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Abstract

Ensuring the privacy of users whose data are used
to train Natural Language Processing (NLP) models
is necessary to build and maintain customer trust.
Differential Privacy (DP) has emerged as the most
successful method to protect the privacy of individuals.
However, applying DP to the NLP domain comes with
unique challenges. The most successful previous methods
use a generalization of DP for metric spaces, and apply
the privatization by adding noise to inputs in the metric
space of word embeddings. However, these methods
assume that one specific distance measure is being used,
ignore the density of the space around the input, and
assume the embeddings used have been trained on public
data. In this work we propose Truncated Exponential
Mechanism (TEM), a general method that allows the
privatization of words using any distance metric, on
embeddings that can be trained on sensitive data. Our
method makes use of the exponential mechanism to
turn the privatization step into a selection problem.
This allows the noise applied to be calibrated to the
density of the embedding space around the input, and
makes domain adaptation possible for the embeddings.
In our experiments, we demonstrate that our method
outperforms the state-of-the-art in terms of utility for
the same level of privacy, while providing more flexibility
in the metric selection.

1 Introduction

Nowadays, text data are being used as input for a
wide variety of machine learning tasks, from next-word
prediction in mobile keyboards [10], to critical tasks
like predicting patient health conditions from clinical
records [22]. Researchers have demonstrated that simple
exploratory analysis tasks [14] or the use of models
trained on sensitive data [20] may breach the privacy of
the individuals involved. Even though there has been
research focused on specific privacy-preserving tasks with
textual data, such as language models [16, 1, 21], to the
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best of our knowledge only a more recent line of work
[7, 9, 8, 2] has been focusing on providing quantifiable
privacy guarantees over the text itself.

In this work, we aim to provide privacy guarantees
to textual data using the formal notion of differential
privacy (DP) [6], one of the most widely adopted
privacy frameworks in industry and academia. More
specifically, we apply a generalization called metric-
differential privacy [3], which allows analysts to tailor
solutions over general distance metrics. Previous work
[7, 9, 8] in this setting processed each input word by its
vector representation and added noise to provide privacy
guarantees. Additionally, as a noisy vector is unlikely to
exactly represent a valid word, these methods returned
a nearest neighbor approximation after querying the
representation space. However, these works consider the
representation space as non-sensitive, as they do not
account for privacy loss in the nearest neighbor search.
Moreover, the noise added to a vector does not take
into account the density of the region that the vector
lies in, which can potentially reduce the utility of a DP
algorithm.

Our main contribution is the design of a new
mechanism which we call the Truncated Exponential
Mechanism (TEM), that satisfies metric-DP over textual
data, posing the task as a selection problem. Instead of
perturbing a representation vector, our method selects
an output from a set of possible candidates where words
closer to the input word in the metric space have higher
probability of being selected. TEM works by adapting
the probabilities of words being selected to the regions
of a given input word, adjusting the noise injected for
better utility, and allows the application of any formal
distance function as the metric. The mechanism includes
a formal construction with a truncation step to initially
select from high utility words with high probability,
providing computationally efficient word selection with
a tunable error parameter. Our experiments show that
TEM obtains higher utility when compared to the state-
of-the-art, for the same level of privacy.

2 Related Work

Initially, there has been previous work [7] on text data
via the “bag of words” representation of documents,
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applying the Earth Mover’s metric to obtain privatized
bags, thus performing individual word privatization in
the context of metric differential privacy.

Following this context, the Madlib1 mechanism [8]
adds noise to embedding vectors of words, working on in
the Euclidean space and adding Laplacian noise to the
embedding vectors. After introducing noise, the mecha-
nism outputs the word that is closest to the noisy vector
in the embedding space. The algorithm presented in [9]
is a follow-up to [8] although it appeared later. This
mechanism works in a hierarchical embedding space,
where the embedding vector of an input word is per-
turbed with noise from a hyperbolic distribution. These
works successfully illustrated the privacy-utility trade-off
on metric differential privacy, and empirically showed
that we can achieve reasonable privacy guarantees with
the impact on the utility of downstream language models
being dependent on the complexity of the downstream
task.

We note that the work in [9] compares the hyper-
bolic mechanism to Madlib [8]. However, since the two
algorithms use different metric functions, the evaluation
of privacy via only matching the ε parameter of differen-
tial privacy can be improved. In this sense, [9] compares
the privacy of the two mechanisms, looking at the prob-
ability of not changing a word after noise injection, i.e.
the probability that the mechanism returns the exact
same word used as input. Even though this notion can
be intuitively seen as a level of indistinguishability, it
cannot guarantee a fair comparison between mechanisms.
The issue of comparing metric-DP mechanisms with dif-
ferent metric functions thus remains an open problem.
In this work, we only compare mechanisms using the
same metric function (Euclidean distance) to ensure a
fair comparison.

3 Preliminaries

Consider a user giving as input a word w from a discrete
fixed domain W. For any pair of inputs w and w′, we
assume a distance function d : W ×W → R+, in a given
space of representation of these words. More specifically,
we consider a word embedding model ϕ : W → Rn will
be used to represent words, and the distance function can
be a valid metric applicable to the embedding vectors.

Our goal is to select a word from W, based on
a given input word, such that the privacy of a user,
with respect to this word choice, is preserved. From
an attacker’s perspective, the output of an algorithm
working over input w or w′ will become more similar
as these inputs become closer with respect to d(w,w′).
Intuitively, words that are distant in metric space will

1We refer to this algorithm with the name used in [4]

be more easily distinguishable, compared to words that
are close.

With that in mind, we will work on Metric-
Differential Privacy [3], a privacy standard defined for
randomized algorithms with input from a domainW that
are equipped with a distance metric d : W ×W → R+

satisfying the three standard axioms of a metric, i.e.
formally for all w, z, y ∈ W:

1. d(w, z) = 0 =⇒ w = z

2. d(w, z) = d(z, w)

3. d(w, y) ≤ d(w, z) + d(z, y)

Thus d as described above using embedding vectors will
satisfy all the axioms as long as ϕ is injective.

In this context, the privacy guarantees given by
metric-DP depend not only on the privacy parameter ε,
but also on the distance metric d used.

Definition 3.1. (Metric Differential privacy [3]).
Given a distance metric d : W×W → R+, a randomized
mechanism M : W → Y is εd-differentially private if
for any w,w′ ∈ W and all outputs y ∈ Y we have:

Pr[M(w) = y] ≤ eεd(w,w′) Pr[M(w′) = y](3.1)

Usually, on the standard definition of differential
privacy[6], the privacy guarantees provided by different
mechanisms are compared by looking at the ε value, such
that mechanisms with the same ε give the same privacy
guarantee. For a fair evaluation on metric-DP using ε,
in general, we want to make sure the algorithms we are
comparing use the same distance metrics.

For the Euclidean distance metric, as discussed in
Section 2, the current state-of-the-art is the Madlib
mechanism, which adds Laplacian noise to a given vector
in order to obtain a private output. For completion, we
detail the Madlib mechanism in Algorithm 1 below.

Algorithm 1 - Madlib: Word Privatization Mechanism
for Metric Differential Privacy

Input: Finite domain W, input word w ∈ W and
privacy parameter ε.
Output: Privatized word.

1: Compute embedding ϕw = ϕ(w)

2: Perturb embedding to obtain ϕ̂w = ϕw + N with
noise density pN (z) ∝ exp(−ε ∥z∥)

3: Return perturbed word ŵ = argminy∈W ||ϕ(y)−ϕ̂w||

For a Euclidean metric d : W ×W → R+, Madlib
provides metric differential privacy, as formalized next.
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Theorem 3.1. For a Euclidean metric d, Algorithm 1
is εd-differentially private.

Following we describe our algorithm that satisfies
metric-DP, giving formal proof of its privacy guarantees.

4 Metric Truncated Exponential Mechanism

At its core, our algorithm uses the Exponential Mecha-
nism (EM) [17], which is often used for selection in the
context of differential privacy[6].

Algorithm 2, denoted as TEM for metric Truncated
Exponential Mechanism, is using a variant of the
exponential mechanism with Gumbel noise [5], and more
specifically adapted to metric-DP for any given distance
metric. TEM starts by selecting from words closer to
the input by a distance of less or equal to a threshold
γ, also including a ⊥ element to account for the words
outside the γ distance.

Algorithm 2 - TEM: Metric Truncated Exponential
Mechanism
Input: Finite domain W, input word w ∈ W, trun-
cation threshold γ, metric dW : W × W → R+, and
privacy parameter ε.
Output: Privatized word.

1: Given input w, obtain the set Lw such that each
word wi ∈ Lw satisfies dW(w,wi) ≤ γ

2: for each wi ∈ Lw do
3: Set the score f(w,wi) = −dW(w,wi)
4: end for
5: Create a ⊥ element with a fixed score defined as:

f(w,⊥) = −γ + 2 ln(|W \ Lw|)/ε
6: for each word wi ∈ L(x) ∪ ⊥ do
7: Add Gumbel noise with mean 0 and scale 2/ε to

the score f(w,wi)
8: end for
9: Select ŵ as the element with maximum noisy score

from L(x) ∪ ⊥
10: if ŵ =⊥ then
11: Return random sample of W \ Lw

12: else
13: Return ŵ
14: end if

To formally state the privacy guarantees of TEM,
below we prove that it satisfies εd-differential privacy.

Theorem 4.1. For any formal distance metric d, Algo-
rithm 2 is εd-differentially private.

To prove Theorem 4.1, with the privacy guarantees
of TEM, we need to show that the sensitivity of the score
function is still dW(w,w′) after the truncation. So first

we prove a Lemma giving this result on the sensitivity,
and after that, we prove the privacy of TEM.

Lemma 4.1. The sensitivity of f is:

∆f = max
i∈W

max
w,w′∈W

|f(i, w)− f(i, w′)| ≤ dW(w,w′)

Proof. For a given input w, let us denote I(w) as the
domain elements that have dW(i, w) ≤ γ, therefore
keeping their distances on the score function, while the
elements on W \ I(w) have distances fixed as γ.

In this context, there are four possible cases we need
to analyze for a given i and any pair w,w′:, which we
dive deep into now.

Case 1: i ∈ I(w) and i ∈ I(w′). If i is in both
I(w) and I(w′), then it is using its original distance on
the score for both w and w′. Thus we have:

f(i, w)− f(i, w′) = −dW(i, w) + dW(i, w′) ≤ dW(w,w′)

with the last inequality being the use of the triangle
inequality for the distance metric dW .

Case 2: i ∈ I(w) and i /∈ I(w′). If i is in I(w)
but not in I(w′), then it is using its original distance
on the score for w and γ for w′, therefore:

f(i, w)− f(i, w′) = −dW(i, w) + γ

Since i is not in I(w′), it means that dW(i, w′) > γ, or
equivalently γ < dW(i, w′), which replacing on the result
above gives:

f(i, w)− f(i, w′) = −dW(i, w) + dW(i, w′) ≤ dW(w,w′)

where we use triangle inequality in the last step.
Case 3: i /∈ I(w) and i ∈ I(w′). If i is not in

I(w) but is in I(w′), then it is using γ as the distance
on score for w and the original distance on score for w′,
which gives us:

f(i, w)− f(i, w′) = −γ + dW(i, w′)

Since i is in I(w′), it means that dW(i, w′) ≤ γ,
which replacing on the result above shows:

f(i, w)− f(i, w′) = −γ + dW(i, w′)

≤ −γ + γ = 0 ≤ dW(w,w′)

Case 4: i /∈ I(w) and i /∈ I(w′). If i is not in
both I(w) and I(w′), then it is using γ as distance on
score for both w and w′, giving:

f(i, w)− f(i, w′) = −γ + γ = 0 ≤ dW(w,w′)

Finally, we note that showing f(i, w) − f(i, w′) ≥
−dW(w,w′) on the same cases above follows by symme-
try.
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With the sensitivity result, we can now show the
privacy guarantee of our mechanism TEM by completing
the proof of Theorem 4.1.

Proof. For a given output y ∈ W and any pair of inputs
w,w′ ∈ W we have:

Pr[M(w) = y]

Pr[M(w′) = y]
=

exp( ε2 · f(y, w))
exp( ε2 · f(y, w′))

·(4.2) ∑
z′∈I(w′)

exp( ε2 · f(z′, w′)) +
∑

w′∈W\I(w′)

exp( ε2 · γ)∑
z∈I(w)

exp( ε2 · f(z, w)) +
∑

w∈W\I(w)

exp( ε2 · γ)

We note that on the second term above we have
the same domain of elements, which even though they
do not match among summations, they still satisfy the
sensitivity on Lemma 4.1, which gives us for the first
term on the right-hand side of Equation 4.2:

exp( ε2 · f(y, w))
exp( ε2 · f(y, w′))

≤

exp( ε2 · (f(y, w′) + dW(w,w′)))

exp( ε2 · f(y, w′))

≤ exp(
ε

2
· dW(w,w′))

And similarly for the second term on the right-hand
side of Equation 4.2:∑

z′∈I(w′)

exp( ε2 · f(z′, w′)) +
∑

w′∈W\I(w′)

exp( ε2 · γ)∑
z∈I(w)

exp( ε2 · f(z, w)) +
∑

w∈W\I(w)

exp( ε2 · γ)

≤ exp(
ε

2
dW(w,w′))

Therefore, multiplying the two inequalities above
gives us for Equation 4.2:

Pr[M(w) = y]

Pr[M(w′) = y]
≤

exp(
ε

2
dW(w,w′)) · exp(ε

2
dW(w,w′))

= exp(εdW(w,w′))

which proves that the mechanism is εdW -differentially
private.

The only difference in writing from TEM to what we
used in the probabilities here is that instead of directly
picking from all the elements with distance greater than
γ we use ⊥ first. So now we show they are equivalent.

Let L(w) be a list of elements where each element
i satisfies dW(i, w) ≤ γ and let L̄(w) be the list of

remaining elements W \L(w). For elements in L̄(w), we
see that on TEM they are selected randomly after ⊥ is
selected. Since ⊥ has score −γ + 2 ln(|L̄(w)|)/ε, on the
exponential mechanism this is equivalent to:

exp(ε/2 · (−γ + 2 ln(|L̄(w)|)/ε)) =
exp(ε/2 · −γ) · exp(ε/2 · (2 ln(|L̄(w)|)/ε)) =

exp(ε/2 · −γ) · exp(ln(|L̄(w)|))) =
exp(ε/2 · −γ) · |L̄(w)|

This result is essentially the same as using |L̄(w)|
elements with score −γ directly for selection since, after
selecting ⊥, the elements in L̄(w) are selected randomly,
giving each a probability of selection proportional to
exp(ε/2 · −γ).

4.1 Utility To effectively optimize for utility, next we
give a theoretical proposition for defining γ in order to
select elements within a γ distance from the input with
high probability.

Theorem 4.2. For β > 0 and input w ∈ W, TEM
outputs elements with distance less or equal than γ from

w with probability at least 1−β for γ ≥ 2
ε ·ln

(1−β)(|W|−1)
β .

Proof. This proof basically uses the fact that on the
Exponential Mechanism (EM) [17] we have the proba-
bility of a given element proportional to the score of the
element.

This theorem is equivalent to guaranteeing that we
only output elements outside the γ distance of the input
with probability at most β. The worst case to guarantee
this condition is when we only have the input word
inside the γ distance, and all of the remaining |W| − 1
words are outside. Thus we calculate the probability in
this theorem for this worst case to obtain the maximum
guarantee.

(|W| − 1) · exp(−ε/2 · γ)
exp(−ε/2 · 0) + (|W| − 1) · exp(−ε/2 · γ)

≤ β

1

1/
(
(|W| − 1) · exp(−ε/2 · γ)

)
+ 1

≥ β

1/
(
(|W| − 1) · exp(−ε/2 · γ)

)
+ 1 ≤ 1/β

1/
(
(|W| − 1) · exp(−ε/2 · γ)

)
≥ (1− β)/β

(|W| − 1) · (1− β)/β ≤ exp(ε/2 · γ)
(2/ε) · ln((|W| − 1) · (1− β)/β) ≤ γ

The result above gives a guarantee of outputting
words that are close to the input w with high probability
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for a given γ distance threshold. Thus, it is a theoretical
way to choose γ without looking at the data, i.e. without
incurring privacy loss, while getting utility guarantees
with high probability.

Below we highlight some of the advantages of TEM,
specifically compared to the state-of-the-art.

4.2 Detailed comparison with previous work
TEM works for any given distance function that satisfies
the axioms of a metric. In this sense, it has advantages
for future use, when compared to previous mechanisms
that used fixed metrics, such as Euclidean [8] and
Hyperbolic [9], where changing the metric would need
additional complex privacy analyses.

Previous work [7, 8, 9] considered the text privacy
preservation problem mainly as a task of releasing a
word embedding vector after perturbing with some noise.
This means they add noise to each of the dimensions
of the vector they aim to release, treating every word
embedding vector the same way. In practice, this leads
to adding the same amount of noise for any word in the
embedding space, regardless of whether the word lies in
a dense or sparse region.

In contrast, TEM preserves privacy by posing the
task as a selection problem, giving words closer to
the input word a higher probability of being selected.
Therefore, TEM has a more dynamic behavior, adjusting
the noise to the density of the domain of selection. In
practice, for a given ε, TEM will add less noise to regions
with high density, and more noise to regions with low
density (sparse), therefore offering better utility in high-
density areas.

Moreover, previous work assumed the word embed-
dings used were trained on a separate public dataset,
distinct from the data being privatized. TEM does not
have that requirement, as it can be used safely on sen-
sitive embeddings, providing the potential for further
utility gains through the use of domain adaptation, i.e.
fine-tuning public pre-trained embeddings on the target
sensitive data [19, 11].

4.3 Computational Efficiency In terms of compu-
tational cost, the bottleneck of previous work resides in
the nearest neighbor search of the noisy embedding vec-
tor obtained from the input. TEM starts by getting the
elements within the distance γ of the input, but instead
of querying the nearest neighbor, it queries for neighbors
within a given range. In this sense, both methods can
rely on fast approximate nearest neighbors implementa-
tions that support both querying nearest and by range,
such as [12]. Nonetheless, TEM is the only mechanism
that, for a fixed domain, is able to pre-process and store
the search results for a given γ. After this step, the

range search cost becomes constant.
In this context, following we include a rewriting of

Algorithm 2 with a pre-processing step that stores results
for a given γ. This way, this version of our algorithm
has a fast and exact search for the elements within γ
distance of any input.

For a fixed finite domain W, given a truncation
threshold γ, we pre-compute, for each possible input,
the list of elements that satisfy dW(i, w) ≤ γ, which
makes the search for possible candidates of a given input
O(1). Another simplification already included in TEM
is to use a version of the Exponential Mechanism that
uses Gumbel noise [5], which helps avoid dealing with
probabilities using the exponential function. Finally,
we also point out that we can group all elements below
the truncation threshold as one element ⊥ with the
aggregated count, and then if ⊥ gets selected, randomly
sample one of the aggregated elements. Below we give
such a simplified algorithm and prove it is equivalent to
Algorithm 2.

Algorithm 3 Efficient version of Metric Truncated
Exponential Mechanism

Input: Finite domain W = {1, ...,m} of elements,
element index x ∈ W, truncation threshold γ, metric
dW : W ×W → R, and privacy parameter ε.
Output: Element index.

1: Pre-processing:
2: for each x ∈ W do
3: Create a list L(w) of elements where each element

i satisfies dW(i, w) ≤ γ and let L̄(w) be the list of
remaining elements W \ L(w).

4: Define for each x ∈ W the score of a ⊥ element
as f⊥(w) = −γ + 2 ln(|L̄(w)|)/ε

5: end for
6: Selection:
7: Given input x ∈ W:
8: for every element in L(w) ∪ ⊥ do
9: Add noise from a Gumbel distribution with mean

0 and scale 2/ε to each score −dW(·, x)
10: end for
11: Set y as the element with the maximum noisy score
12: if y =⊥ then
13: Return random sample of L̄(w)
14: else
15: Return y
16: end if

We now formally prove Algorithm 3 is equivalent to
Algorithm 2.

Lemma 4.2. Algorithm 3 and Algorithm 2 are equal in
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distribution.

Proof. The only difference between the algorithms is that
in Algorithm 3 we pre-process L(w) and L̄(w) ahead of
time. Since for a fixed domain they do not change and
are independent for each input word, the algorithms are
equal in distribution.

Since the two algorithms are equivalent, Algorithm 3
also satisfies the same privacy guarantee.

Corollary 4.1. For any formal distance metric d,
Algorithm 3 is εd-differentially private.

5 Experiments

Now we empirically compare our mechanism TEM given
in Algorithm 2 with the current state-of-the-art: the
Madlib [8] mechanism.

5.1 Settings For fair comparison to Madlib we use
TEM with Euclidean distance on a fixed embedding
space from GloVe [18]. Experiments use the IMDB re-
views dataset [15]. More details are given in Section 5.3.

Utility: To evaluate the utility of the metric-DP
mechanisms, we build sentiment classification models
on training data privatized by each mechanism and the
baseline trained on sensitive data, and compare the
accuracy of the trained models on a test dataset.

Privacy: As both mechanisms use the Euclidean
distance metric, their privacy guarantees are matched by
using the same ε. Nonetheless, for illustration, we include
the results of a Membership Inference Attack (MIA) [20],
which tries to infer the presence of observations used to
train a given model based only on black-box access to
the model. A lower attack score is better, representing
more privacy preservation.

5.2 Results From the results of Figure 1a above we
see that for fixed privacy level, TEM outperforms Madlib.
More specifically, we see from TEM’s results that ε ≥ 4
gives a formal level of privacy that is not significant.
However, since Madlib adds more noise than needed for
different regions of the embedding space, it still achieves
some empirical privacy, as observed by the MIA results
on Figure 1b. Nonetheless, such enforcement is not
a formal guarantee of privacy, which for metric-DP is
bounded by εd(w,w′), therefore in this context, it is
a loose guarantee of privacy for the embedding space
considered.

In this sense, when comparing TEM and Madlib
for metric-DP formal levels of privacy, i.e. same ε
and metric space, we can clearly see better utility for
TEM. Finally, as an example, if we look at ε = 2,
where both mechanisms have AUC = 0.50 for MIA,

(a) Utility Evaluation

(b) Empirical Privacy Evaluation

Figure 1: Comparison of mechanisms with 95% confi-
dence interval over 5 trials for various ε. The baseline is
built with models trained on original data. TEM used γ
from Theorem 4.2 with β = 0.001.

we see Madlib with average test accuracy of 52%
and TEM with 75%, which represents TEM with a
relative utility improvement of 42% over Madlib. As
discussed previously, by adapting to different densities
of the embedding space, TEM is able to add less noise
when appropriate, while still giving the same privacy
guarantee, which results in the utility gain seen above.

5.3 Reproducibility details Here we describe more
settings and include more details about the mechanisms
used, to allow reproducibility.

Experiments use the IMDB reviews dataset [15],
which gives two different files: training data and testing
data, each with 25.000 examples. For the baseline, we
trained a model using 50% of the IMDB training data
(denote this dataset as TR1) and tested it with 50% of
the IMDB testing data (denote this dataset as TE1). For
the privatized utility, we trained models on TR1 after
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privatization by each mechanism and tested them on the
original TE1.

For MIA the models trained as described above were
attacked, we denote a given target model as T. For the
shadow model, denoted as S, we trained a model on
dataset TE2 having the other 50% of the IMDB testing
data. To train the attack model, denoted as A, we used
as features the output of TE1 and TE2 given by S, where
TE2 is labeled as “in” and TE1 as “out”. After training
model A, we evaluated the inference attack with TR1
and TR2 (having another 50% of the IMDB training
data) with features being the output of TR1 and TR2
obtained by a given target model T, where ground-truth
for TR1 is “in” and for TR2 is “out”.

For embeddings, we used GloVe [18] with 300
dimensions. The sentiment classification models follow
the FastText classifier [13], whereas the attack model is
an MLP with two layers having 64 hidden nodes each,
and ReLU activations. Each model was trained for 20
epochs with a batch size of 64 and default PyTorch
parameters for the Adam optimizer.

6 Conclusion

We presented TEM, a mechanism for text privatization
on metric differential privacy with formal guarantees.
Unlike the current state-of-the-art, our method allows
the safe use of sensitive embeddings and provides flexibil-
ity in the metric definition. In addition, TEM adapts the
noise introduced around regions with different densities
to improve utility. Finally, it gives the possibility of
performing pre-processing steps for enhanced computa-
tional efficiency. Our empirical evaluation demonstrates
that TEM obtains better utility than the current state-
of-the-art for the same formal privacy guarantees. As
future work, we envision the use of domain adaptation,
in order to leverage embeddings trained on sensitive
data to improve utility. Including the privatization of
word context vectors is also a possible enhancement for
improved accuracy.
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[14] Murat Kantarcioǧlu, Jiashun Jin, and Chris Clifton.
When do data mining results violate privacy? In
SIGKDD, pages 599–604. ACM, 2004.

[15] Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics.

[16] H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recurrent
language models, 2017.

[17] Frank McSherry and Kunal Talwar. Mechanism design
via differential privacy. In FOCS, volume 7, pages 94–

Copyright © 2023
Copyright retained by principal author’s organization



103, 2007.
[18] Jeffrey Pennington, Richard Socher, and Christopher D

Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages
1532–1543, 2014.

[19] Barbara Plank and Alessandro Moschitti. Embedding
semantic similarity in tree kernels for domain adaptation
of relation extraction. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1498–1507,
2013.

[20] Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 3–18.
IEEE, 2017.

[21] XS Vu, SN Tran, and L Jiang. dpugc: Learn differen-
tially private representation for user generated contents.
In 20th International Conference on Computational
Linguistics and Intelligent Text Processing, pages 1–16,
2019.

[22] Liang Yao, Chengsheng Mao, and Yuan Luo. Clin-
ical text classification with rule-based features and
knowledge-guided convolutional neural networks. BMC
medical informatics and decision making, 19(3):71, 2019.

Copyright © 2023
Copyright retained by principal author’s organization


	Introduction
	Related Work
	Preliminaries
	Metric Truncated Exponential Mechanism
	Utility
	Detailed comparison with previous work
	Computational Efficiency

	Experiments
	Settings
	Results
	Reproducibility details

	Conclusion

