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Abstract

Fine-tuning vision language models (VLMs) has achieved remarkable perfor-
mance across various downstream tasks; yet, it requires access to model gradients
through backpropagation (BP), making them unsuitable for memory-constrained,
inference-only edge devices. To address this limitation, previous work has explored
various BP-free fine-tuning methods. However, these approaches often rely on
high-variance evolutionary strategies (ES) or zeroth-order (ZO) optimization, and
often fail to achieve satisfactory performance. In this paper, we propose a hy-
brid Sharpness-aware Zeroth-order optimization (SharpZO) approach, specifically
designed to enhance the performance of ZO VLM fine-tuning via a sharpness-
aware warm-up training. SharpZO features a two-stage optimization process: a
sharpness-aware ES stage that globally explores and smooths the loss landscape to
construct a strong initialization, followed by a fine-grained local search via sparse
Z0 optimization. The entire optimization relies solely on forward passes. Detailed
theoretical analysis and extensive experiments on CLIP models demonstrate that
SharpZO significantly improves accuracy and convergence speed, achieving up to
7% average gain over state-of-the-art forward-only methods.

1 Introduction

In recent years, fine-tuning vision-language models (VLMs) has achieved remarkable performance
across a wide range of downstream tasks, including image classification [54, 55], object detection
[11, 52], and image segmentation [45, 24]. Among these models, one of the most prominent is CLIP
[34], which has attracted significant attention for its powerful zero-shot recognition capabilities. To
further improve the performance of VLMs in downstream tasks, previous work has explored the use
of efficient, trainable prompt parameters [55, 49, 43] for the prompt tuning of VLMs. However, these
prompt-tuning techniques are heavily dependent on the availability of a backward computation engine,
which is typically unavailable on memory-constrained edge devices used in Internet-of-Things (IoT)
applications [40] or wearable technologies [8].

To address these limitations, recent studies have explored fine-tuning VLMs in backpropagation-free
settings [38, 49, 43]. These approaches optimize trainable prompts by leveraging high-variance
black-box optimization techniques such as Evolutionary Strategies (ES) [17, 2] and Zeroth-Order
(ZO) optimization [31, 32, 53] as alternatives to the first-order (FO) methods used in white-box
scenarios. For instance, [49] employ ES to update prompt parameters by evaluating sampled prompts
through forward passes only, thereby eliminating the need for memory-expensive back propagation.
More recently, ZO stochastic gradient descent (SGD) [14] methods have been adapted to VLM
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Figure 1: (a) Comparison between SharpZO and other ZO prompt-tuning baselines.SharpZO demon-
strates significantly lower variance than other ZO-based baselines like ZIP [32] and BlackVIP [31].
(b) Fine-tuned performance across all 11 tasks tested compared with ZIP and BlackVIP and BBT
[39]. All experiments are conducted using the CLIP model with a ViT-B/16 backbone.

fine-tuning in the work of BlackVIP and ZIP [31, 32]. By approximating gradients with just two
forward evaluations, these ZO approaches avoid the high computational cost and instability of ES,
yet still match its performance while requiring substantially fewer model queries [32].

However, existing ZO-based VLM fine-tuning methods remain substantially inferior to
backpropagation-based training. Their high variance and inherently local search dynamics make
them prone to premature convergence. Previous work has attempted to improve the performance of
Z0 optimization by reducing the problem dimensionality through pruning [15, 26, 50] and low-rank
decomposition [46, 32] of the trainable parameters. However, in widely adopted prompt-tuning
settings, such parameter reduction offers limited benefit, as the number of trainable parameters is
already inherently small in original trainable prompt.

In contrast to prior work that reduces the variance of ZO optimization by limiting the number of
trainable parameters, our approach introduces a new perspective that focuses on initialization and
the sharpness of the loss landscape. Specifically, we propose SharpZO, a hybrid Sharpness-Aware
Zeroth-Order optimization method that employs a two-stage framework to significantly reduce the
variance of ZO gradient estimation and improve the performance of ZO-based VLMs prompt tuning.

The first stage performs warm-up training using a sharpness-aware Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), which provides both a smoother loss landscape and a strong initial-
ization for the second stage. Unlike gradient-based methods that follow local descent directions,
CMA-ES enables effective global exploration by adaptively shaping the search distribution based on
past evaluations [29]. Moreover, incorporating sharpness not only improves model generalization but
also improves the accuracy of the randomized gradient estimators used in stage 2 ZO training, which
is unbiased only with respect to a smoothed version of the objective function [14].

In the second stage, we perform fine-grained local optimization using a sparse Zeroth-Order Stochastic
Gradient Descent (ZO-SGD) method. To further reduce gradient estimation variance, we introduce
a novel Z-pruning technique specifically designed for noisy ZO settings, effectively reducing the
dimensionality of the search space. Unlike conventional magnitude-based pruning used in previous
sparse ZO method [15, 26], Z-pruning leverages gradient information to capture the influence of model
non-linearity and applies Z-score-based normalization [12] to suppress outlier gradient estimates.

As shown in Figure 1, our method converges faster with significantly lower variance compared with
other ZO prompt-tuning baselines, achieving up to a 7% average improvement in accuracy. Our main
contributions are summarized as follows:

* We propose SharpZO, a novel hybrid sharpness-aware optimizer that fine-tunes VLMs using
only forward passes. To our knowledge, this is the first ZO method that improves performance
considering the sharpness-aware initialization.

¢ In the first stage, we introduce a sharpness-aware CMA-ES that enhances generalization and
reduces second stage ZO gradient estimation variance by smoothing the loss landscape.

¢ In the second stage, we develop a sparse ZO fine-tuning method with a novel Z-pruning technique
to suppress outliers in noisy gradient estimates.

* We validate SharpZO through extensive experiments and theoretical analysis, demonstrating
superior performance over existing BP-free baselines.



2 Background

2.1 Coordinate-wise Gradient Estimation or Randomized Gradient Estimation?

Mainstream ZO gradient estimation methods can be broadly classified into two categories: Coordinate-
wise Gradient Estimation (CGE) and Randomized Gradient Estimation (RGE). In our SharpZO
framework, we employ CGE to compute sharpness-related terms in stage 1 and pruning metrics in
stage 2, while RGE is used to update parameters during the second-stage ZO-SGD optimization.
Below, we provide background on both approaches and highlight their key differences in terms of
estimation variance and computational efficiency.

Given a VLM with trainable prompt vector w € R?, we define the training cross-entropy loss as
L(w). ZO estimated gradients V,,£(w) are estimated via forward differences between function
evaluations, where the perturbation of the trainable parameters w depends on whether the CGE or
RGE method is used, which gives:
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Here, ;o > 0 is a smooth parameter, u; € R¢ denotes a randomized perturbation vector perturbing all
parameters at the same time in RGE, and e; = [0,0,--- ,1,---,0]7 represents the i-th standard basis
vector, which is used to compute a finite-difference approximation of £(w) along a single coordinate
in CGE. To reduce the variance of the RGE gradients, it is common to average the gradients estimated
over q different randomized perturbations, where ¢ is called query numbers. In contrast, the CGE
method approximates the gradient by perturbing individual coordinates and estimating the directional
derivative along each axis using finite differences.

Unlike FO methods that compute exact gradients VL (w) via BP, RGE methods estimate gradients
in a biased manner toward the exact gradients, which instead provides an unbiased estimate of the
gradient of a smoothed version of the objective, defined as £, (w) = E,[L(w + pu)]. In contrast,
CGE estimates directional derivatives along individual coordinates without applying such smoothing,
resulting in greater sensitivity to sharp changes in the loss landscape.

Difference between RGE and CGE: We compare RGE and CGE primarily in terms of query
complexity and accuracy. The number of function queries differs significantly between the two
methods. Given the dimension of trainable parameter as d and the number of RGE query as g, RGE
requires O(q) queries, whereas CGE incurs a higher cost of O(d) queries. Clearly, RGE offers much
lower query complexity, especially when ¢ = 1 < d in our case. Despite its higher query complexity,
CGE achieves superior accuracy compared to RGE, as it directly approximates the true gradient
without introducing smoothed objective function [5].

2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Similar as ZO method, CMA-ES is another type of derivative-free optimizer for continuous, black-box
functions [18]. CMA-ES achieves truly global search by maintaining and adapting a full covariance
matrix, which captures variable interactions and shapes an anisotropic search distribution; sampling
a population each generation then naturally balances broad exploration (through a larger step-size)
with focused exploitation (via covariance updates). In contrast, zeroth-order methods rely on local
gradient approximations at a single point and random perturbation directions.

At iteration ¢, CMA-ES maintains parameter 8;, o; and C}, where 6, is the search-distribution mean,
oy is the global step size, and C} the covariance matrix. To update these parameter at each iteration,
a population of S candidates is drawn as

w!~ 0, +5, N0,Cy), i=1,...,85,
and their fitness is evaluated via the black-box loss £(w}).

After evaluating the population, the parameters are updated in three steps. First, the mean of the
distribution 6, is shifted toward regions with lower loss £(w) by taking a weighted combination of
the top-performing candidates w®. This moves the sampling center toward promising areas in the
search space while maintaining stochasticity. Second, the covariance matrix C} is adapted to capture
both the overall spread and the correlations among the selected samples. Finally, the global step size
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Figure 2: Overview of the SharpZO method. (a) The overall training pipeline of SharpZO, consisting
of a two-stage optimization process. (b) Visualization of the smoothed loss landscape after Stage 1
sharpness-aware CMA-ES optimization. (c) Training dynamics of the sharpness-aware CMA-ES
method. (d) RGE-based gradient estimation during sparse ZO training in Stage 2.

o, is adjusted through a step-size adaptation mechanism, which regulates the overall exploration
scale based on the recent success of the search. For detailed derivations and algorithmic formulations,
please refer to [18].

2.3 Sharpness-aware Optimization

Sharpness-Aware Minimization (SAM) [13] was originally proposed to improve generalization by
smoothing the loss landscape and encouraging the optimization process to converge to flat minima.
The key idea is to minimize the worst-case loss within a neighborhood around the current parameters
w by introducing an analytic approximation of the worst-case perturbation €* within a radius p.
Specifically, the SAM objective is formulated as:

min ﬁfs)"“vl(w)7 where EiAM('w) = max L(w +€).
w lell<p
Following the objective function, the gradient approximation for SAM after dropping the second-
order terms is given as V., L(w')| +e+ by computing the worst-case perturbation €*. To estimate
€*, SAM approximates the inner maximization using a FO Taylor expansion of the loss function.
This yields the following analytic solution:

€' = arg Hnﬁax (L(w) + €' VL(w)) = p- VL(w)/|VL(w)]2. 2)
Unlike previous works that apply SAM to replace standard gradient descent either throughout the
entire training process [13] or during the final few epochs [56], we, for the first time, investigate
the effectiveness of incorporating sharpness information into CMA-ES as an early-stage warm-up
strategy to enhance the performance of ZO fine-tuning.

3 The SharpZO Method

In this section, we detail the SharpZO method, which is designed to fine-tune VLMs using only
forward passes. As illustrated in Fig. 2 (a), our approach consists of two main stages: a sharpness-
aware CMA-ES stage and a sparse ZO fine-grained search stage. We demonstrate that performing a
sharpness-aware global search in the early steps of training significantly enhances the performance of
Z0 optimization—both in terms of convergence speed and final accuracy. In the following, we first
summarize the problem setup of this work and then describe each stage of our method in detail.

We consider a black-box VLM with loss function £(w) and a dataset D = {(z,,,y,)}_; with a
total of IV samples and K classes. For models like CLIP, it is necessary to construct a text prompt for
each class. Specifically, for a given class k € {1, ..., K} and the model hidden dimension m, the
class-specific prompt p* is defined by concatenating a predefined initial text embedding py € R™
(e.g., “a photo of a”) with the class label embedding c*, yielding p* = [py, c¥]. To make the prompt
pk trainable, we introduce a parameter p; that modifies the initial embedding po, where ¢ € [1, 7]



is the training steps. This parameter is obtained via a random projection from a low-dimensional
trainable matrix w; € R?, where d < m is the latent dimension. Then, a fixed randomized projection
matrix A € R™*? is used to project w into the embedding space, producing w; = w; AT € R™ to
matching the shape of the original initialized prompt po. Thus, the overall training objective becomes:

N
1 _ _
min 3" £(po + P i, (#0,9)), where p=w AT
n=1

Next, we provide a detailed introduction to the two stages of the SharpZO method separately.

3.1 Stage 1: Sharpness-Aware CMA-ES Method

In this section, we first summarize the traditional CMA-ES method and then propose our sharpness-
aware CMA-ES optimization for a warm-up training.

In the traditional CMA-ES method, given the population size S, the optimizer generates a population
of candidate solutions w?, i € [1, 5], where w? is obtained by sampling from the current multivariate
normal distribution w! ~ 6, + o, N(0, C;). Here, 0; is the weighted mean of the distribution, o is
the step size, S is the population size and C' is the covariance matrix capturing the shape and scale of
the search distribution. After evaluating the loss (fitness) £(w?, D) of these samples by forwarding
the training samples D along with the trainable prompt w?, i € [1, 5], the parameters 6;, ¢, and C;
are updated accordingly [17].

Different from the previous CMA-ES method, we propose a new sharpness-aware CMA-ES method
to smooth the loss landscape during the stage 1 warm-up training, which help to reduce the stage 2
gradient estimation accuracy. Specifically, we add the worst-case perturbation €* during the sampling
of CMA-ES method, where €* is computed within a local Euclidean ball based on eq. (2) and gives:

. . VL(6:)
w' ~€ +0; +6N(0,Cy), i€[l,S], € =p—i—".
t t t ( t) [ } t pHV£(0t)||2
The effectiveness of this modification can be explained through the Taylor expansion of the Monte
Carlo estimation for the loss E[L(0; + €* + 0)] used in the sharpness-aware CMA-ES optimizer,
given o ~ N(0, 62C;). Given the sampling strategy in eq. (3) and omitting the first-order term by
the fact E[o] = 0, the expected fitness can be approximated as:

3

1
E[L(O: + € +0)] ~ L(6; + €") + §E[0TV2£(9t +€*)o], o~ N(0,02C).

As observed, in addition to optimizing the same term £(0; + €*) as gradient-based SAM methods, the
effectiveness of the sharpness-aware CMA-ES approach is achieved with additional higher order term
involving stochastic adaptation of the covariance matrix, which introduces an additional mechanism
to explore and down-weight high-curvature directions.

Another challenge in applying sharpness-aware CMA-ES lies in gradient estimation. Specifically,
we cannot directly access the gradient information needed to compute €* due to the absence of
backpropagation. Unlike prior work [51, 48], which relies on RGE-based gradient estimation with
a large query budget ¢, we adopt CGE for this purpose. CGE provides an unbiased estimate of
the gradient along each coordinate, making it more suitable for computing the sharpness-aware
perturbation term, as discussed in Section 2.1. The detailed formulation for estimating V.£(w) using
CGE is provided in eq. (1).

3.2 Stage 2: Fine-grained ZO Method

After obtaining a strong initialization and a smoothed loss landscape through the first-stage global
search, we proceed to optimize the parameters toward the global optimum using a ZO-SGD method.
In this stage, we perform fine-grained and efficient local search guided by RGE-estimated gradients.
To further reduce the variance, we propose a new Z-pruning metrics with pruning mask €2 to reduce
the effective dimension during gradient estimation.

Unlike prior sparse ZO methods that rely solely on magnitude-based pruning metrics, we introduce a
novel pruning criterion tailored to the high-variance nature of ZO-estimated gradients. In contrast to
first-order sparse training approaches, which apply the pruning mask € directly to model weights,



we apply the mask to the perturbation vector w. This strategy effectively reduces the dimensionality
during ZO perturbation and results in the following gradient estimator:

[,(w—i—;rQu)—L(w—u-Qu)u @
2p

We note that a query number of ¢ = 1, as defined in Eq. (1), is sufficient for stable training of our
SharpZO method when preceded by the Stage 1 warm-up. This is significantly more efficient than
prior works such as ZIP [32] and BLACKVIP [31], which still exhibit high training variance even
with a query number of ¢ = 5, as shown in Fig. 1. Next, we introduce how we construct the Z-pruning
based pruning mask 2.

Vwl(w) =

Z-pruning Metrics: The Z-pruning metric is designed to minimize the loss degradation introduced
by pruning, by considering the sensitivity of each parameter. Specifically, considering dw reflect the
change of weights during pruning, the difference in loss between the dense and pruned models can be
approximated via a first-order Taylor expansion:

1 f
L(w + dw) — L(w) = VL(w) 6w + 5(swﬁanm + O(||6w]?),

where H denotes the Hessian of the loss with respect to the parameters. Here, we can approximate
the Hessian H using a Fisher matrix as H ~ E,.p[VL(w; r)?] and estimating gradients V£ (w; z)

using the CGE method described in eq. (1) as @E(w; x). By considering the second-order term, we
can obtain the Z-pruning metrics as:

d
QO =|w® 2(Epup[VL(w,2)%]), where VL(w) =

i=1

[C(w + pe;) — L(w — uei)e_ 5)
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where z(g?) = (g% — p14)/0, denote the Z-score normalization given i, and o, as the mean and

standard deviation of the gradient vector g = VL. The Z-score standardizes the gradient magnitudes
to mitigate the scale mismatch between trainable parameters and their gradients—a mismatch that is
especially pronounced in ZO settings. We consider adapting the second-order term as the pruning
score based on the practice of previous pruning work [37, 47]. In Section 5.4.2, we demonstrate the
effectiveness of the Z-pruning method compared to dense and magnitude-based pruned ZO training.

3.3 Algorithms

We present the SharpZO algorithm in Algorithm 1. In practice, we first execute Stage 1 for a total of
T, steps, followed by Stage 2 until the total training budget of 1" steps is reached. The transition point
T is determined automatically using a strategy inspired by early stopping, based on the observed
change in validation accuracy. Typically, T, < T and is typically reached within 100 steps. As a
result, although Stage 1 is more computationally expensive per step, the overall training efficiency
remains high. During Stage 2, we update the pruning mask every K steps to balance computational
cost and adaptability to the evolving optimization landscape. The learning rate for ZO optimization
in Stage 2 is denoted by 7.

4 Theoretical Guarantee

In this section, we give a quick proof to show the convergence rate of SharpZO method. By comparing
the SharpZO convergence rate with the baseline ZO-SGD rate given in MeZO [28], we highlight why
our hybird smoothness-aware setup can significantly help to improve the performance of VLMs fine-
tuning. To align our analysis with VLMs/LLMs fine-tuning, we consider a non-convex optimization
setup and the proof assume the loss landscape follows the Polyak-Lojasiewicz (PL) inequality,
which has been widely considered in other ZO fine-tuning papers [28]. First, we list the following
assumptions for our analysis include the PL-inequality we just mentioned:

Al (PL Inequality): The loss function / satisfies the Polyak—t.ojasiewicz (PL) condition. That is,
there exists a constant y > 0 such that for all w € R?, we have || VL(w)||* > p(L(w) — L7),
where £* denotes the global minimum of the loss function.

A2 (Lipschitz smoothness): The loss function £ has an L-Lipschitz continuous gradient. That is,
there exists a constant L > 0 such that for all w;,w; € R%, we have |VL(w;) — VL(w,)| <
Ljw; — wj].



Algorithm 1 SharpZO: Hybrid Sharpness-Aware Zeroth-Order Optimization

Require: Initial prompt parameters wo, total steps 7', transition step 7, pruning interval K

I: fort =1to T do

2 if t < T¢ then _ > Stage 1: Sharpness-aware CMA-ES
3 Sample candidate solutions w; using eq. (3)

4: Evaluate fitness £(wy) for each candidate

5: Update CMA-ES parameters 6,, o, and C; based on fitness values

6 else > Stage 2: Sparse ZO Optimization
7 ift =T, or (t — T.) mod K = 0 then

8: Update pruning mask €2 using eq. (5)

9: end if .
10: Estimate gradient V £(w.) using the ZO oracle (eq. 4)
11: Wi — wi — 1 - VL(wr)
12: end if
13: end for

14: return Fine-tuned prompt vector wr

Theorem 1. Under assumptions Al and A2, suppose the SharpZO algorithm first performs T, steps
of global optimization using CMA-ES and then switches to zeroth-order gradient-based optimization
until convergence. The convergence rate of SharpZO method can be give by:

3,2 .2
t~T, +0O (ilog (Lﬂ» (6)
o

€

where € is given by assuming L(w;) — L* < ¢, 1 is the learning rate of ZO-SGD optimizer in stage 2
and L is the smoothness factor. Eq. (6) is obtained by ignoring the lower order terms for clarity.

Proof. Details of the proof can be found in Appendix D. O

Compared to the naive ZO-SGD convergence rate presented in [28], the SharpZO method leverages
a sharpness-aware initialization strategy that yields a lower starting point for the second-stage ZO
training, specifically of the form (1 — u(1 — 2Lo?))Te Ay in eq. (13) in Appendix D. Since we use a
relative large step size o during the first stage training, we can observe the original error gap A is
linearly decreasing with high scaling factor. Moreover, as we can observe from the sharpness term in
eq. (6), the integration of sharpness-aware optimization effectively clips the L-smoothness constant
L with the sharpness parameter p, thereby reducing the effective sharpness in the ZO training phase.

S Experiments

In this section, we present experimental results to evaluate the performance of the proposed SharpZO
method across a variety of downstream tasks using CLIP models with different architectures. Specifi-
cally, we compare the proposed SharpZO method with zero-shot (ZS) inference and other BP-free
baselines like BBT [49], BlackVIP [31], and ZIP [32] (Detailed descriptions for tasks and baslines
method can be found in Appendix B). Our results demonstrate that SharpZO not only achieves
superior accuracy but also improves efficiency, as measured by the time-to-test-accuracy (ToTA)
metric [7]. Additionally, we provide a comprehensive ablation study to analyze the contributions
of individual components in Section 5.4.1 and Section 5.4.2. Further implementation details and
extended experimental results—including evaluations across various model architectures and hyper-
parameter choices, as well as comparisons with state-of-the-art prompt-tuning methods that involve
backpropagation, such as CraFT [43] are provided in Appendix C.

Training Detail: For the VLM model, we utilize CLIP [34] with both ResNet [19] and ViT [10]
backbones as the visual encoder, and Transformers [41] as the text encoder. The CLIP weights are
initialized from the official pretrained checkpoints and remain frozen during training. The prompt
generator use initial prompt with length of 4, and hidden dimension d = 512. Parameters in w are
initialized from a Gaussian distribution A/(0, 0.02).

Here, we manually tuned the change points from stage 1 to stage 2 by choosing from a set of parameter
between 100 to 500. However, we also tried to adapt an early stopping criterion to automatically



Table 1: Few-shot performance across 11 datasets using CLIP models with ResNet and ViT backbones,
trained for 20K steps. * indicate results reported in prior works [31, 43, 32]. We additionally reproduce
the ZIP results, as the original paper restricted the query budget to SK. Bold values highlight the best
performance, demonstrating the superiority of SharpZO over all BP-free baselines.

Backbone Methods ImageNet Pets Flo FGVC DTD Euro Cars Food SUN Cal UCF AVG

ZS-CLIP* 58.18 8577 66.14 1728 4232 3756 55.61 77.31 5852 86.29 61.46 58.77

BBT* 61.74 88.73 7253 12.07 5433 69.01 60.24 7844 6434 90.05 6791 6540

RNS50 BlackVIP 60.33 8599 65.12 1737 4273 58.16 56.70 77.23 59.17 86.37 60.11 60.84
ZIP 61.30 89.53 68.41 1998 4740 63.10 58.61 7898 62.86 90.63 64.05 64.08

SharpZO 63.29 89.51 79.50 23.97 60.58 80.77 60.58 79.28 66.17 91.24 72.43 69.76

ZS-CLIP* 66.73 89.21 7134 2472 4439 47.60 6532 86.06 6250 9294 66.75 65.23

BBT* 70.15 9270 8241 2949 5926 7048 70.19 86.42 7033 9475 7048 7242

ViT-B/16 BlackYIP* 67.10 89.70 70.60 2478 4520 73.10 65.60 86.60 64.70 93.70 69.10 68.20
ZIP (Offical)* 66.20 94.00 7040 26.80 47.80 64.60 71.09 86.40 63.30 94.00 69.80 70.57

ZIP (Rep) 68.35 93.18 73.00 2832 5426 74.19 6758 87.01 6743 9497 7251 70.98

SharpZO 71.60 94.06 88.02 3234 63.95 7942 7250 87.13 7086 95.09 77.08 75.64

Table 2: Comparison of robustness to distribution shift between SharpZO and other baselines. The
best results among BP-free methods are highlighted in bold.
Method ResNet-50 ViT-B/16
ImageNet -V2 -Sketch -A -R Avg ImageNet -V2 -Sketch -A -R Avg
ZS-CLIP 58.2 51.3 333 21.7 56.0 40.6 66.7 60.8 46.2 478 740 572

CoOp 63.3 55.4 34.7 23.1 56.6 424 71.7 64.6 47.9 499 751 594
BBT 61.7 54.0 339 232 583 424 70.2 63.0 479 495 76.1 59.1
BlackVIP 60.2 52.3 333 21.5 577 412 65.5 592 446 425 731 549
ZIP 61.3 53.7 33.7 239 576 422 68.4 59.7 45.5 47.1 752 56.9

SharpZO 63.3 548 352 245 587 433 71.6 638 450 503 76.6 589

decide this point: the algorithm switches to stage 2 if the validation accuracy does not improve by
more than 0.01 over the best recorded accuracy for 10 consecutive steps, which can achieve similar
results. Detail hyper-parameter setup for SharpZO method on various tasks can be found in Table. 8
in Appendix C.2. All experiments use a 16-shot setup unless otherwise specified.

5.1 Results on Few-Shot Classification

We first compare our SharpZO method with SOTA BP-free prompt-tuning baselines across 11
downstream tasks. To explore the effect of different model architectures, we evaluate all methods
using CLIP models with both ResNet-50 and ViT-B/16 viusal encoder backbones. The results are
summarized in Table 1. Based on these results, we draw the following conclusions:

SharpZO significantly outperforms all other BP-free methods. As shown in Table 1, SharpZO con-
sistently surpasses other ZO prompt tuning approaches in terms of classification accuracy. Compared
to the SOTA ZO prompt tuning method ZIP, SharpZO achieves an absolute average performance gain
of 5% and outperforms ZIP among all 11 tasks on the CLIP model with ViT-B/16 backbone. The
performance of SharpZO is approaching first-order method like CoOp, which shows the potential of
deploying ZO method in real-world application. These improvements are driven by the reduction of
gradient estimation variance and bias with the sharpness-aware warm-up training.

SharpZO performs robustly across diverse model architectures. Unlike prior ZO prompt-tuning
methods such as ZIP and BlackVIP—which often struggle to converge on certain tasks like Flow-
ers102, EuroSAT, and UCF101 when using CLIP models with ResNet backbones—our proposed
SharpZO method consistently delivers strong performance across a wide range of architectures
and tasks. Additional results using architectures such as ResNet-101 and ViT-B/32, presented in
Appendix C.1, further demonstrate the robustness of SharpZO to varying model backbones.

SharpZO exhibits lower training variance. As illustrated by the optimization curves in Fig. 1(a),
SharpZO achieves markedly more stable training—its standard-deviation bands are substantially
narrower than those of other ZO methods such as ZIP and BlackVIP.

5.2 Robustness to Distribution Shift

In this section, we further evaluate the robustness of the SharpZO method under distribution shifts.
Results comparing SharpZO to other BP-free baselines are summarized in Table 2. Compared to the
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state-of-the-art ZO method ZIP, SharpZO achieves an absolute improvement of 2.0% on ResNet-
50 and 2.8% on ViT-B/16 (averaged over all distribution shift benchmarks) for the ImageNet test
accuracy. These findings highlight the strong out-of-distribution generalization ability of SharpZO
under varying types of distribution shifts.

5.3 Time-to-test-accuracy Efficiency

In this section, we evaluate the training efficiency of ~_ Methods  IN  Pets DTD Euro
the proposed SharpZO method. We focus on training ~ BlackVIP 172.6 = 714.8  132.0  201.5
time rather than memory usage, as all zeroth-order ZIP 190 1263 60 2514
(ZO) baselines exhibit comparable memory con- _orarpZ0 153 24 26 127
sumption due to their forward-only nature. Specif-
ically, we measure the wall-clock time required to
reach a common evaluation accuracy threshold, fol-
lowing the protocol of [7]. The threshold is selected
such that it is attainable by all baselines. The re-
sults are summarized in Table 3 and tested on single
Nvidia A100-40G GPU.

As shown in Table 3, the SharpZO method achieves faster convergence compared to other ZO prompt
tuning baselines, which is consistent with our theoretical analysis in Section 4. Beyond the benefits of
the proposed hybrid sharpness-aware optimization scheme, the improved training speed of SharpZO
also stems from its lower per-step query count and significantly faster forward pass.

Table 3: Time-to-test accuracy comparison be-
tween different BP-free prompt tuning meth-
ods on multiple dataset. The time is recorded
in minutes.

Specifically, unlike ZIP and BlackVIP, which require 10 queries per step to reduce training loss,
SharpZO only requires 2 queries per step during Stage 2. Moreover, ZIP incurs substantial overhead
due to its complex reconstruction process in forward pass, taking approximately 0.53 seconds per
forward pass, whereas SharpZO requires only 0.0069 seconds. Consequently, the average per-step
training time of SharpZO is markedly lower than other ZO baseline like ZIP.

5.4 Ablation on Components in Different Stages

5.4.1 Influence of Stage 1 Sharpness Aware Optimization

In this section, we aim to validate the effectiveness and illustrate the influence of our sharpness-aware
CMA-ES method to both stage 1 and stage 2 training in SharpZO. Specifically, we compare the
training curve between the naive CMA-ES method and our sharpness-aware (S-aware) CMA-ES
method for both stage in Fig. 3 (a) and Fig. 3 (b), respectively. The experiments are conducted
on the EuroSAT dataset using the CLIP model with a ViT-B/16 backbone. For the convenience of
comparison, the transition point from Stage 1 to Stage 2 optimization is fixed at 500 steps.

As illustrated in Fig. 3 (a), the sharpness-aware CMA-ES method consistently achieves a faster
convergence rate and superior final accuracy compared to the naive CMA-ES method in stage 1,
which shows a better generalization ability. More importantly, the sharpness-aware training benefits
the second-stage convergence of ZO optimization as observed from Fig. 3. The sharpness-aware
warm-up training leads to a more stable Stage 2 training curve with reduced variance, which can be



attributed to the implicitly clipped smoothness factor introduced by the sharpness-aware updates, as
discussed in the theoretical analysis in Section 4.

5.4.2 Effectiveness of Stage 2 Sparse ZO Optimization

We evaluate the effectiveness of our proposed Z-pruning strategy for sparse ZO optimization in Stage
2. Specifically, we compare it against magnitude-based pruning and dense training on the EuroSAT
dataset using the CLIP ViT-B/16 backbone. Results are shown in Fig. 4.

Our findings show that sparse ZO training with Z-pruning reduces gradient variance and improves
both accuracy and convergence speed compared to dense training. In contrast, magnitude-based
pruning—commonly used in prior work [15, 26]—performs poorly in prompt-tuning due to the
limited number of trainable parameters (512), which makes accurate pruning critical. Moreover,
magnitude-based pruning operates solely on weight values, ignoring critical nonlinear interactions
within the model. This limitation is particularly impactful in prompt-based tuning, where the prompts
are prepended to the input and play a disproportionately large role in the model’s behavior compared
to standard weights.

5.4.3 Comparison with Method Involving Backpropagation

In this section, we compare our method with black-box tuning baselines that involve backpropagation,
such as CraFT [43]. The CraFT method introduces a collaborative fine-tuning framework that jointly
optimizes both the prompt and the adapter, using ES for the former and first-order (FO) methods for
the latter. Although CraFT achieves strong performance, its requirement of backpropagation limits its
applicability in memory-constrained environments, such as mobile devices and edge devices, where
gradient access via backpropagation is not available.

It is important to highlight that reliance on backpropagation presents significant challenges for
deployment on edge inference devices, as these devices are typically equipped with inference-only
ASICs and do not support gradient computation. Unlike large-scale multimodal models like LLaVA
[25], the CLIP model is particularly relevant for edge computing scenarios. Despite the inherent
limitations of backpropagation-based methods in such contexts, we include CraFT in our comparison
to demonstrate that our proposed SharpZO method can achieve even better performance without
relying on backpropagation, and in a more efficient manner.

The comparison results on few-shot task accuracy and training memory, are summarized in Table 4.
As shown, SharpZO consistently outperforms CraFT across all evaluated tasks. Moreover, SharpZO
also requires less training memory, as it avoids storing backpropagation graphs, further enhancing its
suitability for edge deployment.

Table 4: Comparison between SharpZO and black-box fine-tuning baseline involving backpropagation.
* represent accuracy results obtained from original CraFT paper [43]. We bold the best results during

the compasion.
Test Accuracy Memory (MB)
Methods Imagenet Pets DTD  Euro | Imagenet Pets DTD Euro
CraFT* 68.21 91.94 6328 72.07 3297.5 3130.9 3128.7 2178.8
SharpZO 71.60 9346 63.95 79.42 31323 3032.5 30579 2075.2

6 Conclusion

This paper has introduced SharpZO, a hybrid ZO fine-tuning method comprising two optimization
stages. In Stage 1, SharpZO employs a sharpness-aware CMA-ES algorithm to conduct a global
search for optimal regions while simultaneously smoothing the loss landscape. In Stage 2, SharpZO
performs fine-grained sparse ZO optimization for local optimization. Compared with prior BP-free
fine-tuning approaches, SharpZO provides a high-performance, inference-only fine-tuning solution
tailored for VLMs. Future work may explore the extension of SharpZO to full-model fine-tuning for
both text- and multimodal LLM:s.
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A Limitations

While SharpZO demonstrates strong empirical and theoretical advantages for forward-only VLM
fine-tuning, several limitations remain. First, the method is currently tailored for prompt-tuning
scenarios with relatively low-dimensional parameter spaces; its scalability to full-model or multi-
modal fine-tuning remains unexplored. Second, the sharpness-aware CMA-ES warm-up stage
requires coordinate-wise gradient estimation (CGE), which may be computationally expensive for
higher-dimensional settings. As a result, the SharpZO method proposed in this work is a better fit
under the parameter-efficient fine-tuning setup.

B Further Detail Regarding Tasks and Baselines

Datasets: Following the experimental setup of prior VLMs fine-tuning works [43, 32], we evaluate
SharpZO on 11 diverse image classification benchmarks under a few-shot learning scenario. These
datasets cover a broad range of tasks: generic object recognition with ImageNet [9] and Caltech101
[42], fine-grained image classification with OxfordPets [33], StanfordCars [23], Flowers102 [30],
Food101 [4], and FGVCAircraft [27], satellite image classification with EuroSAT [20], texture
recognition with DTD [6], scene classification with SUN397 [44], and action recognition with
UCF101 [36]. To assess the robustness of SharpZO under distribution shift, we further evaluate it
on four widely-used out-of-distribution (OOD) variants of ImageNet: ImageNetV2 [35], ImageNet-
Sketch [42], ImageNet-A [22], and ImageNet-R [21].

Baselines: To benchmark the performance of SharpZO against SOTA methods, we mianly consider
five baseline approaches:

» Zero-shot (ZS): This baseline uses manually crafted prompts to directly evaluate the pretrained
CLIP model without any additional adaptation.

BBT [49]: BBT employs a naive CMA-ES-based optimizer to update the trainable prompt parame-
ters. As the original BBT is designed for LLMs, we adopt its prompt generator structure and adapt
it to the VLM fine-tuning setting.

BlackVIP [31]: BlackVIP uses a naive ZO-RGE estimator to jointly optimize both textual and
visual prompts in a black-box manner.

ZIP [32]: ZIP improves upon naive ZO prompt tuning by reducing the number of trainable
parameters via low-rank decomposition of the prompt space.

CraFT [43]: CraFT introduces a trainable adapter appended to the output of the CLIP model. It
jointly optimizes both the prompt parameters and the adapter using a combination of CMA-ES
and gradient-based methods. As CraFT requires access to backpropagation, we provide a separate
comparison with it in Appendix 5.4.3.

C Additional Experimental Results

C.1 Robustness across different model architectures

We further evaluate the performance of SharpZO across different model architectures and compare
it with other baselines, with results summarized in Table 5. As shown, SharpZO demonstrates
architecture-agnostic effectiveness, consistently outperforming previous backpropagation-free (BP-
free) methods across all four evaluated architectures. In particular, SharpZO achieves an average
absolute performance improvement of 2.25% and 4.19% over the ZIP and BlackVIP methods,
respectively.

Table 5: Ablation study for model architectures with Imagenet dataset.
Methods RN50 RNI101 Vit-B/16 Vit-B/32 Avg.
ZS-CLIP 58.18 61.62 66.73 62.05 62.15
BlackVIP 60.33  62.00 67.10 61.10 62.63
ZIP 61.30 63.67 68.35 6497 64.57
SharpZO 63.29 65.40 71.60 66.98  66.82
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C.2 Hyper-parameter Search

To guide future applications of the SharpZO method, we conduct ablation studies on several key
hyper-parameters, including the scaling factor for the sharpness term, and the sparsity ratio used in
sparse ZO optimization. The results are summarized in Table 6.

Based on our experiments, the optimal scaling factor for the sharpness term should be around 0.05
or 0.1, which is consistent with the choice in the original SAM paper for the SAM-SGD algorithm.
The sparsity ratio should be larger than 0.5. Conversely, a sparsity ratio that is too small will hurt
the representational capacity of the prompt parameters, since the number of training parameters is
already low enough during prompt tuning. This observation differs from previous ZO full-model
fine-tuning work.

Table 6: Ablation studies for different applicable pruning metrics and sparsity.

Methods\Sparsity | 10% 30% 50% 70% 90%
Magnitude 78.07 77.14 76.12 77.06 77.09
Z-Score 7891 79.02 7942 79.15 79.21

Table 7: Ablation studies for different scaling factor p.
p 0.001  0.01 0.05 0.1 0.5
Accuracy | 77.74 79.03 79.22 79.42 76.32

Another hyperparameter that influences performance is the scaling factor p, which adjusts the weight
of the sharpness-aware term during the sampling process in Stage 1 optimization. We conduct an
ablation study with different values of p, as shown in Table 7.

We outline the configuration details for each comparative baselines. Specifically, the hyper-parameter
setup of individual tasks for SharpZO method are presented in Table 8. To search these hyper-
parameters, we select 3-5 candidate values ([0.1, 0.2, 0.4, 1.0] for CMA_ES step size, [le — 3, le —
4,1e—5] for ZO scale and [le—1, le—3, 1e — 5] for ZO learning rate) and choose the one yielding the
best performance with the other hyper-parameters fixed. All hyper-parameter search are performed
on a 5-shot validation set extracted from the official validation set or splitted from the training set
(e.g. ImageNet). For a fair comparison, we use the original hyperparameter settings provided in the
baseline papers [32, 31, 43] when running the experiments. In contrast, for the ablation studies, we
adopt a consistent parameter setup across methods to ensure comparability. Specifically, we would
like to note that during the stage 2 of our method, we set the query number ¢ as 1 instead of 5 used in
previous baselines like ZIP and BlackVIP, which is enough for the convergence of SharpZO method.

Table 8: Hyper-parameter setup for Stage 1 and Stage 2 in the SharpZO paper.
Dataset Pets Flo FGVC DTD Euro Cars Food SUN Cal UCF IN
Step size o 01 04 02 04 04 10 01 04 04 01 10
ZO-CGE scale picge le-3 le-3 le-3 le-5 le-3 le-3 le-3 le-3 le-3 le-3 le-5

Method

SharpZO
(Stage 1)

Implicit population S
Intrinsic dimension d
Context tokens number m
Scaling factor p
Population size S

Change point (step) 100 500

400

300

500

40
512
4
0.1
40

100 100 400 200 200

200

SharpZO
(Stage 2)

Learning rate n le-3 le-3
ZO-CGE scale picge
ZO-RGE scale pirge
Pruning interval K
Number of query g
Pruning ratio

le-3

le-3

le-3

le-3 le-3 le-1 le-3 le-3
le-5
le-3
200
1

0.5

le-1

D Proofs

To prove Theorem 1, we begin by establishing Lemma 1, which characterizes the convergence of the
first-stage sharpness-aware CMA-ES method by leveraging its interpretation as a natural-gradient
descent algorithm [1]. We then apply the result of Lemma 1 as the initial condition for analyzing
the convergence of the second-stage ZO optimization. Finally, by composing these two phases, we
obtain the overall convergence rate of the SharpZO algorithm.
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D.1 Proof of Lemma 1

Before presenting the Lemma 1, we first introduce some background knowledge regarding the con-
nection between the CMA-ES update and the natural gradient descent, details about the mathematical
relationship can be refereed to [1, 16].

Considering the minimization

arg erflch:lt E[E(P) ‘ 0, Ct]

under the sampling distribution of eq. (3), a natural-gradient descent step with step-size o reads

6t+1 = 0t — O'thl VgtIE[ﬁ(P) ‘ Ht, Ct], (7)
Ct+1 = Ct — O'VCtE[[,(P) | 0t7 Cf:l . (8)
where F,! is the Fisher information matrix Fg, = —Ep,. F(160) {%} . given the sample

distribution defined in eq. (3). Here we have used that the natural gradient with respect to 0, satisfies:
Vo, E[L(P)] = C; ' Vg, E[L(P)].
To simplify the subsequent convergence proof, we note that our target is the expected fitness f(m;)

of the sample center m; = 6, whereas C, affects only the sampling spread and not directly the
objective value. In the idealized infinite-samples regime of CMA-ES one shows

C;' «x V2L(m;) = H,

so that C'; implements a Hessian-inverse preconditioner. Consequently, in our proof we focus solely
on the mean update (7) (with C,” !~ H) and omit carrying the detailed covariance dynamics (8)
through the convergence bounds.

Based on eq. (3), we sample P; based on both the current mean value of the distribution parameter 6;
and the sharpness aware term €* obtained by optimizing the maximize problem max|,<, £(P + ¢€)
within the nearly region around the current parameter P. Thus, by simplifying the second and
higher order term with the variance of z, we can obtain the gradient of expectation for the loss
E[L(0, + €* + 2)] as:

Vo,E[L(0; + € + 2)] = Vo,L(0; + €) + O(67)
Putting the above equation into eq. (7), we can obtain the natural gradient updating equation for the
stage 1 of our SharpZO method, gives:
9t+1 = Ht — O'thl VgtIE[E(P) | 0757 Ct]
=0, — oF, ' [VL(O; + €) + O(57)]

Here, inspired by the proof of Therorem 4.1 of original SAM paper [3], we divide the natural gradient
step of our sharpness-aware CMA-ES method into two steps:

VE(O,:)
0,1 =0, 4+p——+——, 9
s = O PIG e, ®
Ori1 =0, — oF 5 [VL(O, 1 1) + O] (10)

Lemma 1 (Per—step error bound for sharpness-aware CMA-ES). Under Assumptions A2, the
sharpness-aware CMA-ES method gives a per-step error bound for the updating process as:

L(0:1) < L(6;) — (1 —2La)||V'L(6,)|]* + L?p* + L30*p?

Proof. We begin our proof for the first stage defined in eq. (9). By the assumption of L-smoothness,
we have:

£(6,,1) < L(6) + (VL(6,), 0,01~ 6,) + %”%% -6,

Since 6, 1 — 6, = pVL(0,)/[ VLB,

L0 1)< L(0:)+p|IVL®O,)| + L& (1)

t+35
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For the second stage in eq. (9), we employ the similar idea and denote natural gradient as V' £(6;) =
Fg ' [VL(6;)]. which gives:

L(0r) < £(0) =0 (VLO,), VLO, 1)) + 55 [VLE, 1)

(@)

< L(6:) — L|V'L(0)]? + 1|V’ L(6)) vc(et+%)||2+ L chwﬁy\f

(d) 2 2
< L(6:) — 5V L(O)|I” + L?p* + £5- HVﬁ(QH%)H

< £0) — HIVEO)? + 120 + Lo® [VL@)P + P00

< L(6;) — 2(1 = 2Lo?)|V'L(6,)|> + L?p* + L?0° p?
where (a) is given by the fact (a,b) > 3|lal|? — 3|la — b||* with a = VL(6,), b = V,C(GH%) and
(b) is given by eq. (9). O

D.2 Proof of Theorem 1

Now, we begin the proof of the global convergence rate of SharpZO method. Before we start, we
first prove a per-step error bound for the stage 2 sparse ZO training in Lemma 2. Then, we perform
inductive step based on the per-step error bound of the stage 2 and include the results in Lemma 1 as
an initialization point of stage 2 training. Different from the proof in previous ZO fine-tuning paper
[27] that consider an ’effective’ rank for the dimension fo the optimization problem, we consider the
true dimension d, as the trainable parameter in our prompt tuning case is much lower than the full
model fine-tuning case. The proof of Lemma 2 is given as follows:

Lemma 2 (Per-step Error Bound for ZO-SGD). Given the Assumption A2 and the ZO-RGE gradient

estimation follow eq. (4), by setting the learning rate n < m, we have:

4+ 6)?),

where d is the true parameter dimension of the trainable prompt w and L is the smoothness factor,
is the ZO perturbation scal. The standard devation of the stochastic gradient estimation ~; is defined
as v; = B[|VL(w;) — L,.(w,)||2], given the unbiased estimator N L(wy) for the smoothed objective
function L,,(w).

E[L(we1) | wi] < Lw,) = FVLwe) > + Ln*(7*(d + 4) +

Proof. Let w; be the parameter at iteration ¢ and we consider ZO-SGD using a gaussian smoothing
estimator defined in eq. (4). Based on properties of £, Theorem 3.1 (c) of [], the variance of the
estimator satisfies:

2

E[||VL(w:) %] < 2(d + 4)[[|[VL(wy)||* + 7] + %Lz(n +6)%,
where is smoothness factor L is assumed

Given the learning rate 7 > 0, then from the smoothness of £, the standard descent lemma gives:

BlL(wis) | wi] < L) — nlVLw,) | + or Bl L)

< L(wy) ~ VL) | + S (2d+ IV E@w) | + 7]+ 12 + 6))

Rearranging:
E[C(w 1) | wi] < £(we) — 1 (1 Ind + 4)) [VE@)|? + L (P (d + 4) + 2 (0 4 6)%).
Choose ) < 3 (d+4) so that 1 — Ln(d +4) > 1. Then:

Bl (i) | wi] < L) — DTL0) |+ Lt (3 + 4) + 22 (67,
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Next, we proceed to prove Theorem 1 by performing an inductive argument based on the result of
Lemma 2. Let the total number of steps in Stage 2 be denoted as T := T' — T,. To facilitate the
analysis, we define two suboptimality gap measures:

. Agl) := L£(6;) — L*, which denotes the optimality gap of the distributional mean 6; used
in Stage 1 (Sharpness-aware CMA-ES);

. AgZ) = L(w;) — L* used in Stage 2 (ZO optimization).
At the transition point ¢ = T, Lemma 1 guarantees that the distributional mean 67, satisfies a
convergence bound on Ag}c ), Using a second-order Taylor expansion of the loss function around 6,

we can relate the Stage 2 initialization gap A(Ti ) to A(Tlc ) via:
A@ < AW 0 Lo, s
1. = Lr) = L7 <A+ pI VL) + 5 (p° + 07, Tr(Cr)) - (1n

This inequality provides the initial condition for the inductive proof in Stage 2, where we now track
the evolution of A§2> fort =1T,,...,T,as governed by Lemma 2. Here, we first bound A%)

By Lemma 1, for each ¢ we have
L(041) < L(6;) — 3(1—2Lo°) [[VL(O)|* + L*p* + L0?p*.
Subtracting £* from both sides yields
A1 < Ay — 2(1=2L0%) |VLO)|I> +C, C =L+ L3?p*.

Under the PL inequality ||V.L(6;)]|? > 2u Ay, it follows that

(1) (1) _1¢1_ 2

AVIILVAW 5(1 2Lo )(Q,MAt)+C
=[1—p(l—2Lo%)] A+ C.
Set
¢ = p(l—-2Lo%), 0<¢&<1 (assuming o < 1/(2L)).
Then the recursion becomes
1 1
Al < 1-9al+c

Unrolling this fort = 0,1,...,T, — 1 gives

T.—1
AY < -9 AP oY -0 = - AS”+%[1‘<1‘5>T“]

‘ i=0
Substituting back C' = L%p? + L30%p? and € = u(1 — 2Lo?) completes the proof:

L2,02 + L302p2

D £ (1 _eyTe AW
ATC — (1 f) A0 + /.L(l—QLO’Q)

[1 —(1- g)Tv}. (12)

Now, we begin to prove the global convergence rate for the SharpZO method. Let’s focus back into
the bound given in Lemma 2. By the PL-inequality assumed in Assumption A1, we have:

B[ (wii) | w] < Lwn) — 2 [VL(w) [+ Cuanld, L) n?
< L(wy) — np (L(w,) — L%) + Cyar(d, L) n?,

12,2
where Cyar(d, L) = L<d+4>+7k<d+6)3

E[L(w;)] — L* gives the one-step contraction

is some constant. Taking full expectation and with A§2) =

AR < Q=) AP + Cuanl(d, L) .
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Given the current step ¢, we define to := t — T, and unroll this linear recursion fort = T, ..., T, +15
yields

Cyar(d, L
. (d,L)n
"

AP < (1 =)z A (1= = m™)
() Cvar da L
21— (AD 1+ p|VL(Or) 1 Gl L)n

L
+ 5 (P + 07, Tr(Cr))) m

(1 —(1- nu)tz)

(b)

L2p2 _|_ L377202
< (1—nu)=((1 - T Al +

p(1—2Ln?)
+ % (p2 + 6%6 TT(CTC))) + W(l (1= W)”)a

1-a-97]

+p[VL(Or,)

where (a) is given by eq. (11) and (b) follows the bound of A% ) proved in eq. (12). Finally, by

ensuring A§2> < ¢, we have:
1 X-—-B

to = O(—1
? (nune—B

);

where

L2 2+L3 2 .2 L
X = (-9 A0 + =T 1 - (1= 9] + p| VL)l + 5 (0 + 03, Tr )

£
(13)
1 L2 TI‘C’TC
= (1= 9" A + (L + L) (€ = 2) + 5 L) + ol VLOr )| + —F5—  (4)
and
B = M, Cvar(d7L) — L(d+4)+?ﬂ_(d+6)3 (15)
7

Here, if we focus on the influence of smoothness factor L and ignoring the lower-order terms for
convenience, we can write the convergence rate to as:

3,,2 2
to(L) ~ O (# log <ﬂ>> (16)

€
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