customer. Overall, our problem statement is to select the
prices of all these options with a goal to maximize (mixture of)
performance criteria. The goal of this work is to design a system
that (i) predicts conversion probabilities of the various options
accurately, (ii) optimizes the prices of those options to maximize a
given business objective, and (iii) handles new business capabilities
such as pricing second (and third) level options.

https://doi.org/10.1145/3770854.3783932
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3770854.3783932

KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea Elmachtoub, Goutam, and Lederman

1.2 Legacy approach
For the particular business where we implemented our proposed
methodology, the previous legacy system for automating pricing
was using the following ideas: first discretize prices, then fit a
decision tree (on a bootstrapped dataset to navigate the exploration-
exploitation trade-off [6]) corresponding to each price to predict the
conversion probability for that price, and then select the objective-
maximizing price for each of the service options. The previous
framework had three fundamental limitations which we describe
below, motivating us to invent the next generation pricing system.

We first observe that the previous system does not leverage
the data optimally in estimating the conversion probabilities since
each price has its own data and machine learning model, rather
than using all data for one unified model. As a result, the expected
conversion rate as a function of price can have an erratic and non-
monotone shape due to limited data at some price levels, which can
in turn lead to selecting sub-optimal prices. See Figure 1a for an
anecdotal example. Note that the y-axes in figures in this paper are
intentionally hidden and prices are normalized for confidentiality.

Second, we note that there is no substitutability captured across
various options in the legacy framework, resulting in an algorithm
that optimizes the price for each day (lead time) option separately.
In other words, the legacy system does not explicitly capture the
fact that customers may be inclined to switch their choice from one
day to another, if the price is right. Figure 1b demonstrates that
customers clearly have preferences for particular days (also called
lead times), so a reasonablemodel would predict that customersmay
substitute from their most preferred day to the day before or the day
after (as opposed to many days before or after the original lead time)
for the right price. Even if the legacy framework was somehow
extended to capture substitutability, optimizing multiple discrete
prices would have been an intractable combinatorial optimization
problem.

Third, the previous framework did not easily allow us to consider
new products or initiatives for future needs. For example, a business
introduced differentiated pricing for new time window options,
e.g, different prices for specific pickup windows and/or delivery
windows of different lengths. This second level of choice would be
welcome by customers to have more control on pickup/delivery
logistics, but increases learning and computational difficulty. Thus,
a more robust system for learning and optimization was needed
that can handle modifications and enrichment of the business.

1.3 Our New (and Implemented) Methodology
We implemented a new model framework for choice modeling and
price optimization that addresses the fundamental issues discussed
above. This system can efficiently learn and tractably optimize
prices for a potentially large set of substitutable service options,
through a novel integration of both parametric and non-parametric
models. The key components of this framework are as follows.

• Market Segmentation Tree. First, the marketplace itself
is segmented into different segments, based on the type of
pricing quote request, using the Market Segmentation Tree
(MST) methodology [2]. An MST is a decision tree of the
marketplace based on differences in choice behavior rather
than differences in the pricing quote characteristic, i.e., it

(a)

(b)

Figure 1: (a) A single price request example. We show the
conversion probabilities and expected objective (averaged
over 14 lead times) computed by the old model. The final
price was 2.0 (scaled) and the customer did not book. The
dotted red lines are price guardrails. (b) Price requests from
a certain time range. We show cancellation rate, executed
quotes, and canceled quotes as a function of selected lead
time option for booked customers.

is a supervised approach to market segmentation based on
customer response data. This leverages the flexibility of non-
parametric tree methods, but allows for structural models
of choice behavior to be integrated at each leaf node of the
decision tree.

• Reference-Price-Effects Choice Model. In each market
segment, a modified multinomial logit (MNL) discrete choice
model with local reference price effects is used to model
how customers in this market segment decide between the
various (lead time) options according to the prices offered.
The use of the parametricMNL choicemodel naturally allows
us to capture substitutability among the lead time options
in each market segment. The reference price effect here is
essential and captures customer’s willingness to adjust their
desired lead time ±1 day for the right price. As one can see

Choice Modeling and Pricing for Scheduled Services KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea

from the pattern in Figure 1b, customers have a clear range
of days (lead times) in mind when making a decision.

• Assortment Pricing Algorithms.We provide optimization
procedures to quickly find prices of the entire assortment, i.e.,
all lead time (and other available) options, simultaneously.
Our algorithms leverage the structure of the reference-price-
effects MNL discrete choice model [15] to come up with
strong candidate solutions quickly. Specifically, we consider
a simple policy that has a minimum price parameter and a
cost-markup price parameter.

• Flexible Wait Time Capability. We build an auxiliary
choice model to capture which time window (the second
level) options the customers prefer, as a function of their
prices and the lead time (the first level option) selected. We
use natural assumptions to justify why we do not need to
capture all combinations of time windows and lead times as
individual choices, which ensures a fast, simple, as well as
adaptable methodology.

1.4 Literature Review
The idea of modeling and estimating customers’ choice behavior
and using it in a revenue management setting has been explored
in many industries (see [3, 8–10, 17] for more details). Multiple
classes of models can be used to estimate choice behavior (also
known as the demand function): ranging from parametric models
to non-parametric models. The most famous and widely used choice
model is the Multinomial Logit (MNL) model [13]. A key feature
of this choice model is that it has closed-form choice probabilities,
can be fit using a convex Maximum Likelihood Estimation, and
the optimal pricing strategy is a single constant mark-up across all
options [11, 14].

Non-parametric models such as those discussed in [1, 4, 5, 7, 16]
can have their own advantages in terms of estimation accuracy
and allowing for more automatic flexibility. In this paper, we use
Market Segmentation Trees (MSTs) from [2], which involves an
interpretable non-parametric tree that has choice models in the
leaves. In our setting, we focus on using MNL choice models in
the leaves with local reference price effects, inspired by [15]. We
elaborate on these ideas and howwe extend them to our application
in the remainder of the paper.

The rest of the paper is structured as follows. In Section 2, we
formally describe the problem and assumptions. In Section 3, we
describe the use of the market segmentation trees along with the
reference-price-effects choice model to predict customer behavior.
In Section 4, we describe the optimization algorithms. In Section
5, we describe the details of the A/B experiment for one particular
Amazon business which generated about 19% improvement in
performance for the new framework over the previous system. In
Section 6, we describe how this new approach can be extended to
new service offerings such as flexible time-windows. We provide
conclusions in Section 7.

2 Assortment Pricing Problem Formulation
We now describe a general model framework for assortment pricing,
which can be applicable tomany businesses including several within
Amazon. We let X ∈ R𝑑 denote the features corresponding to a

customer and their pricing quote request, which could include
business specific details and general temporal aspects such as day
of week. Features may also include the current conditions of the
Amazon network (relevant info regarding costs) and the economy
(holiday season).

We let C ∈ R𝐿 denote the random cost associated with a pricing
quote for each of the 𝐿 lead time options we are quoting. Let p ∈
R𝐿 denote the corresponding vector of price quotes, which is the
decision variable. All price and cost data can be normalized by some
benchmark or base price. We let 𝑌 (p) ∈ {0, . . . , 𝐿} denote the lead
time option selected by the customer as a function of p, where
𝑌 (p) = 0 indicates that the customer did not select any of the 𝐿 lead
time options. Let 𝑍 ∈ {0, 1} be the event that the customer cancels
their request after booking, i.e., 𝑍 = 1 indicates a cancellation.
Although we cannot reveal the exact business objective (which
is a convex combination of expected revenue, expected cost and
expected conversion), we have given a specific example of what
the objective function would look like if one were to myopically
maximize expected profit. The profit objective would be, given
a pricing request described by x, to choose the prices so as to
maximize the expected profit, i.e.,

max
p≥0
E

[
𝐿∑︁
𝑖=1

(𝑝𝑖 −𝐶𝑖)I(𝑌 (p) = 𝑖) (1 − 𝑍) |X = x

]
(1)

Assuming that C ⊥⊥ 𝑌 (p) |𝑋 as well as C ⊥⊥ 𝑍 |𝑋 (we use ⊥⊥ to
denote independence), then the objective expression above can be
re-formulated using the following steps:

E

[
𝐿∑︁
𝑖=1

(𝑝𝑖 −𝐶𝑖)I(𝑌 (p) = 𝑖) (1 − 𝑍) |X = x

]
=

𝐿∑︁
𝑖=1
P(𝑌 (p) = 𝑖 |X = x)·

E
[𝐿∑︁
𝑗=1

(𝑝 𝑗 −𝐶 𝑗)I(𝑌 (p) = 𝑗) (1 − 𝑍) |X = x, 𝑌 (p) = 𝑖
]

=

𝐿∑︁
𝑖=1
P(𝑌 (p) = 𝑖 |X = x)·

E
[
(𝑝𝑖 −𝐶𝑖) (1 − 𝑍) |X = x, 𝑌 (p) = 𝑖

]
=

𝐿∑︁
𝑖=1
P(𝑌 (p) = 𝑖 |X = x)·[

(𝑝𝑖 − E
[
𝐶𝑖 |X = x, 𝑌 (p) = 𝑖)

]
)P(𝑍 = 0|X = x, 𝑌 (p) = 𝑖)

]
=

𝐿∑︁
𝑖=1
P(𝑌 (p) = 𝑖 |X = x)·[

(𝑝𝑖 − E
[
𝐶𝑖 |X = x

]
)P(𝑍 = 0|X = x, 𝑌 (p) = 𝑖)

]
The first equation follows from the law of total expectation. The
second equation follows by definition of the indicator function. The
third equation follows from the assumption that C ⊥⊥ 𝑍 |𝑋 . The
fourth equation follows from the assumption that C ⊥⊥ 𝑌 (p) |𝑋 .

KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea Elmachtoub, Goutam, and Lederman

Thus, the assortment pricing problem can be reformulated as

max
p≥0

𝐿∑︁
𝑖=1

[
P(𝑌 (p) = 𝑖 |X = x) (𝑝𝑖 − E [𝐶𝑖 |X = x])·

P(𝑍 = 0|X = x, 𝑌 (p) = 𝑖)
] (2)

The expression (2) above clearly shows that there is a need to
come up with prediction models for 𝐶𝑖 |X = x, 𝑍 |X = x, 𝑌 (p) =

𝑖 , and 𝑌 (p) |X = x. We note that we assume we have access to
models to predict E [𝐶𝑖 |X = x], which is not the focus of this paper.
Predicting the cancellation rate, P(𝑍 = 1|X = x, 𝑌 (p) = 𝑖) is a
straightforward classification task. The key challenge is designing
a discrete choice model for 𝑌 (p) |X = x, which we detail in Section
3.

We remark that removing the cost component in (2) results in a
revenue maximization problem, while removing (𝑝𝑖−E [𝐶𝑖 |X = x])
results in a conversionmaximization problem. Our techniques apply
to any of these objectives, as well as any convex combination of
them. For completeness, we describe here the generalized objective
as well (dropping the choice and cancellation events for simplicity):

max
p≥0

(1 − 𝛼) ∗ E
[
𝐿∑︁
𝑖=1

(𝑝𝑖 −𝐶𝑖)
]
+ 𝛼 ∗ E

[
𝐿∑︁
𝑖=1

𝐶𝑖

]
We can see that 𝛼 = 1 maximizes expected weighted conversion,
𝛼 = 0.5maximizes expected revenue, and𝛼 = 0maximizes expected
profits. At the same time, one can choose any value 0 ≤ 𝛼 ≤ 1
depending upon the business requirements to balance revenue,
cost and conversion priorities which gives flexibility to achieve the
desired business goals.

3 New Solution Framework
In this section, we explain our new system which combines the
Market Segmentation Tree (MST) and a local reference-price-effects
multinomial logit (MNL) choice model to predict customer behavior.
Recall that our goal is to to estimate the probability that a customer
chooses lead time option 𝑖; 0 ≤ 𝑖 ≤ 𝐿 for any quote x and prices p,
i.e., P(𝑌 (p) = 𝑖 |X).

We shall estimate this probability using two steps. First, we
build a decision tree by partitioning on the features in X. We use
the Market Segmentation Tree (MST) methodology in [2], which
explicitly builds trees that lead to the best choice models in the
leaves. Within each leaf node 𝑙 , we train a multinomial logit choice
model with local reference price effects to capture P𝑙 (𝑌 (p) = 𝑖).

3.1 Market Segmentation Tree
An MST is a type of binary decision tree where the tree is used
to segment the marketplace, and choice models are fit in each
leaf of the tree. The key idea behind an MST is that the splitting
criteria is determined by the fit of the choice models in each leaf,
resulting in a supervised way to do marketplace segmentation. We
will think of each leaf as a market segment. The features X will
be used to decide which leaf/market segment of the tree we are in.
Each leaf is associated with a particular choice model whose data
and parameters are segment-specific. A flexible open-source library
from [2] is available for MST in Python. The key advantage of using
anMST is that we can capture nonlinear effects of the features using

a non-parametric tree model, while still using a parametric model
to do pricing and choice modeling within each segment. See Figure
2 for an example. We describe the discrete choice models fit in each
leaf in Section 3.2 below.

Figure 2: An example of an MST. Decision tree splits are
performed with respect to the contextual variables provided,
which includes both discrete and continuous features. Each
of the resulting market segments contains a unique MNL
discrete choice model P𝑙 (𝑌 (p) = 𝑖).

We remark that, in production, we can the train MST offline and
update periodically. We have also deployed a step to subsample
the data over the last few months to encourage exploration. This
sub-sampling helps ensure we do not converge to a bad decision
tree by introducing some variability and adapts to changing data
over time. The intuition behind sub-sampling the dataset is akin
to a technique known as Thompson Sampling in the multi-armed
bandit literature [6]. Combining exploration and exploitation is
fundamental as the ground truth fundamentally changes over time
as the marketplace conditions change; thus, some exploration is
needed to ensure adaptation occurs.

3.2 Reference-Price-Effects Choice Model
For the rest of the section, we focus on a particular leaf/market
segment of our MST and drop the dependence on the leaf 𝑙 for
convenience. The local reference price 𝑟𝑖 for lead time 𝑖 is defined
as the lowest prices over a 3 weekday window centered at 𝑖 if 𝑖
is a weekday (2 days if 𝑖 is first or last weekday), or the lowest
price over the weekend days if 𝑖 is on the weekend. From Figure 1b,
we can see customers clearly have preferences towards particular
lead times. However, Figure 3a makes it clear that customers do
have some leeway in their desired lead time and tend to favor the
lower price among their search range. This motivates our usage
of a local reference price effect, which helps capture substitution
effects primarily to lead times that are close to the most preferred
lead time.

We model the probability of a customer selecting lead time 𝑖 as

P(𝑌 (p) = 𝑖) = 𝑒𝛼1𝑖+𝛼2𝑖
2+𝛼3

√
𝑖−𝛽𝑖𝑝𝑖−𝛾𝑖 (𝑝𝑖−𝑟𝑖)

1 +∑𝐿
𝑗=1 𝑒

𝛼1 𝑗+𝛼2 𝑗2+𝛼3
√
𝑗−𝛽 𝑗𝑝 𝑗−𝛾 𝑗 (𝑝 𝑗−𝑟 𝑗)

,

where 𝛼1, 𝛼2, 𝛼3 are constants to capture the lead time effects as
seen in Figure 1b. 𝛽𝑖 is the price sensitivity for lead time 𝑖 , and 𝛾𝑖 is
the reference price sensitivity of lead time 𝑖 for having to pay more
than the reference price. One can easily see that if we decrease price
𝑝𝑖 , this would decrease the probability we choose any other option
besides 𝑖 . Moreover, if lead time 𝑖 has a price lower than 𝑖 + 1 (both

Choice Modeling and Pricing for Scheduled Services KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea

weekdays or both weekends), then increasing the price of 𝑖 also
provides an additional boost to the chance of choosing 𝑖 + 1 due to
the reference price effect. This is ideal as the lead times closest to 𝑖
should be impacted the most by a change in the price of lead time 𝑖 .

We now illustrate the mechanics of the reference-price-effects
choice model with a toy example. Suppose there are 7 lead time
options so that 𝐿 = 7 and the prices on those days are set to 𝑝1 =
$10, 𝑝2 = $11, 𝑝3 = $9, 𝑝4 = $12, 𝑝5 = $12, 𝑝6 = $10, 𝑝7 = $8
representing Sunday to Saturday prices. Following the recipe for
local reference prices stated early, the reference prices are 𝑟1 =

$8, 𝑟2 = $9, 𝑟3 = $9, 𝑟4 = $9, 𝑟5 = $10, 𝑟6 = $10, 𝑟7 = $8. Suppose
𝛼1 = 𝛼2 = 𝛼3 = 0, 𝛽𝑖 = 0.10, and 𝛾𝑖 = 0.05 for all 𝑖 = 1, . . . 7.
Then, P(𝑌 (p) = 𝑖) is 0.295, 0.098, 0.089, 0.120, 0.076, 0.080, 0.109,
0.133 for 𝑖 = 0, . . . 7 using the MNL formula above. Note that these
probabilities sum to 1, and that option 5 has a higher probability
than option 4 despite having the same price, since option 5 has
a higher reference price. Option 3 has a higher probability than
option 4 despite having the same reference price, since option 3 has
a lower price.

To estimate the model parameters 𝛼1, 𝛼2, 𝛼3, 𝛽𝑖 , 𝛾𝑖 , we can use a
standard technique know as maximum likelihood estimation (MLE),
for which built-in packages are easily available for MNL based
discrete choice models. Note that we have the historical prices,
reference prices, and choices made to properly use MLE and fit
our model. We also note that we can vary the definition of the
reference prices: we can allow some dependencies on X, and we
can allow coefficients to have particular structure corresponding
to weekend/weekdays and bucketing different lead times together.
In Section 5, we bucket the lead times into 4 categories to reduce
the number of parameters so as to prevent over-fitting. In one of
the use-cases where the business offers a 2 week period into the
future, we split the 14 lead time options as follows: the first three
weekdays, the next three weekdays, the last four weekdays, and
the remaining four weekend days.

We remark that one can have a very rich contextual MNL to
describe the whole marketplace and not use MST, but this would
require estimating too many parameters. The MST approach is an
effective way to combine non-parametric interpretable methods
like decision trees with parametric ones like MNL. The advantage
of using the MNL model with local price reference effects is that
it allows for tractable estimation, captures the behavioral effects
of customers having a range of lead times in mind, and allows for
price optimization, as described in Section 4 below.

4 Price Optimization
We first provide some background that is useful for our core price
optimization problem (2). The paper [15] considers the MNL model
with a particular reference price effect. They show that if (i) the
reference price is global, i.e., 𝑟𝑖 = min𝑗 𝑝 𝑗 , and (ii) all the price
sensitivities 𝛽𝑖 are equal, then the optimal policy has a very special
and tractable form: it has only two parameters corresponding to
a minimum price and an optimal markup. Under the policy, each
lead time option is priced at the maximum of (i) the minimum price
and (ii) its cost plus the optimal markup.

Given that we do not have a global reference price, we have
unequal price sensitivities, and we have other complex factors in

(a)

(b)

Figure 3: (a) Filtered on booked quotes that were booked
on Wednesday, we plot the average prices booked across all
lead times. We also show the average prices ±2 days. (b) The
average cost and price for the quotes as a function of lead
time in the previous system.

our optimization model, the two-parameter policy is not necessarily
optimal for our model. Nevertheless, it is still a reasonable and
intuitive heuristic which we shall employ.

Figure 3b indeed suggests that some form of a markup policy
is natural and aligns with current system. Our price for lead time
option 𝑖 under the two parameter policy has the form

𝑝𝑖 = max{𝑚1, 𝑐𝑖 + 1/(𝛽𝑖 + 𝛾𝑖) +𝑚2}, (3)

where𝑚1 is the minimum price,𝑚2 is the markup, 𝑐𝑖 is the expected
cost, 𝛽𝑖 is the price coefficient for lead time 𝑖 , and 𝛾𝑖 is the reference
price coefficient.

The two-parameter policy has the following nice properties,
convenient for this Amazon business’ pricing application. First, it
is very quick to optimize over due to its simplicity, which helps in
keeping the latency low. Second, it keeps the prices of the lead time

KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea Elmachtoub, Goutam, and Lederman

options in correspondence with their costs, which is essential for
encouraging customers to use low cost options. Third, the small
differences in cost estimation result in reference price effects, where
customers end up pivoting to slightly lower prices but at a higher
conversion rate. Finally, the minimum price ensures that if one of
the costs is very low compared to the other products, we do not
have a huge price gap.

We subject this new framework to the same pricing guardrails
as previously employed. These guardrails ensure that we earn a
minimum margin, but do not unnecessarily charge customers a
price too different from the going marketplace rate. Next, in Section
5, we provide our results using real data and A/B testing.

5 Real World Results from A/B Test
5.1 Implementation Details and Challenges
In this section, we describe some details and challenges we faced
related to the actual implementation of this new framework. Firstly,
there were several limitations in the way the pricing requests’ data
was getting captured. Since modeling the reference prices require
accurate knowledge of the calendar dates of the options, it was
imperative that these dates were captured and stored accurately.
We found time zone inconsistencies which initially led to ill-fitted
models and hence sub-optimal, unexpected prices. We had to build
robust data pipelines and infrastructure to capture the raw data
accurately and cleanly so that it can be used as directly as possible
without a lot of extra steps to process it.

Although we did find an open-source MST package from the
original MST paper, it only had a simple model for the leaf nodes.
Modifying the open-source MST package for our use case of having
discrete choice models in the leaf nodes had its own issues. The new
framework needed to be general enough to capture fitting choice
models based on business data where the set of options presented
to the customers need not be always the same; e.g., depending upon
availabilities, not all lead-times will always be available. We also
ran into multiple ill-defined matrices while fitting the model due to
missing and repeated data.

Another challenge was hyper-parameter tuning, particularly
related to tree depth (3-5) and minimum sample size (100-400) in
the leaf-nodes. We also had to figure out the historical window size
(6-12 weeks) to be used for model training. All these needed to be
tested rigorously multiple times using historical data and we built
a simulator to do so. As hinted previously in Section 3.1, we added
a sub-sampling step on the historical data before fitting the model
and estimating its parameters. This served two purposes: since day-
over-day, not a lot of data would change (dropping the last day and
adding the new day), the estimated models would be very similar.
Sub-sampling insures that the fitted models are somewhat different
day-over-day and hence we will not get stuck with a randomly
bad model. Secondly, given that we still want to allow for price
exploration, if we had the same model, it will result in the same
optimal prices for the same pricing requests.

5.2 Experimental Results
We describe the A/B experiment setup here for one of the businesses
at Amazon where we have successfully deployed the model. We
ran the test for 6 weeks in 2023. All automated quote pricing traffic

was randomized at a quote request level without any interference,
so that 25% of them went to our new pricing model framework,
while the remaining 75% continued to be priced by the legacy
model framework. The new model was trained and updated at
a daily cadence,using the most recent few weeks of data and then
sub-sampling a dataset of about 50% size to estimate the model
parameters.

We now briefly describe a few segments from the MST from a
particular day. The first segment corresponds to the distance feature
provided and falls in the high range; the second and third segments
are within medium and short range, and within this, are further
split by a geography feature. We found that price sensitivities tend
to be lower for earlier lead time options, meaning that a small price
change affects earlier lead time options less than later lead times.
We also found that the local reference price effects are statistically
significant.

Model NLL Delta % Brier Score Delta %

Naive Baseline 24945 - 0.4429 -
Legacy Framework 24248 -2.8% 0.4245 -4.2%
Vanilla MNL 23971 -3.9% 0.4303 -2.8%
New Framework 23461 -5.9% 0.4193 -5.3%

Table 1: Model Fit Accuracy Metrics. NLL stands for Neg
Log Likelihood. The naive baseline simply uses the average
historical conversion rate for each lead time. Old framework
is the legacy model. Vanilla MNL fits an MNL but does not do
any market segmentation or capture reference price effects.

We compare and show the predictive performance improvement
of the new model against the old one on held-out test data using
classic metrics such as Brier score (akin to MSE) and negative
log likelihood (NLL) in Table 1. We also compare against a naive
baseline that ignores features entirely. We see substantial gains of
our new framework over the legacy framework, specifically over 3%
improvement in NLL and 1% improvement in Brier Score. However,
the legacy framework also has issues with non-monotonicity in the
price-demand relationship, instability, and no substitution effect
properties. Thus, it is important to also assess business metrics
which we discuss next.

5.3 Business Metrics Comparison
We now describe the performance comparison results of this new
model framework against the legacy one for major business metrics.
As mentioned previously, we subject this new model framework to
the same pricing guardrails as previously employed for an aples-to-
apples comparison. For the specific objective we chose to optimize,
we saw a dramatic 19% improvement, which was also statistically
significant. A detailed analysis of these results from the A/B test
was conducted to gauge the statistical significance of the changes
in key business metrics. We used standard two sided t-tests and
all the improvements in revenue, profit and conversion prediction
came out to be highly statistically significant (with all p-values less
than or equal to 0.01). We decided to dial up to 100% shortly after
the conclusion of the A/B test.

Choice Modeling and Pricing for Scheduled Services KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea

Apart from the main business metrics, we also saw other benefits,
including significantly lowering price variations compared to the
legacy system (30% reduction), reduction in the latency of price
quoting (40% faster), 5% improvement in prediction accuracy, and
5% reduction in average booked costs. The methodology and results
were deemed a wide success, improving business metrics and many
aspects of the customer experience.

6 Extension to Second Level Time Window
Options

One of the businesses has started offering a new service giving
customers even more flexibility and choices. In the most common
case, second level options are the particular time-window options
of the selected lead-time day.

Naturally, this tends to incur different costs and thus should
result in different prices. However, customers benefit as different
time-windows can be more convenient.

We provide an illustration for convenience: In Figure 4a, the
customers first choose the lead time option. The price shown on
this page is the cheapest price for that lead time option (among all
time-window options). In Figure 4b, customers can choose the exact
time window they want, which we call the second-level choice. For
modeling, we can bucket the 24 hours of potential time windows
into 12 buckets of 2 hours each, 8 buckets of 3 hours each, 6 buckets
of 4 hours each, or 4 buckets of 6 hours each. This modeling choice
depends on business needs and actual customer choices we see
from real data.

More generally, we need to instantly quote prices to customers
for 𝐿 different lead time options, and within each lead time option,
𝑀 different second-level options corresponding to time windows.
In this section, we discuss a solution to extend the base model
framework that provides all 𝐿𝑀 prices at the time of price quoting
quickly. Our novel contribution is that we do not generate 𝐿𝑀

product-options and use the same ideas as before. Rather, we train
another MNLmodel over𝑀 options that aligns with the base model,
can be implemented as an add-on, and can be adjusted as the offered
set of time windows changes over time.

Let x denote the vector of features describing a current customer
quote request. Let 𝑐𝑖 𝑗 be the cost of lead time option 𝑖 with option
𝑗 . The goal is to choose a set of prices 𝑝𝑖 𝑗 to maximize a given
objective, given the constraint that the customer sees the cheapest
second level time-window option for each lead time option 𝑖 on the
first page whose price has already been calculated using the base
model framework and cannot be changed on the second page. We
elaborate below.

First, we obtain the base model conversion probability vector
for the 𝐿 + 1 lead-time options (including no-choice) as well as
the calendar date view lowest prices 𝑝𝑖 , using the lowest cost 𝑐𝑖 =
min𝑗 𝑐𝑖 𝑗 for each lead-time option. See previous sections for details.
Let 𝑌1 denote the lead-time choice and 𝑌2 denote the time-window
choice. For any given lead-time option 𝑖 , we then create a new
second-level MNL model for choosing time-window option 𝑗 : 1 ≤
𝑗 ≤ 𝑀 is defined as follows:

P(𝑌2 (p) = 𝑗 |𝑋 = 𝑥, clicked on 𝑖) = 𝑒𝑉𝑖 𝑗

1 +∑𝑀
𝑘=1 𝑒

𝑉𝑖𝑘
.

(a)

(b)

Figure 4: Lead Time and Time Window Options

In the equation above, we have 𝑉𝑖 𝑗 = 𝛼 𝑗 − 𝛽𝑝𝑖 𝑗 + 𝛾𝑇 x𝑖 + 𝛿 𝑗 + 𝜖𝑖 𝑗 ,

𝛼 𝑗 is constant, 𝛽 is the common price sensitivity for time-window
options,𝛾 is the coefficient for the quote features, 𝛿 is the coefficient
for the second-level option, and 𝜖𝑖 𝑗 are i.i.d. Gumbel noise (similar
to the standard assumption for discrete choice models resulting in
an MNL choice model).

KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea Elmachtoub, Goutam, and Lederman

Using existing data to fit MNL model We have detailed data
on costs/prices for each time-window option. For the converted
quotes, we know which specific lead-time and time-window option
combination was chosen. In our dataset, each row corresponds to
one quote (and vice-versa, i.e., each quote is represented in one
row only) with details about the prices of all time-window options
and the final choice of the customer (no purchase or a specific
time-window). For converted quotes, we can simply use the chosen
lead-time as the single set of prices for time-window options and
other features. However, for unconverted quotes, we do not know
which lead-times the customer clicked on (if any). Here, we take
advantage of the lead-time specific conversion probability vector
that we can obtain from the base model, which is already known
at this point, to impute and subsample this missing feature for the
no-conversion rows.

Price optimization Once we have fitted the above model, we
can calculate the conversion probability vector over all the different
time-window options (including the no-purchase option) for any
given lead-time and prices. Since we already know the predicted
costs for each time-window option as well, we can easily set up
the price optimization problem. Note that a one-parameter cost-
adjusted markup pricing policy is optimal for the second-level
MNL model [12]. Hence, this price optimization is a simple one-
dimensional search for the optimal markup with the constraint that
the prices are consistent with the prices on the lead time selection
page (the calendar view).

A/B testing performanceWe now describe the performance of
our model and pricing solution with respect to the specific objective
of overall profit (which is a special case of our generalized objective),
which can be computed using

𝐿∑︁
𝑖=1

P(𝑌1 (p) = 𝑖 |𝑋 = 𝑥)
1 − P(𝑌1 (p) = 0|𝑋 = 𝑥)

𝑀∑︁
𝑗=0

(𝑝𝑖 𝑗 − 𝑐𝑖 𝑗)
{

P(𝑌2 (p) = 𝑗 |𝑋 = 𝑥, clicked on 𝑖)
}
,

where the term P(𝑌1 (p) = 𝑖 |𝑋 = 𝑥) comes from the base model
and P(𝑌2 (p) = 𝑗 |𝑋 = 𝑥, clicked on 𝑖) = 𝑒

𝑉𝑖 𝑗

1+∑𝑀
𝑘=1 𝑒

𝑉𝑖𝑘
comes from the

MNL model. The first term readjusts the purchase probabilities of
the basemodel to account for the fact the no-purchase option should
only be factored in once, and that occurs in the second-level model.
In other words, we assume every customer goes to the second
level, even if they chose not to purchase anything. Without this
assumption, it is difficult to calibrate the no-purchase probability
precisely.

Using another A/B testing pilot, our methodology improved
performance significantly on the order of 4-10% with respect to
quotes utilizing the second level time window options. This second-
level model was fully deployed and achieved a wide-ranging success
in the organization.

7 Conclusion
This paper discusses and solves the primary problem of pricing
live service quote requests for customers in a business setting
where they are presented with a multitude of scheduled service
options, often in an hierarchical manner. Our proposed approach
leverages a combination of parametric and non-parametric tools.
Specifically, we leverage Market Segmentation Trees alongside the
reference-price effects MNL choice model. Our pricing algorithm
leverages known optimality structure to quickly approximate a
high-dimensional optimization problem. We found that our new
method offered significant improvements in real A/B tests, while
simultaneously improving prediction accuracy, price stability, and
pricing quote latency. Moreover, our new approach was amenable
to addressing the pricing of second-level time window options,
without exploding the number of model parameters to be estimated.
Future research directions will be to consider how to more directly
incorporate reinforcement learning for tackling price exploration
and network optimization tools into the price optimization pipeline.

References
[1] Ali Aouad and Antoine Désir. Representing random utility choice models with

neural networks. arXiv preprint arXiv:2207.12877, 2022.
[2] Ali Aouad, Adam N Elmachtoub, Kris J Ferreira, and Ryan McNellis. Market

segmentation trees. Manufacturing & Service Operations Management, 2023.
[3] Omar Besbes, Adam N Elmachtoub, and Yunjie Sun. Pricing analytics for rotable

spare parts. INFORMS Journal on Applied Analytics, 50(5):313–324, 2020.
[4] Zhongze Cai, Hanzhao Wang, Kalyan Talluri, and Xiaocheng Li. Deep learning

for choice modeling. arXiv preprint arXiv:2208.09325, 2022.
[5] Yi-Chun Chen and Velibor V Mišić. Decision forest: A nonparametric approach

to modeling irrational choice. Management Science, 68(10):7090–7111, 2022.
[6] Adam N Elmachtoub, Ryan McNellis, Sechan Oh, and Marek Petrik. A practical

method for solving contextual bandit problems using decision trees. In UAI ’17:
Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, 2017.

[7] Vivek F Farias, Srikanth Jagabathula, and Devavrat Shah. A nonparametric
approach to modeling choice with limited data. Management science, 59(2):
305–322, 2013.

[8] Marshall Fisher and Ramnath Vaidyanathan. A demand estimation procedure for
retail assortment optimization with results from implementations. Management
Science, 60(10):2401–2415, 2014.

[9] Guillermo Gallego, Huseyin Topaloglu, et al. Revenue management and pricing
analytics, volume 209. Springer, 2019.

[10] Laurie A Garrow, Stephen P Jones, and Roger A Parker. How much airline
customers are willing to pay: An analysis of price sensitivity in online distribution
channels. Journal of Revenue and pricing Management, 5:271–290, 2007.

[11] Wallace J Hopp and Xiaowei Xu. Product line selection and pricing with modu-
larity in design. Manufacturing & Service Operations Management, 7(3):172–187,
2005.

[12] Kalyan Talluri and Garrett Van Ryzin. Revenue management under a general
discrete choice model of consumer behavior. Management Science, 50(1):15–33,
2004.

[13] Kenneth E Train. Discrete choice methods with simulation. Cambridge university
press, 2009.

[14] Ruxian Wang. Capacitated assortment and price optimization under the multi-
nomial logit model. Operations Research Letters, 40(6):492–497, 2012.

[15] Ruxian Wang. When prospect theory meets consumer choice models: Assort-
ment and pricing management with reference prices. Manufacturing & Service
Operations Management, 20(3):583–600, 2018.

[16] Zhi Wang, Rui Gao, and Shuang Li. Neural-network mixed logit choice model:
Statistical and optimality guarantees. Available at SSRN 5118033, 2024.

[17] Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer
De Mars, Frank Yang, and Li Zhang. Customized regression model for airbnb
dynamic pricing. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 932–940, 2018.

Accepted 23 November 2025

	Abstract
	1 Background
	1.1 Customer Journey
	1.2 Legacy approach
	1.3 Our New (and Implemented) Methodology
	1.4 Literature Review

	2 Assortment Pricing Problem Formulation
	3 New Solution Framework
	3.1 Market Segmentation Tree
	3.2 Reference-Price-Effects Choice Model

	4 Price Optimization
	5 Real World Results from A/B Test
	5.1 Implementation Details and Challenges
	5.2 Experimental Results
	5.3 Business Metrics Comparison

	6 Extension to Second Level Time Window Options
	7 Conclusion
	References

