Towards Sequential Counterfactual Learning to Rank

Tesi Xiao
tesixiao@amazon.com
Amazon
Palo Alto, CA, USA

Branislav Kveton
bkveton@amazon.com
Amazon Web Services
Santa Clara, CA, USA

Sumeet Katariya
katsume@amazon.com
Amazon
Santa Clara, CA, USA

Tanmay Gangwani
gangwt@amazon.com
Amazon
Palo Alto, CA, USA

Anshuka Rangi
anshuka@amazon.com
Amazon
Palo Alto, CA, USA

ABSTRACT

Counterfactual evaluation plays a crucial role in learning-to-rank problems, as it addresses the discrepancy between the data logging policy and the policy being evaluated, due to the presence of presentation bias. Existing counterfactual methods, which are based on the empirical risk minimization framework, aim to evaluate the ability of a ranking policy to produce optimal results for a single query using implicit feedback from logged data. In real-world scenarios, however, users often reformulate their queries multiple times until they find what they are looking for and then provide a feedback signal. In such circumstances, current counterfactual approaches cannot assess a policy’s effectiveness in delivering satisfactory results to the user over consecutive queries during a search session. Taking sequential search behavior into account, we propose the first counterfactual estimator for session ranking metrics under sequential position-based models and conduct preliminary experiments to shed light on further research in this direction.

CCS CONCEPTS

• Information systems → Learning to rank.

KEYWORDS

Information Retrieval, Counterfactual Learning to Rank

ACM Reference Format:

1 INTRODUCTION

Learning to rank (LTR) is a critical component of modern search systems and is used in many applications such as web-search, e-commerce, and recommender systems [21]. The LTR module is responsible for sorting items based on their relevance to a user’s query. Apart from supervised learning using expensive human annotations, many LTR techniques rely on implicit feedback such as clicks, dwell-time, and conversion as the reward [1]. The objective of LTR is to improve the users’ search experience. Modern LTR techniques [2, 11, 22, 33] consider not only lexical similarity but also semantic similarity, past queries and actions taken by the user, and other meta-data such as location, time, etc.

LTR can be classified as either online or offline [21]. Online LTR incrementally trains a model with streaming incoming data, using techniques similar to multi-armed bandits [16, 25, 34]. In contrast, offline LTR trains a model on a static dataset of user engagements [1, 15]. Offline LTR has its own challenges, the primary being the bias in training data. For example, users are more likely to examine the top positions of search engine results pages (SERPs) and favor top-ranked items over items listed below. Naively trained models on such datasets will not accurately capture user preferences and item relevances. Counterfactual LTR (C-LTR) techniques address the problem of learning from biased logged datasets by incorporating the propensity of obtaining a particular training example into the Empirical Risk Minimization (ERM) objective [15, 30].

C-LTR is a technique used for estimating the impact of moving items within a single search engine ranking. However, in practice, users typically perform a series of queries within a session until they find what they are looking for [6]. This sequence of queries reflects the user’s intentions and dissatisfaction with the initial ranked results. By extending C-LTR over a sequence of queries, we can estimate the effect of moving items between queries. Refer to Figure 1 for an example. A user who searches for an affordable wireless headphone with a good sound quality may start with a broad search term such as “wireless headphone” and then gradually refine their query to “affordable wireless headphone” and “affordable wireless headphone with good sound quality” as the top-ranked items do not match their expectations. In this case, if considering purchases as the reward, conventional C-LTR techniques will only estimate the impact of re-ranking the last query with a purchase record. However, taking sequential behaviors into account, we can argue that moving the later purchased headphone to the top of the recommended list under the first query may enhance the user’s search experience.

Motivated by the above problem, we focus on sequential counterfactual LTR (SC-LTR) in this work, which aims to estimate the effect of re-ranking all recommended items in a search session from the history of queries and user engagements. Specifically, SC-LTR does not fall within the domain of sequential recommendation. Unlike existing sequential recommendation techniques (e.g., [3, 31, 32]) that
aim to predict future user actions using past interactions, SC-LTR considers how to leverage later user actions to improve rankings for previous queries from offline data.

In this work, we propose SC-LTR and make several contributions. First, we formulate SC-LTR in a general setting and use metrics from the literature to evaluate the performance of SC-LTR algorithms. Second, we propose a sequential position-based model (sPBM) that simplifies the problem and enables the design of an unbiased counterfactual estimator. Third, we derive this estimator for SC-LTR. Finally, we conduct experiments that compare a sequential policy gradient (PG) method that uses our proposed estimator with vanilla PG and LTR algorithms.

2 PRELIMINARIES

In the sequel, we use bold symbols to represent vectors. Let \(X \in \mathcal{X} \) denote context and \(\mathcal{X} \subseteq \mathbb{R}^d \) be the space of all contexts. The context \(X \) can include all the information from the query, items, and user. We denote the set of all documents by \(D \) and refer to the documents as items. For each context \(X \), we assume that the ranker is provided with a finite matched set of items denoted by \(D_X \), which is a common practice in real-world ranking systems. Let \(n_X = |D_X| \) be the number of these items and \(A = (A_1, \ldots, A_{n_X}) \) is a ranked list of \(n_X \) displayed items, where \(S(D_X) \) is the set of all permutations from \(D_X \) and \(A_k \) is the \(k \)-th item in \(A \). Let \(Y = (Y_1, \ldots, Y_{n_X}) \) be feedback on these items considered as reward signals. The random reward \(Y \) depends on the displayed list \(A \) and an underlying environment of user preferences. Let \(R_X = \sum_{k=1}^{n_X} \lambda_k Y_k \) be the reward under context \(X \) in which the observed feedback at position \(k \) is weighted by \(\lambda_k \).

Our goal is to evaluate and optimize ranking policies \(\pi \), each of which is a categorical distribution over \(S(D_X) \) given context \(X \). A ranked list is generated according to policy \(\pi \), which we denote by \(A = \pi(\cdot | X) \), as follows. The first item in the list is generated as \(A_1 \sim \pi(\cdot | X) \), the second as \(A_2 \sim \pi(\cdot | A_1, X) \), and the \(k \)-th as \(A_k \sim \pi(\cdot | A_{1:k-1}, X) \), where \(\pi(A_k | A_{1:k-1}, X) \) is the conditional probability that item \(A_k \) is displayed at the position \(k \) given a fixed list of all higher ranked items \(A_{1:k-1} \). The probability that list \(A \) is generated in context \(X \) is given by

\[
\pi(A | X) = \prod_{k=1}^{n_X} \pi(A_k | A_{1:k-1}, X).
\]

Under this setting, the value of policy \(\pi \) for this query is defined as

\[
V_{\text{query}}(\pi) = \mathbb{E}_\pi [R_X] = \mathbb{E}_\pi \left[\sum_{k=1}^{n_X} \lambda_k Y_k \right],
\]

where the reward \(R_X \) is linear in user feedback \(Y \) that depends on \(\pi \). By choosing \(\lambda_k \) accordingly, the above value function can represent the most common linear additive ranking metrics over reward \(Y \):

- **Cumulative Gain (CG)@K**: \(\lambda_k = 1 \{k \leq K\} \)
- **Discounted CG (DCG)@K**: \(\lambda_k = 1 \{k \leq K\} / \log_2(k+1) \)
- **Rank-Biased Precision (RBP)@K**: \(\lambda_k = (1 - q) q^{k-1} 1 \{k \leq K\} \), where \(q \) is the persistence parameter.

It is important to emphasize that our objective is defined within the realm of user feedback-derived rewards, as opposed to the inherently ambiguous domain of relevance labels in conventional LTR [21].

2.1 Unbiased Evaluation via Inverse Propensity Scores

Let \(p_0 \) be the data logging policy that collects user feedback data. To indicate the variables collected under the data logging policy, we use a tilde, for example, \(p_0 \) recommends \(A \) given context \(X \) and observes \(Y \). A logged query-level dataset consisting of \(N \) queries indexed by \(i \) is defined as \(D_{\text{query}} = \{(X(i), A(i), Y(i))\}_{i=1}^{N} \). We work on offline policy optimization problems, in which we want to find a better ranking policy \(\pi \) with larger expected reward per query from \(D_{\text{query}} \). Using the importance sampling trick, a common unbiased estimator of \(V_{\text{query}}(\pi) \) using Inverse Propensity Scores (IPS) is

\[
V_{\text{query}}(\pi) = \mathbb{E}_{\pi_0} \left[\frac{\pi(A | X)}{\pi_0(A | X) R_X} \right]. \tag{1}
\]

However, the above IPS estimator suffers from a large variance when the propensity ratio is large. Moreover, the data logging policy \(p_0 \) of real-world ranking systems is often unknown and can even vary over time, which makes the estimator difficult to use. Therefore, additional structural assumptions are proposed for off-policy evaluation of ranking policies [18].

2.2 Unbiased Evaluation via Position-Based Model

The position-based model (PBM) [28] is a model to handle the position bias where the probability of observing a reward (click, purchase, dwell time, etc.) from an item in the ranked list factors across its identity and position. Formally, given context \(X \), the reward \(Y_k \) observed from the item \(A_k \) at position \(k \) of list \(A \) is \(Y_k = E_k U_{A_k} \), where \(E_k \) is a Bernoulli random variable indicating if position \(k \) is examined and \(U_k \) is a random variable characterizing the utility of item \(a \). The examination of position \(k \) is sampled independently of all other variables as \(E_k \sim \text{Ber}(p_k) \), where \(\text{Ber}(p) \) is a Bernoulli distribution with mean \(p \) and \(p_k \) can be viewed as the probability of observing feedback at position \(k \). The expected
utility of item a is $\theta_a = \mathbb{E} [Y_a]$. Therefore, the expected reward of item a at position k is

$$\mathbb{E} [Y_k | A_k = a] = p_k \theta_a .$$

A good way of interpreting $\theta = (\theta_a)_{a \in \mathcal{D}}$ is as user preferences. For example, when the reward is the click indicator, the utility of item a is sampled independently of all other variables as $U_a \sim \text{Ber}(\theta_a)$ where θ_a is the attraction probability of item a. Before the user interacts with the ranker, $(\theta_a)_{a \in \mathcal{D}}$ is drawn from some preference distribution, which we do not know. However, θ and X are correlated given the intent of the user, and therefore policies that condition on X can recommend highly attractive items under unknown θ. An unbiased counterfactual estimator for $V_{\text{query}}(\pi)$ under the assumption of PBM is presented below.

$$V_{\text{query}}(\pi) = \mathbb{E}_{A, \hat{A}} \left[\sum_{k=1}^{n_X} \sum_{i=1}^{n_X} p_k \mathbb{I} \{ A_k = \hat{A}_i \} \bar{Y}_i \right] \approx \frac{1}{N} \sum_{s=1}^{N} \sum_{i=1}^{n_s} \lambda_k \sum_{i=1}^{n_s} \frac{p_k \mathbb{I} \{ A_k = \hat{A}_i \} \bar{Y}_i}{p_t \mathbb{I} \{ A_k = \hat{A}_i \}} = \mathbb{E}_{A, \hat{A}} \left[\sum_{k=1}^{n_X} \lambda_k p_k \theta_{A_k} \right] ,$$ \hspace{1cm} (2)

where $A \sim \pi (\cdot | X)$, $A \sim \pi_0 (\cdot | X)$, and $\mathbb{I} \{ A_k = \hat{A}_i \}$ is the indicator of the aforementioned event. In the expectation above, we only write randomness over A and \hat{A} to reduce clutter.

This estimator is unbiased, as we prove as follows. The first observation is that the expectation of the total reward can be factored into the examination probabilities of all positions and attraction probabilities of items at those positions,

$$V(\pi) = \mathbb{E}_A \left[\sum_{k=1}^{n_X} \lambda_k Y_k \right] = \mathbb{E}_A \left[\sum_{k=1}^{n_X} \lambda_k p_k \theta_{A_k} \right].$$ \hspace{1cm} (3)

Due to the structure of the position-based model, for lists A and \hat{A}, and position k in list A, we have $p_k \theta_{A_k} = \sum_{i=1}^{n_X} \frac{p_k}{p_t} \mathbb{I} \{ A_k = \hat{A}_i \} p_r \theta_{\hat{A}_i}$. Given this identity holds for any list \hat{A}, it also holds in expectation over $A \sim \pi_0 (\cdot | X)$. Then, we can complete the proof by applying it to (3). This proof is a straightforward extension of existing literature on C-LTR [1, 15].

The above estimator is slightly different from the standard position-based inverse propensity weighting estimator in C-LTR [1], which considers ground-truth relevance labels under the ERM framework and does not have an additional factor of p_k. However, if the objective is to maximize cumulative reward, i.e., $\lambda_k \equiv 1$, the above estimator becomes the standard position-based IPS estimator of DCG weighted by p_k, which has a clearer interpretation from our user behavior assumptions than traditional weights $1/\log_2(k + 1)$.

3 SEQUENTIAL COUNTERFACTUAL LTR

Counterfactual evaluation has been focused on the offline evaluation of a search engine for serving the best results given a single query (Section 2). However, this query-level evaluation does not reflect a more realistic search scenario that takes into account the interaction between users and the search engine over multiple rounds and queries. In real-world scenarios, query reformulations can be numerous and persist until the user either finds what they look for or leaves frustrated [6, 12]. Therefore, session-level evaluation is also important because it provides a more realistic representation of how a user experiences a search engine and how it affects their overall search efficiency. Similar to the query-level counterfactual evaluation, we can define the session-level value function as follows.

Let $\{ X_1, \ldots, X_H \}$ be a sequence of contexts which represents an H-round search session, $A_s = (A_{s1}, \ldots, A_{sn_s})$ be a ranked list of n_s displayed items for context X_s, $Y_s = (Y_{s1}, \ldots, Y_{sn_s})$ be feedback on these items. The reward at round s, denoted by R_s, is calculated as the weighted sum of the observed feedback at position k using the weight $\lambda_{s,k}$. This is similar to the query-level reward. Under this setting, the session-level value of policy π is defined as

$$V_{\text{session}}(\pi) = \mathbb{E}_\pi \left[\sum_{s=1}^{H} R_s \right] = \mathbb{E}_\pi \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \lambda_{s,k} Y_{s,k} \right] ,$$

Given this framework, session DCG (sDCG) [14] and session RBP (sRBP) [19] can be derived under different definitions of discount functions that can be factorized into query weight for round s and position weight for rank k:

- sDCG: $\lambda_{s,k} = \frac{1}{[1 + \log_{10} (1 + s)]/[1 + \log_{10} (1 + k)]}$ Here b_q, b_r are logarithm bases for queries and ranks respectively.
- sRBP: $\lambda_{s,k} = \left(\frac{1 - b_q}{1 - b_r} \right)^{s-1} (b_q)^{k-1}$. Here b is the balance parameter, which balances between reformulating queries and examining more documents. $p \in [0,1]$ is the persistence parameter defining the persistence of users in continuing search.

3.1 Unbiased Evaluation via Sequential PBM

In the sequential setting, a naive extension of (1) to the sequential setting will lead to an extremely high variance estimator since it would contain a product of propensities in each round in the denominator [20]. It also requires knowing the data logging policy. Both of these requirements make this extension impractical for most real-world applications. To avoid these issues, we leverage the idea of PBM and make the following assumptions on user behavior:

Sequential Position-Based Model (sPBM)

1. The user interacts with the ranker for H rounds, which we call a session. The length of the session H can depend arbitrarily on θ. The context X_s for each round $s \in [H]$ includes all the information on query, matched items, user, and past interactions.
2. In round $s \in [H]$, the recommender generates a ranked list $A_s \sim \pi (\cdot | X_s)$. The list is a permutation of items in D_{X_s}, which we abbreviate as D_s. We also define a shorthand $n_s = |D_s|$.
3. The user interacts with the items as follows. The user feedback observed from item $A_{s,k}$ at position k in round s is

$$Y_{s,k} = E_{s,k} U_{A_s,k},$$

where the utility U_a of item a with mean θ_a is independent of all other variables, the examination of position k in round s is sampled independently of all other variables as $E_{s,k} \sim \text{Ber}(p_{s,k})$, and $p_{s,k}$ can be viewed as the probability of observing feedback at position k in round s.

where we divide by (2), the unbiased estimator derived from the sequential PBM has

Then, we will have a logged session-level dataset,

that consists of \(N \) sessions indexed by \(i \), where \(H_i \) is the length of the \(i \)-th session. At round \(j \) of session \(i \), the context, displayed list, and reward are represented by \(X_j^{(i)} \), \(\tilde{A}_j^{(i)} \), and \(Y_j^{(i)} \), respectively. In all expectations below, we only write randomness over \(A = (A_j)_{j \in [H]} \) and \(\hat{A} = (\hat{A}_j)_{j \in [H]} \), which makes the change-of-measure argument easier to follow. Below, we derive an unbiased estimator of \(V_{\text{session}}(\pi) \) under SPM.

Theorem 3.1. Given data collected using the policy \(\pi_0 \), the counterfactual estimator for the value of another policy \(\pi \), which we name as session counterfactual DCG (SC-DCG), is given by

\[
V_{\text{session}}(\pi) = \mathbb{E}_{A, \hat{A}} \left[\sum_{s=1}^{H} \frac{\lambda_{s,k} p_{s,k}}{p_{z,t}} \mathbb{I} \left\{ A_{s,k} = \hat{A}_{z,t} \right\} \frac{1}{C(A_{s,k})} \right] \tag{4}
\]

where \(C(a) = \sum_{s=1}^{H} 1 \{ a \in D_s \} \) is the number of times that item \(a \) is displayed by \(\pi_0 \) during the session.

In contrast to the counterfactual estimator presented in equation (2), the unbiased estimator derived from the sequential PBM has the ability to apply counterfactual adjustments to a specific item \(a \) that receives a positive reward within a session. However, an extra normalization step is necessary since \(a \) may appear in the displayed list for multiple rounds within a session. The proof of unbiasedness is presented as follows.

Proof. The value of policy \(\pi \) is the expectation of its total reward earned during the session. Thus

\[
V_{\text{session}}(\pi) = \mathbb{E}_{A} \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \lambda_{s,k} p_{s,k} \theta_{A\hat{A}_s,k} \right] \cdot \tag{5}
\]

The second equality is from the definition of \(\tilde{Y}_{A,k} \) and Assumption (3). From the structure of the position-based model, for any attraction probabilities \(\theta \), lists \(A_s \) in round \(s \) and \(\hat{A}_k \) in round \(z \), and positions \(k \) and \(t \), we have

\[
p_{s,k} \theta_{A\hat{A}_s,k} = \frac{1}{\sum_{z=1}^{H} \sum_{t=1}^{n_z} \frac{\mathbb{I} \{ A_{s,k} = \hat{A}_{z,t} \}}{p_{z,t}} p_{z,t} \theta_{A\hat{A}_s,z}}
\]

where we divide by \(C(A_{s,k}) \) to account for the fact that item \(A_{s,k} \) could have been displayed in multiple rounds, and replace \(\theta_{A\hat{A}_s,k} \) by \(\theta_{A\hat{A}_s,z} \). Because this identity holds for any \(\hat{A}_s \), it also holds in expectation over \(\hat{A}_s \). Since \(\hat{A}_s \sim \pi_0(\cdot \mid X_s) \), and the sequence of contexts does not depend on earlier recommended lists, the counterfactual adjustment can be made jointly over all rounds and positions. Substituting it into (5), we obtain

\[
V_{\text{session}}(\pi) = \mathbb{E}_{A, \hat{A}} \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \frac{\lambda_{s,k} p_{s,k}}{p_{z,t}} \frac{1}{C(A_{s,k})} \mathbb{I} \left\{ A_{s,k} = \hat{A}_{z,t} \right\} \right]
\]

This concludes the proof.

We also derive the gradient of the above session counterfactual DCG below.

Proposition 3.2. The gradient of the session counterfactual DCG is

\[
\nabla V(\pi) = \mathbb{E}_{A, \hat{A}} \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \nabla \left(\frac{\lambda_{s,k} p_{s,k}}{p_{z,t}} \frac{1}{C(A_{s,k})} \mathbb{I} \left\{ A_{s,k} = \hat{A}_{z,t} \right\} \right) \right]
\]

Proof. The gradient can be derived using the score identity, which states that \(\nabla \theta f(\theta) = f(\theta) \nabla \log \theta \) holds for any non-negative function \(f \) and its parameters \(\theta \). Specifically, the gradient decomposes as

\[
\nabla V_0(\pi) = \mathbb{E}_{A, \hat{A}} \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \sum_{A_{s,k} \in D_s} \mathbb{I} \left\{ A_{s,k} = \hat{A}_{z,t} \right\} \right]
\]

where the first equality follows from the observation that \(A_{s,k} \) only depends on the first \(k \) items in \(A_s \) and context \(X_s \). Then, for any list \(A_s \) and position \(k \) in it, we have

\[
\nabla \pi(A_{s,k} \mid X_s) = \mathbb{E}_{A, \hat{A}} \left[\sum_{s=1}^{H} \sum_{k=1}^{n_s} \sum_{A_{s,k} \in D_s} \nabla \left(\frac{\lambda_{s,k} p_{s,k}}{p_{z,t}} \frac{1}{C(A_{s,k})} \mathbb{I} \left\{ A_{s,k} = \hat{A}_{z,t} \right\} \right) \right]
\]

which is derived using the score identity. This concludes the proof.

3.2 Sequential C-LTR vs. C-LTR

In this subsection, we discuss the advantages of sequential C-LTR over C-LTR and the complexity of the counterfactual evaluation.

Improving session-level ranking performance. The above estimator for sequential C-LTR in (4) would be a general sequential position-based IPS estimator of additive session-level ranking metrics when considering the cumulative reward of a search session as the objective, i.e., \(\lambda_{s,k} \equiv 1 \). The discount function \(p_{s,k} \) is formulated based on our sequential user behavior model. It is worth noting that item \(a \) can be recommended multiple times within a session, necessitating normalization by \(C(a) \).

Data augmentation using session information. A good way to interpret the unbiased estimator (4) is by propagating feedback across queries. For instance, if item \(a \) receives a positive reward in round \(z \) at position \(t \), the above estimator assigns pseudo rewards to item \(a \) in other queries, with counterfactual adjustments, if \(a \)
is present in their matching sets. As a result, session-level training utilizing the above estimator would obtain a larger number of positive labels compared to query-level training for LTR tasks, which would enhance the ranking performance. Furthermore, the increased complexity stemming from the sequential counterfactual evaluation in (4) is directly related to the frequency of items with positive rewards appearing in the display lists corresponding to the search session query chain. In other words, the proposed sequential C-LTR incorporates more search query samples into training while maintaining the same per-sample computational complexity as the conventional non-sequential C-LTR in (2).

4 EXPERIMENTS

In this section, we provide preliminary experimental findings based on synthetic data as well as real-world e-commerce data. Conducting extensive experiments on large-scale datasets poses certain challenges due to the absence of public e-commerce search session data containing search query chains, sequences of displayed ranked lists where the same item receives a reward in response to a later query, customer actions such as purchases, and expressive features. Hence, the experiments presented here serve as a catalyst for inspiring future research endeavors.

Policy Optimization. Our goal is to learn a ranking policy to optimize the value function using the offline data. The proposed counterfactual estimators of the value function in (2) and (4) can be seen as the loss function computed evaluated on the collected samples. To adopt gradient-based optimizers for training, we employ a parameterized ranking policy \(\pi(A|X) = \pi(A|X, w) \) that is differentiable with respect to a feature vector \(w \). Specifically, for random ranking policies, the softmax Plackett-Luce distribution [23, 24] can be considered, for which the conditional probability that item \(A_k \) is displayed at position \(k \) given a fixed list of higher ranked items \(A_{1:k-1} \) is given by

\[
\pi(A_k | A_{1:k-1}, X; w) = \frac{\exp\{f(A_k, X; w)\}}{\sum_{a \in D_k \setminus A_{1:k-1}} \exp\{f(a, X; w)\}},
\]

where \(f(a, X; w) \) is a learnable score for item \(a \) given context \(X \) parametrized by \(w \). For non-differentiable deterministic ranking policies, the relaxed sorting operator, such as NeuralSort [10] and SoftSort [26], can be adopted to approximate the gradient. In the following experiments, we consider three LTR methods for deterministic ranking policies:

(i) PG: a policy gradient-based method to maximize \(\hat{V}_{\text{query}}(\pi) \) in (2) with \(\pi \) being parametrized by NeuralSort, which serves a strong counterfactual baseline. This method is equivalent to a IPS-variant of PiRank [29] that optimizes the IPS-weighted IR metrics via differentiable sorting using NeuralSort.

(ii) Seq-PG: a policy gradient-based method to maximize \(\hat{V}_{\text{session}}(\pi) \) in (4) with \(\pi \) being parametrized by NeuralSort. This approach can be seen as an extension of PiRank [29] aimed at optimizing counterfactual session-level IR metrics based on sPBM.

(iii) ListNet [4, 5]: a popular listwise approach with softmax cross entropy loss, which has consistently been shown to perform well for ranking problems and serves a strong baseline in supervised learning [27].

It is important to highlight that the three mentioned approaches primarily differ from each other solely in their loss functions. We refer to the first two approaches as PG and Seq-PG, as they involve utilizing policy gradient methods to optimize the derived counterfactual estimators of their value functions. The gradient is computed using automatic differentiation within the PyTorch framework.

Metrics. We evaluate the ranking performance using both conventional ranking metrics, such as DCG with traditional weights \(1/\log_2(k+1) \), and counterfactual metrics \(\hat{V}_{\text{query}} \) and \(\hat{V}_{\text{session}} \) provided in (2) and (4) with \(\lambda_k = \lambda_{s,k} = 1 \), which we name as C-DCG and SC-DCG respectively. Counterfactual evaluation using offline data is shown to be more consistent with online performance than traditional metrics [17].

Synthetic Data. To demonstrate the benefits of SC-LTR, we test PG, Seq-PG, and ListNet on synthetic search session data generated from Baidu-ULTR [35], a comprehensive search dataset containing 1.2 billion web search queries and extensive user feedback. In particular, Baidu-ULTR provides subsequent reformulated query tokens issued under the same search goal for each query record, which enables us to create search sessions satisfying Assumption (4) by joining queries with the same search mission.

We generate 2,754 web search sessions for illustration by joining queries in a small subset of Baidu-ULTR. Each search session consists of 2 search queries that share the same clicked URL in their ranked lists but may place this URL at different positions. In particular, the clicked URL is presented at a relatively lower position under the first query compared to its rank in the second list. Synthetic sessions of this form mimic the sequential search behavior in which users tend to reformulate queries with unsatisfactory rankings.

For each search session that is in the form of a query chain, we mark all clicked URLs in the intersection of all response ranked lists as relevant and all other URLs as irrelevant. For each query-URL pair, a 768-dimensional feature vector is generated by a pre-trained language model provided in [35]. A whitening transformation is applied to all feature vectors to equalize feature scales and remove redundancy. We simulate training session data and test session data from a generative model in which the user randomly starts a search session from pre-generated 2,754 sessions and the probability of observing a click over URL \(a \) at round \(s \) and position \(k \) is given by \(p_{s,k} \) if \(a \) is relevant. Multilayer perceptron (MLP) models are trained using the Adam optimizer with constant learning rate 0.01 to minimize objectives. Both train and test datasets include 5,000 simulated sessions with \(p_{s,k} = (0.7)^{k-1} \times (0.8)^{k-1} \). This probability is chosen for illustration purposes, and implies that the likelihood of observing a click on a relevant URL is higher at the top of SERP when using the reformulated query compared to the bottom of the results page for the initial query.

In Figure 2, we plot the evaluated metrics on test data against the number of training epochs over 10 independent runs. The results indicate that Seq-PG has relatively superior performance in maximizing the counterfactual metrics C-DCG and SC-DCG, especially for session-level evaluation. On the other hand, ListNet tends to fit

1https://github.com/ChuXiaokai/baidu_ultr_dataset
the better ranking in terms of query-level non-counterfactual DCG, and its performance is relatively poorer in the other metrics.

Real-World Data. We also test the proposed SC-LTR method using proprietary real-world search session data collected from an e-commerce store within one week. The dataset is composed of 19,430 subsampled search sessions with lengths ranging from 2 to 6, and a total of 44,598 queries. In these sessions, the item purchased after the last reformulated query is also recommended in response to previous queries and is positioned lower on SERP. The query-item features are generated by a pre-trained transformer-based model. We trained MLP models to optimize three LTR objectives using Adam. The probabilities p_k and $p_{s,k}$ are selected as exponential decay functions, estimated from the marginal distribution of purchase labels. Table 1 presents the relative improvement of SC-LTR over ListNet, which also demonstrates the superiority of Seq-PG in finding a ranking policy improving session-level metrics.

<table>
<thead>
<tr>
<th></th>
<th>DCG</th>
<th>C-DCG</th>
<th>SC-DCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>-3.98%</td>
<td>+0.15%</td>
<td>-1.14%</td>
</tr>
<tr>
<td>Seq-PG</td>
<td>-4.36%</td>
<td>+1.24%</td>
<td>+1.52%</td>
</tr>
</tbody>
</table>

It is noteworthy that the evaluation metrics utilized in the TREC Session track continue to rely on conventional evaluation measures originally developed for single-query searches. In this case, the primary task for these search engines is to deliver search results for the last reformulated query within each session in cases where no search results or clicks are provided. As a result, the evaluation process across the entire session is essentially equivalent, in terms of ranking, to evaluating solely the last query. As for efforts to evaluate ranking systems truly over query-sessions, Järvelin et al. [14] developed the evaluation measure session Discounted Cumulative Gain (sDCG), which is a generalization of the DCG evaluation measure [13]. Taking extending the cascade model [9] to query-sessions, Lipani et al. [19] derived a session-based Rank Biased Precision (RBP). Although our work shares a similar motivation for evaluating query-sessions, our primary focus in this study is on conducting counterfactual evaluations. Providing a comprehensive justification of the effectiveness of a session-level evaluation metric is not within the scope of our work.

5 RELATED WORK

Evaluation over search sessions were initiated through the Text Retrieval Conference (TREC) Session track [7]. The TREC Session tracks, which were conducted from 2011 to 2014, stand as the most commonly used web search session datasets. Subsequently, Chen et al. [8] presented the TianGong-ST dataset, a web search session dataset featuring both click-based and human-annotated relevance labels. However, these existing session datasets are not appropriate for our research due to its lack of expressive features and the absence of sequences of displayed ranked lists where the same item receives a reward in response to a subsequent query, which is a pattern commonly observed in e-commerce data.

6 CONCLUSION AND FUTURE WORK

We propose a novel problem of sequential counterfactual LTR which aims to improve the search experience in session-level ranking from offline data. We derive a counterfactual estimator for session-level ranking metrics under a sequential position-based model, and our preliminary experiments show that the proposed method outperforms existing methods in terms of counterfactual metrics. However, the assumption of sPBM can be violated in practice. For example, users’ intentions can undergo changes throughout their interactions with the search engine. Providing assumption-free methods for SC-LTR is challenging, but it would be interesting to see future work to improve the session-level search experience from offline data. Overall, our work opens up a new direction for improving the session-level search experience and provides a useful framework for counterfactual evaluation in sequential settings.

REFERENCES
