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Abstract
Claim verification is a core component of
automated fact-checking systems, aimed at
determining the truthfulness of a statement
by assessing it against reliable evidence
sources such as documents or knowledge
bases. This work presents KG-CRAFT,
a method that improves automatic claim
verification by leveraging large language
models (LLMs) augmented with contrastive
questions grounded in a knowledge graph.
KG-CRAFT first constructs a knowledge
graph from claims and associated reports,
then formulates contextually relevant con-
trastive questions based on the knowledge
graph structure. These questions guide
the distillation of evidence-based reports,
which are synthesised into a concise sum-
mary that is used for veracity assessment by
LLMs. Extensive evaluations on two real-
world datasets (LIAR-RAW and RAWFC)
demonstrate that our method achieves a
new state-of-the-art in predictive perfor-
mance. Comprehensive analyses validate
in detail the effectiveness of our knowl-
edge graph-based contrastive reasoning ap-
proach in improving LLMs’ fact-checking
capabilities.

1 Introduction
The digital transformation has reshaped how
society consumes and shares information,
posing new challenges to information in-
tegrity (Haider and Sundin, 2022). The
Reuters Institute Digital News Report 2024
highlights how social media has fragmented
the news ecosystem (Newman et al., 2024). De-
spite expanding access and engagement, this
shift has also fuelled the spread of misinforma-
tion (Valenzuela et al., 2019).

Misinformation is particularly concerning in
high-stakes contexts such as elections and pub-
lic health crises, where it can cause serious

societal harm. Consequently, the demand for
more effective and scalable fact-checking meth-
ods has driven the emergence of Automated
Fact-Checking (AFC) systems (Zhou and Za-
farani, 2020; Alam et al., 2022; Guo et al., 2021;
Eldifrawi et al., 2024).

AFC is designed to assess the veracity of claims
by retrieving, analysing, and reasoning over rel-
evant evidence from reliable sources (Wu et al.,
2025). Early approaches relied on classifica-
tion and evidence retrieval pipelines (Shu et al.,
2019; Kotonya and Toni, 2020; Atanasova et al.,
2020). Whilst the integration of relational
structures and knowledge bases (Lourenço and
Paes, 2022; Whitehouse et al., 2022; Lourenço
et al., 2025; Huang et al., 2025; Chen et al.,
2025), and hierarchical architectures (Yang
et al., 2022) improved performance, these meth-
ods lacked the scalability and adaptability that
LLMs later demonstrated. Recent LLM-based
approaches have achieved significant advances
in AFC through the integration of external
knowledge (Cheung and Lam, 2023; Guo et al.,
2023) and the introduction of retrieval mecha-
nisms (Singal et al., 2024; Zhang and Gao, 2024;
Yue et al., 2024). However, these solutions of-
ten lack structured reasoning mechanisms (Liu
et al., 2024), which can lead to unreliable veri-
fication processes. Contrastive reasoning (Ja-
covi et al., 2021; Paranjape et al., 2021) has
demonstrated effectiveness in enhancing model
interpretability and decision-making, yet its
application to fact-checking remains underex-
plored.

To address the aforementioned open challenges
and ultimately enhance AFC capabilities, we
propose a method for improving claim veri-
fication within the AFC pipeline. We focus
on claim verification in a bounded context,
where each claim is accompanied by a prede-
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fined set of associated reports. This setting
reflects numerous domains, e.g., legal docu-
ment review (Zheng et al., 2021), financial
auditing (Zhu et al., 2021), and scientific peer
review (Wadden et al., 2020), where analysis
is restricted to a specific corpus. Consequently,
the core challenge shifts from open-domain evi-
dence retrieval to reasoning effectively over the
available information to determine a claim’s
veracity. Specifically, we propose Knowledge
Graph-based Contrastive Reasoning for Auto-
mated FacT verification (KG-CRAFT).

Motivated by findings in both cognitive sci-
ence and natural language processing (Schuster
et al., 2021; Buçinca et al., 2025), we leverage
contrastive reasoning for our automated fact-
checking task. Prior work highlights that verifi-
cation requires distinguishing whether a claim
is supported or contradicted (Thorne et al.,
2018; Aly et al., 2021), and that contrastive
explanations align more closely with human
reasoning (Miller, 2019). Moreover, contrastive
learning methods have proven effective in en-
forcing meaningful semantic distinctions (Chen
et al., 2020; Gao et al., 2021). We therefore
introduce contrastive questions into the fact-
checking pipeline, encouraging models not only
to assess whether evidence supports a claim but
also to explicitly consider alternatives, thereby
promoting more robust verification.

However, generating meaningful contrasts from
unstructured text alone is a non-trivial chal-
lenge. Without a structured representation of
the underlying facts and their relationships,
contrastive questions may focus on superficial
linguistic differences rather than semantically
significant distinctions, leading to less informa-
tive or even arbitrary contrasts (Bhattachar-
jee et al., 2022). By explicitly encoding enti-
ties and their semantic relations, a knowledge
graph (KG) provides a structured means of
identifying candidates for contrast (Liu et al.,
2019). This structure guides the model to
formulate questions that explore meaningful
conceptual distinctions (e.g., contrasting one
entity with another of the same type), ensur-
ing that the reasoning process is both more ro-
bust and more aligned with human-like. This
approach helps to ensure that contrasts are
grounded in verification-relevant relationships
rather than being purely text-driven.

To implement this structured contrastive ap-
proach, KG-CRAFT first decomposes each
claim and its associated reports into entities
and their relationships to construct the KG. Af-
ter, it formulates and selects contrastive ques-
tions based on the KG structure, aiming to
maximise both diversity and contextual rele-
vance to the claim. The set of questions is then
answered using the input reports, generating
a new, contextually relevant, evidence-based
information set. Inspired by the scalability and
demonstrated performance of LLMs in auto-
mated fact-checking (Cheung and Lam, 2023;
Wang et al., 2024a; Xiong et al., 2025), this
new set is consolidated into a concise summary
representing a distilled version of the input re-
ports, which is then used to assess the veracity
of the claim.

The main contributions of this work are: (i)
a novel Knowledge Graph-based Contrastive
Reasoning method that enhances LLM capabil-
ities in AFC; (ii) state-of-the-art performance
on two real-world fact-checking datasets; and
(iii) a comprehensive ablation study analysing
the proposed components for AFC.

2 Related Work

This section situates our contribution within
prior work on AFC, and LLM-based claim ver-
ification. Foundational concepts are deferred
to Appendix A, which provides formal defini-
tions and notation for (i) contrastive explana-
tions and reasoning, and (ii) knowledge graph
construction with LLMs; these concepts are
developed in greater detail in the appendix.
Appendix A also presents an extended review
of related work, including further discussion of
KG-based approaches to fact-checking.

Non-generative Automated Fact-
checking Classical AFC models encode claims
and documents using text embeddings, and
verify them via supervised classifiers. Notable
systems include dEFEND, which employs
sentence–comment co-attention for news and
user comments (Shu et al., 2019); SBERT-FC,
which introduced the PubHealth dataset,
and an explainability analysis (Kotonya and
Toni, 2020); and GenFE/GenFE-MT, which
jointly optimise veracity prediction and ex-
planation generation (Atanasova et al., 2020).



CofCED proposes a hierarchical encoder with
cascaded evidence selectors for multi-source
reports (Yang et al., 2022). Incorporating KGs
into pretrained models (e.g., via Wikidata)
improves accuracy, especially for political
claims (Whitehouse et al., 2022); a recent
survey comprehensively reviews KG-based
AFC (Qudus et al., 2025).

Fact-checking Using LLMs LLMs have be-
come central to AFC, yet their reliability re-
mains constrained by training coverage and
hallucinations (Wang et al., 2024b; Augenstein
et al., 2024). Early systems augment LLMs
with structure or external evidence: FactL-
LaMA couples instruction-following with re-
trieval (Cheung and Lam, 2023); IKA builds
example graphs for verification and expla-
nation (Guo et al., 2023); TELLER inte-
grates human expertise with LLM reason-
ing (Liu et al., 2024); defence-style frameworks
partition evidence into competing narratives
for robust verification (Wang et al., 2024a);
and CorXFact models claim–evidence correla-
tions (Tan et al., 2025). Retrieval-augmented
generation (RAG), ranging from basic RAG
pipelines (Singal et al., 2024), to retrieval op-
timised with fine-grained feedback (Zhang and
Gao, 2024), and architectures targeting evi-
dence retrieval plus contrastive argument syn-
thesis (Yue et al., 2024), has become an in-
creasingly prominent approach. Other recent
directions include iterative verification for scal-
ability (FIRE) (Xie et al., 2025), and the han-
dling of zero-day manipulations via real-time
context retrieval (Meng et al., 2025).

3 Knowledge Graph-based
Contrastive Reasoning

We introduce a novel approach that leverages
knowledge graphs to fuel contrastive reason-
ing and enhance LLM fact-checking capabili-
ties: Knowledge Graph-based Contrastive Rea-
soning for Automatic FacT Verification (KG-
CRAFT). Our work focuses on the claim verifi-
cation component of automated fact-checking,
integrating contrastive reasoning into the veri-
fication process through the use of structured
evidence to generate contextually relevant con-
trastive queries, thereby guiding more accurate
claim classification. We begin with the claim
verification task formulation.

Problem Statement Let C be a claim with a
set of associated reports RC = {ri}|RC |

i=1 , where
each report ri = (si,1, . . . , si,|ri|) is a sequence
of sentences (i.e., a document). Optionally,
sentence-level evidence annotations are given
as a set of indices εC ⊆ {(i, j)}; if unavailable,
set εC = ∅. The objective is to predict a
veracity label VC ∈ Y, |Y| ≥ 2 via a verifier
fθ : (C, RC) 7→ VC . Evidence εC (when present)
is used for analysis but is not required by the
formulation.

Next, we present the components of KG-
CRAFT, depicted in Figure 1: knowledge
graph construction from the textual input
(the claim and its associated reports) (Sec-
tion 3.1); contrastive reasoning, comprising
contrastive question generation, answer genera-
tion, and prompt-based answer summarisation
(Section 3.2); and claim veracity verification
(Section 3.3).

3.1 Knowledge Graph Extraction
The first phase of KG-CRAFT extracts en-
tities and relationships from C and RC and
uses them to construct a knowledge repre-
sentation of the input. We draw inspiration
from prior work (Zhu et al., 2024; Zhang and
Soh, 2024) and leverage LLMs for knowledge
graph construction. Through phased few-shot
prompting, we instrument the LLM to first
identify entities E , then label them accord-
ing to their conceptual categories C, to give
them semantic meaning and enable disam-
biguation. Next, we identify the relationships
R that relate the identified entities (prompt
details in Appendix D.1), forming a set of
triples T ⊆ E × R × E . The unified result-
ing sets constitute the input knowledge graph
GC,RC = (E , R, T ,C).

3.2 Contrastive Reasoning
The second phase of KG-CRAFT uses GC,RC to
formulate and answer contrastive questions. It
consists of: (i) formulating questions that con-
trast the claim’s facts (Tclaim ⊆ T ) with the re-
ports’ facts (T − Tclaim); (ii) answering the for-
mulated questions using the reports (RC); and
(iii) summarising the question-answer pairs
into a single self-contained paragraph.

Contrastive Question Formulation Algo-
rithm 1 describes the process to formulate con-



/\/\/\/\/\/\
/\/\/\/\/\/\

A
A

claim under evaluation
Claim

"NFL players did not stand for the national anthem
until the Defense Dept. started paying the league to
stage patriotic displays in 2009."

reports associated to the claim
Reports

Report 1
"[...] Several player last season follow in the footstep of former San Francisco 49ers quarterback Colin
Kaepernick , who in the previous year choose to kneel during the national anthem a a form of protest
against police brutality and racial inequality. [...]"

Report 
"It's a tribute to the NFL's ability to drape itself in the flag that nobody even realize that – prior to 2009 –
player be on the field for the national anthem wasn't even standard practice."
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T
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Department

T

STAGED PATRIOTIC
DISPLAY

NFL

Contrastive Question Generation

Knowledge Graph Extraction

generated contrastive questions
Contrastive questions

Contrastive question 1
Why Defense Department PAID NFL, rather than Defense Department PAID San Francisco 49Ers?

Contrastive question 
Why NFL STAGED PATRIOTIC DISPLAY National Anthem, rather than San Francisco 49Ers STAGED
PATRIOTIC DISPLAY National Anthem?

Contrastive Question Answer Generation

generated answers for the contrastive questions
Contrastive questions asnwers

Contrastive question answer 1
"The context provided does not mention anything about the Defense Department paying the NFL or any
specific NFL team. [...]"

Contrastive question answer 
"Based on the context provided, it seems that the NFL as an organization has taken a more active role in
promoting patriotic displays during the national anthem, rather than leaving it up to individual teams like
the San Francisco 49Ers. [...]"
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Answers Summarisation

summary of contrastive questions and their answers
Answers summary

"The provided context focuses on the controversy surrounding NFL players kneeling during the national
anthem as a form of protest against racial inequality and police brutality. The response from players was
mixed, with some teams and players choosing to stand, kneel, or remain in the locker room during the
anthem. The NFL implemented a policy in 2018 that required players and team personnel to stand and show
respect for the flag and anthem, though it allowed players to remain in the locker room if they did not want
to stand. This suggests the NFL was trying to balance respecting players' right to protest with appeasing fans
and the government who were critical of the protests. [...]"

Claim Verification

predicted claim veracity
Veracity label

"half-true"
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Figure 1: Overview of the KG-CRAFT framework for automated fact-checking. The method comprises
three main phases: (1) knowledge graph extraction from the claim and associated reports, (2) contrastive
reasoning, including contrastive question formulation, answer generation, and answer summarisation, and
(3) claim veracity prediction.

trastive questions. Given GC,RC , the claim-
specific triples Tclaim, and a maximum number
K of desired questions, the algorithm creates
the K most relevant and diverse contrastive
questions. For each triple in the claim (consist-
ing of head entity, relation, and tail entity),
it first identifies the entity categories hc and
ht ∈ C of the head and tail entities, respec-
tively(Algorithm 1, ll.6-8). Then, it creates
two sets of contrastive entities: Hcontr, con-
taining alternative head entities of category
hc and Tcontr, with alternative tail entities of
category ht (Algorithm 1, ll.9-10). Using these
sets, the algorithm generates questions by re-
placing either the original head or tail entity
whilst maintaining the relation, following the
pattern “Why [original head] rather than [al-
ternative]?” or “Why [alternative] rather than
[original tail]?” (Algorithm 1, ll.11-14).

To ensure that the formulated questions
are individually relevant and collectively di-
verse, we adopt a ranking strategy based
on Maximal Marginal Relevance (MMR) (Al-
gorithm 1, l.20). For that, we first com-
pute embeddings of the questions QEm =
{Embedding(qi) | qi ∈ Q}|Q|

i=1, followed by

the pairwise similarity matrix across all em-
beddings. The initial query embedding qθ is
selected as the embedding with the highest av-
erage similarity to all others, thereby ensuring
a representative starting point.

We then iteratively construct the ranked set
Qranked using the MMR procedure. At each
iteration, the next embedding qi is selected to
maximise

qi = arg max
q∈QEm\Qranked

[
Sim(q, qθ)− max

q′∈Qranked

Sim(q, q′)
]

,

(1)
where Sim(·, ·) is the cosine distance, and
Qranked is the set of already selected embed-
dings. The first term promotes relevance to
the initial query qθ, whilst the second penalises
redundancy with respect to Qranked. The pro-
cess is repeated until all candidate questions
are ranked into Qranked. Finally, the algo-
rithm returns the top K questions QK

ranked (Al-
gorithm 1, ll.17-18).

Contrastive Question Answer Genera-
tion The second step of the process answers
the previously formulated contrastive ques-
tions QK

ranked through a structured query-
response prompt mechanism pag (available in



Algorithm 1 Define Contrastive Questions
Require:
1: G = (E ,R, T ,C) ▷ Claim and reports KG; entities
E , relations R, triples T , and entities’ classes C

2: Tclaim ▷ Claim’s extracted triples; Tclaim ⊆ T
3: K ▷ Maximum # of Contrastive Questions

Ensure:
4: QK

ranked ▷ Set of top K most relevant and diverse
contrastive questions for a claim and its reports

5: Q ← ∅
6: for each t = {h, r, t} ∈ Tclaim do
7: hc ← τ(h) ▷ where τ : E → C
8: tc ← τ(t)
9: Hcontr ← {h | h ∈ E , τ(h) = hc} \ {h}

10: ▷ Set of entities of the same class as head
11: Tcontr ← {t | t ∈ E , τ(t) = tc} \ {t}
12: ▷ Set of entities of the same class as tail
13: for each h′ ∈ Hcontr , t′ ∈ Tcontr do
14: qh ← FormulateQuestion(t, h′)
15: qt ← FormulateQuestion(t, t′)
16: Q ← Q∪ {qh, qt}
17: end for
18: end for
19: Qranked ← ReRank(Q) ▷ Rank contrastive

questions based on Equation (1)
20: QK

ranked ← (Qranked)1:K ▷ Select first K elements
from ranked set

21: return QK
ranked

Appendix D.2). An LLM analyses and gen-
erates information from the claim-associated
reports – prompting it to answer indepen-
dently the contrastive questions based on the
set of reports RC associated with the claim.
This process generates a set of answers Ã =
{LLMpag(q, RC) | q ∈ QK

ranked}, where each
answer is directly derived from the reports,
maintaining traceability between claim, re-
ports, contrastive questions, and answers. Our
goal by highlighting the contrastive elements
in the generated answers is to highlight the
key evidence supporting the claim’s veracity
during the reasoning process.

Answers Summarisation The final step of
the Contrastive Reasoning process involves
aggregating the question-answer pairs into
a concise, evidence-based summary. From
the claim C and the paired contrastive ques-
tions and answers from QK

ranked and Ã, re-
spectively, we prompt pas (Appendix D.3) to
an LLM to generate a concise paragraph that
relates all contrastive question-answer pairs.
This summarisation step, represented as AC =
LLMpas(C, {(qi, ai) | qi ∈ QK

ranked, ai ∈ Ã}),
ensures that key contrasting elements and sup-
porting evidence are presented in a structured

summary, producing a distilled source of in-
formation. The resulting summary AC empha-
sises key contrasting facts whilst abstracting
non-essential information, preserving semantic
links between critical evidence and the claim
to create a focused source of verification.

3.3 Verification of Claim Veracity
The last phase of KG-CRAFT assesses the
claim’s veracity VC. For that, we prompt pcv
(see Appendix D.4) an LLM, containing the
original claim C and the produced summary
AC as the only source of evidence, mitigating
potential noise in the original reports RC . The
prompt pcv also includes the possible labels
and their descriptions. In this way, the LLM
acts as a classifier to infer the claim’s veracity,
represented as VC = LLMpcv(C, AC), ensuring
that the veracity assessment is based on the
distilled evidence produced through our Con-
trastive Reasoning method.

4 Experiments and Results

This section is guided by the following research
questions: RQ1 How effective is KG-CRAFT
in claim verification compared to state-of-the-
art methods? RQ2 How beneficial are KG-
based contrastive questions compared to purely
LLM-generated contrastive questions? RQ3
What is the effect of the number of contrastive
questions K on claim verification with KG-
CRAFT? RQ4 How effective is KG-CRAFT
with Small Language Models (SLMs) com-
pared to LLMs? To answer these questions, we
evaluate KG-CRAFT on two real-world fact-
checking benchmarks and compare the results
with baseline methods, and perform several
ablation studies. Additional experiments and
ablation studies can be found in Appendix C.

4.1 Experimental Settings
Datasets We evaluated the proposed ap-
proach on two publicly available fact-checking
datasets: LIAR-RAW and RAWFC, (refer Ap-
pendix B.2 for datasets statistics). LIAR-
RAW (Yang et al., 2022) extends LIAR-
PLUS (Alhindi et al., 2018) and contains fine-
grained claims from Politifact1 with six verac-
ity classes (pants-fire, false, barely-true,
half-true, mostly-true, true) along with

1www.politifact.com, 2www.snopes.com

www.politifact.com
www.snopes.com


their relevant reports. RAWFC (Yang
et al., 2022) contains claims collected from
Snopes2 on various topics with three veracity
classes (false, half, true) and their associ-
ated reports retrieved using claim keywords.

Comparisons We compare KG-CRAFT
against other methods in three categories: Tra-
ditional – methods that do not use LLMs –,
Naïve LLM – direct application of LLMs with-
out specialised prompts or reasoning strate-
gies –, and Specialised LLM – methods that
use LLMs with significant adaptations, such
as tuning or prompt engineering, or as part
of complex architectures. Traditional ap-
proaches encompass dEFEND (Shu et al.,
2019), SBERT-FC (Kotonya and Toni, 2020),
GenFE and GenFE-MT (Atanasova et al.,
2020), and CofCED (Yang et al., 2022). Naïve
LLM approaches encompass Llama 2 7B and
ChatGPT 3.5 Turbo (Wang et al., 2024a),
Claude 3.5 Sonnet, Claude 3.7 Sonnet, and
Llama 3.3 70B prompted with the claim and re-
lated reports to verify the veracity of the claim.
The Specialised LLM approaches encompasses
FactLLAMA and FactLLAMAknow (Cheung
and Lam, 2023), and L-DefenseLLAMA2 and
L-DefenseChatGPT (Wang et al., 2024a). FactL-
LAMA is a Low-Rank Adaptation (LoRA) (Hu
et al., 2022) fine-tuned Llama 2 7B, and
FactLLAMAknow is the model augmented
with external knowledge. L-Defense is a
defence-based framework that leverages the
wisdom of crowds to verify claim veracity us-
ing Llama 2 7B and ChatGPT 3.5 Turbo.

Implementation Details We extracted the
KGs (Section 3.1) of both datasets utilis-
ing Claude 3 Haiku. Further, KG-CRAFT
is instantiated and evaluated (Section 4.2)
using Claude 3.5 Sonnet (KG-CRAFTC3.5),
Claude 3.7 Sonnet (KG-CRAFTC3.7), and
Llama 3.3 70B (KG-CRAFTL3.3) (refer to Ap-
pendix B for more implementation details).

Evaluation Metrics We adopted standard
classification metrics: precision (Pr), re-
call (Re), and F1-score (F1). For all metrics,
higher values indicate better performance.

4.2 Claim Verification Evaluation
We first address RQ1 by evaluating the per-
formance of KG-CRAFT in verifying claim

veracity. As shown in Table 1, our method
– in the instances KG-CRAFTC3.7 and KG-
CRAFTL3.3 (all using five contrastive ques-
tions K = 5) – consistently outperforms
all other methods on both datasets. KG-
CRAFTC3.5 outperforms all comparator meth-
ods except for DelphiAgentgpt-4o) on the
RAWFC dataset. KG-CRAFTL3.3 improves
the F1-score by 44 percentage points (pp) on
the LIAR-RAW dataset and 13 pp on the
RAWFC dataset, compared to the second
best performing methods, L-Defense (Wang
et al., 2024a) and (DelphiAgent (Xiong et al.,
2025)), respectively. Compared to their
Naïve LLM counterparts, KG-CRAFTC3.5,
KG-CRAFTC3.7, and KG-CRAFTL3.3, show
F1 performance gains of 32, 44, and 42 pp on
LIAR-RAW and 11, 12, and 27 pp on RAWFC.

4.3 Ablation Studies
To evaluate KG-CRAFT’s components and re-
veal its strengths and limitations, we conduct
three ablation studies. We first compare KG-
based and LLM-generated contrastive ques-
tions to evaluate the benefits of structured
question formulation (RQ2). Then, we anal-
yse the effect of varying the number K of con-
trastive questions (RQ3). Finally, we assess
whether KG-CRAFT boosts the performance
of Small Language Models (SLMs) by com-
paring their results to Claude 3.7 Sonnet and
KG-CRAFTC3.7 (RQ4).

4.3.1 Impact of Using LLM-generated
Contrastive Questions

To answer RQ2, we replaced the Contrastive
Question Formulation component of KG-
CRAFT (Section 3.2) by a few-shot prompt
that, given the claim, reports, and examples,
requests the LLM to generate k = 5 contrastive
questions (prompt details in Appendix D.5).
Results depicted on Table 2 show fact-checking
F1-score, and macro and weighted AlignScore
and RQUGE for the LIAR-RAW dataset.

AlignScore is a metric based on a general func-
tion of information alignment to perform au-
tomatic factual consistency evaluation of text
pairs (Zha et al., 2023). In our evaluation, we
use AlignScore (here called macro AlignScore)
to measure the information alignment between
the text piece generated at the answer sum-
marisation step (Section 3.2) with the original



Table 1: Fact-checking results (%) on the RAWFC and LIAR-RAW datasets.

Method
LIAR-RAW RAWFC

Pr Re F1 Pr Re F1

Traditional
dEFEND (Shu et al., 2019) 23.09 18.56 17.51 44.93 43.26 44.07
SBERT-FC (Kotonya and Toni, 2020) 24.09 22.07 22.19 51.06 45.92 45.51
GenFE (Atanasova et al., 2020) 28.01 26.16 26.49 44.92 44.74 44.43
GenFE-MT (Atanasova et al., 2020) 18.55 19.90 15.15 45.64 45.27 45.08
CofCED (Yang et al., 2022) 29.48 29.55 28.93 52.99 50.99 51.07
EExpFND (Wang et al., 2025) 29.91 29.93 29.58 54.43 53.49 53.61

Naïve LLM
Llama 2 7B (Wang et al., 2024a) 17.11 17.37 15.14 37.30 38.03 36.77
ChatGPT 3.5 Turbo (Wang et al., 2024a) 25.41 27.33 25.11 47.72 48.62 44.43
Claude 3.5 Sonnet 29.25 27.83 28.52 54.85 55.04 54.94
Claude 3.7 Sonnet 28.26 26.63 27.42 55.90 57.12 56.50
Llama 3.3 70B 47.21 23.52 31.40 53.16 55.04 54.08
Specialised LLM
FactLLAMA (Cheung and Lam, 2023) 32.32 31.57 29.98 53.76 54.00 53.76
FactLLAMAknow (Cheung and Lam, 2023) 32.46 32.05 30.44 56.11 55.50 55.65
L-DefenseLLAMA2 (Wang et al., 2024a) 31.63 31.71 31.40 60.95 61.00 60.12
L-DefenseChatGPT (Wang et al., 2024a) 30.55 32.20 30.53 61.72 61.01 61.20
DelphiAgentgpt-4o-mini (Xiong et al., 2025) 32.79 22.33 26.03 68.53 63.95 64.68
DelphiAgentgpt-4o (Xiong et al., 2025) 31.33 28.36 28.36 68.05 68.03 68.04

KG-CRAFT (ours)
KG-CRAFTC3.5 62.70 59.38 60.99 67.10 66.25 66.67
KG-CRAFTC3.7 73.92 70.86 72.36 69.37 68.59 68.98
KG-CRAFTL3.3 77.38 70.67 73.87 81.63 81.53 81.58

Note: The best and second best results are highlighted across each dataset and metric. KG-CRAFT
results are significantly better than their Naïve LLM counterparts baseline with p < 0.01.

claim. RQUGE is a reference-free evaluation
metric for generated questions, based on the
corresponding context and answer (Moham-
madshahi et al., 2023). In our evaluation, we
use RQUGE (here called macro RQUGE) to
measure the acceptability score of a formulated
contrastive question (Section 3.2), given a cor-
responding context (the claim) and an answer
(the answer generated from the contrastive
question Section 3.2). We further extend Align-
Score and RQUGE (here called weighted Align-
Score and weighted RQUGE) to weight their
results by the distance of the predicted claim
veracity class from the ground truth claim class.
For that, we assigned each class an integer
numerical value ranging from 1 (pants-fire)
to 6 (true) and measured the mean squared
error (MSE) between the predicted class. Af-
ter, we weight AlignScore and RQUGE macro
scores using the obtained MSE (details of the
AlignScore and RQUGE weighted scores are in
Appendix B.3 and Appendix B.4, respectively).

As depicted in Table 2, the contrastive ques-
tions generated by the LLMs, results in lower

Table 2: Ablation study on the LIAR-RAW dataset
comparing the quality of KG-based in contrast
to LLM-based formulated contrastive questions.
Metrics include Fact-checking F1-score, and macro
(-M) and weighted (-W) values for AlignScore (AS)
and RQUGE (RQ).

Metric LLM-based KG-based
C3.5 L3.3 C3.5 L3.3

FC F1 27.79 29.68 60.99 73.87

AS-M 30.96 29.51 41.71 40.32
AS-W 29.15 24.36 39.17 35.84

RQ-M 2.04 1.92 2.02 1.95
RQ-W 1.50 1.43 1.67 1.64

information alignment (AlignScore) between
the answer summary AC and claim C and lower
question acceptability score (RQUGE) between
formulated contrastive questions QK

ranked, gen-
erated answer Ã, and claim C. As a conse-
quence, the lower information alignment and
question acceptability score impact the fact-
checking capability, resulting in a lower fact-
checking F1-score.



4.3.2 Impact of the Number of
Contrastive Questions

To address RQ3, we investigate how vary-
ing the number of contrastive questions k
affects the performance of KG-CRAFT. We
conduct this analysis on a binary classifica-
tion variant of LIAR-RAW, where the orig-
inal six labels are mapped into two classes:
{pants-fire, false, barely-true} as false,
and {half-true, mostly-true, true} as true
(details in Appendix B.2). We evaluate KG-
CRAFTC3.5 using k ∈ {1, 3, 5, 7, 10} con-
trastive questions, with K = 5 serving as our
baseline for relative performance comparison.
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Figure 2: Impact of varying the number of con-
trastive questions k on fact-checking performance.

As depicted in Figure 2, increasing K gener-
ally improves performance metrics, but with
progressively smaller gains. Specifically, com-
pared to K = 5, using fewer questions (K = 1
or K = 3) leads to decreased performance, with
K = 1 showing the most significant drops of
1.2 points across the metrics. Conversely, in-
creasing the number of questions beyond K = 5
yields small improvements, with K = 10 show-
ing the best relative gains of 1.6 points in F1.
The relatively small performance differences
(within ±2 points) indicate that our framework
maintains robust performance across different
K values, with K = 5 representing an effective
balance between performance and computa-
tional efficiency.

4.3.3 Using Small Language Models
We investigate whether our KG-based con-
trastive reasoning methodology can enhance
the performance of Small Language Mod-
els (SLMs), as raised in question RQ4. We
evaluate four SLMs: two with less than
600M parameters (SmolLM2 135M (Allal
et al., 2025) and Qwen3 0.6B (Yang et al.,

2025)) and two with less than 2B parame-
ters (SmolLM2 1.7B (Allal et al., 2025) and
Qwen3 1.7B (Yang et al., 2025)). We compare
their F1 performance against Naïve Claude 3.7
Sonnet and KG-CRAFTC3.7.
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Figure 3: Performance comparison of Small Lan-
guage Models incorporated within KG-CRAFT
against larger models.

The results in Figure 3 show that our
framework significantly enhances SLMs’
fact-checking performance. Notably,
SmolLM2 1.7B achieves an F1-Score of
73.40%, substantially outperforming Naïve
Claude 3.7 Sonnet (62.22%). Even the
smaller models show promising results, with
Qwen3 0.6B reaching an F1-Score of 66.34%,
which surpasses Naïve Claude 3.7 Sonnet
despite its much smaller size.

These findings suggest that KG-CRAFT ef-
fectively compensates for the limitations of
smaller models by supplying them with rele-
vant verification cues. Applying KG-CRAFT
significantly narrows the performance gap be-
tween SLMs and larger models, indicating
that the explicit use of contrastive questions
grounded in extracted KGs enhances smaller
models’ competitiveness.

5 Conclusion

This paper presents KG-CRAFT, a novel
method for claim veracity classification via
knowledge graph-based contrastive reasoning
with LLMs. Our results demonstrate that KG-
CRAFT outperforms state-of-the-art methods
on two real-world datasets (LIAR-RAW and
RAWFC). Our empirical analysis indicates
that the contrastive reasoning method gener-
ates contextually relevant and evidence-based
information that aids in assessing claim verac-



ity. We investigate the effect of the number of
contrastive questions used in the process, find-
ing that more questions lead to better results,
but even small numbers lead to competitive
performance. Even with Small Language Mod-
els, our approach proves competitive with LLM
baselines. For future work, we propose an ex-
tended evaluation with other domains and the
generation of explanations for full AFC based
on contrastive answer summaries.

Limitations

Whilst our results demonstrate the effective-
ness of the proposed framework, some lim-
itations remain. First, we do not qualita-
tively verify the intermediate components of
our pipeline, such as the knowledge graph con-
struction step, which is particularly sensitive
and central to the method’s overall perfor-
mance. Additionally, we rely on a fixed set
of LLMs for the intermediate tasks, though
alternative models or fine-tuned approaches
could potentially yield improved results. Our
evaluation is limited to two datasets; however,
these are widely adopted benchmarks in the
fact-checking literature and provide a meaning-
ful basis for comparison. We also acknowledge
the reliance on expensive LLMs throughout
the process, which may not be accessible to all
users. However, our results also demonstrate
the potential of the proposed framework to
enhance the performance of smaller language
models that require significantly fewer compu-
tational resources.

Although we claim to improve the results of
Specialised LLMs-based AFC, we are aware of
a non-negligible potential threat to the validity
of our results: the use of different families of
LLMs in previous and in our work. The re-
sults may therefore be influenced by variations
in model capabilities, and different outcomes
could emerge if their LLMs or ours were re-
placed. However, we were unable to modify
the original systems’ LLMs or employ legacy
models in our experiments. This highlights a
broader challenge for the community: ensur-
ing reproducibility and fair comparison in an
ecosystem where new and more capable LLMs
are continuously emerging. Nonetheless, we
presented ablation studies of KG-CRAFT with
LLMs of limited size (SLMs), showing that it

significantly enhances their performance.

Furthermore, all experiments are conducted in
the English language. Although our method is
designed to be language-agnostic, performance
may vary across languages due to potential
limitations in intermediate components such
as entity linking, relation extraction, or ques-
tion generation. Future work should explore
broader language coverage, dataset diversity,
and deeper analysis of intermediate outputs.

Ethical Considerations

Automated fact-checking with LLMs raises im-
portant ethical concerns, particularly due to
their ability to produce fluent yet incorrect
or fabricated outputs. When used to synthe-
sise evidence or generate contrastive questions,
such errors can mislead users or amplify mis-
information. Condensing large evidence sets
also involves decisions about what to include
or omit; if not carefully managed, this can
result in oversimplification or the exclusion
of critical context, compromising factual ac-
curacy. Moreover, whilst contrastive reason-
ing may improve interpretability, the overall
decision-making process remains difficult to
audit, with limited traceability from evidence
to claim and limited justification for model out-
puts. Automated fact-checking systems may
also be misinterpreted as authoritative, rein-
forcing confirmation bias. It is therefore essen-
tial to clearly communicate model limitations
and maintain human oversight. We empha-
sise the importance of fairness-aware design,
transparent evidence attribution, and rigorous
human evaluation to mitigate these risks.

Use of Generative AI
During the preparation of this work, the au-
thors used the Claude family models and the
Amazon Nova family models to grammar and
spelling check. After using these tools/services,
the authors reviewed and edited the content
as needed and took full responsibility for the
publication’s content.
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A Background

A.1 Key Concepts
Contrastive Explanations and Reason-
ing The principle of contrastive explanations
is rooted on answering counterfactual why-
question by comparing the actual outcome
with hypothetical alternatives (Lipton, 1990;
Guidotti, 2024; Verma et al., 2024). The con-
trastiveness presupposes that an explanation
answers “Why did P happen?” in terms of
“Why did P happen rather than Q?”, where
P is an observed event and Q represents alter-
native hypotheses (Stepin et al., 2021). This
approach ensures that explanations provide
comprehensive information by distinguishing
the chosen outcome from a set of contrastive
hypothetical alternatives, establishing a mini-
mum criterion where explanations must demon-
strate why the observed event was more prob-
able than its alternatives.

In short, contrastive explanations aim to an-
swer why-questions by comparing an observed
outcome P with counterfactual alternatives Q.
Rather than just explaining why P occurred,
they focus on why P happened instead of Q,
highlighting why the chosen outcome is more
plausible.

Knowledge Graph Construction Using
LLMs A knowledge graph (KG) represents
information as a graph structure, where nodes
are entities connected by relations. Formally,
G = (E , R, T ,C), where T contains triples
(h, r, t) with entities {h, t} ∈ E and relations
r ∈ R.

The use of LLMs to automate KG construction
has been a theme of several works (Chen and
Bertozzi, 2023; Zhang and Soh, 2024; Pan et al.,
2024), specifically due to their performance on
extracting entities and relations (Zhu et al.,
2024).

A.2 Related Work
Contrastive Explanations and Reasoning
Jacovi et al. (2021) applied contrastive expla-
nations by projecting inputs into a latent space
that captures only features distinguishing po-
tential decisions, enabling models to better
identify which aspects support or contradict
specific predictions. Paranjape et al. (2021) ex-

tended this concept to commonsense reasoning
tasks, showing that pre-trained language mod-
els can generate contrastive explanations that
highlight key differences between alternatives,
improving both performance and explanation
faithfulness.

These results show the effectiveness of a con-
trastive approach to reasoning and indicate its
potential for claim verification.

Non-generative Automated Fact-
checking AFC typically relies on text
embeddings to represent claims and sup-
porting documents. A notable example
is dEFEND, which introduced a sentence-
comment co-attention network to jointly
analyse news content and user comments (Shu
et al., 2019). Kotonya and Toni (2020)
developed SBERT-FC, introducing the
PUBHEALTH dataset to expand the the-
matic focus on public health and provide
extended explainability analysis. GenFE and
GenFE-MT (Atanasova et al., 2020) added
joint optimisation of veracity prediction and
explanation generation, showing improved
classification and output quality.

CofCED (Yang et al., 2022) introduced a novel
hierarchical architecture, combining an en-
coder with cascaded evidence selectors to pro-
cess reports from multiple sources for claim
verification and explanation generation. White-
house et al. (2022) integrated knowledge bases
into pre-trained models and showed that us-
ing Wikidata improves accuracy, particularly
for political claims where the knowledge base
is timely and relevant. More recently, Qudus
et al. (2025) surveyed the use of KGs for AFC.

Fact-checking Using LLMs The emer-
gence of LLMs and their strong performance
across domains has led to a new set of ap-
proaches that place them at the core of AFC.
Whilst LLMs can give answers to factual ques-
tions, their reliability is limited by the extent of
their training data and their tendency to hallu-
cinate factual statements (Wang et al., 2024b;
Augenstein et al., 2024). Several frameworks
have been proposed to address the challenges
of reliability and transparency in LLM-based
fact-checking.

Early work in this direction includes FactL-



LaMA (Cheung and Lam, 2023), which
combined instruction-following with exter-
nal evidence retrieval and demonstrated that
augmenting LLMs with external knowledge
sources improves fact-checking accuracy, par-
ticularly for claims related to recent events.
IKA (Guo et al., 2023) builds a graph of
positive and negative examples from labelled
data to enhance fact-checking and explana-
tion capabilities. Liu et al. (2024) introduced
TELLER, a dual-system framework that em-
phasises trustworthiness through the integra-
tion of human expertise and LLM capabilities.
Similarly, Wang et al. (2024a) developed a
defence-based framework that addresses the
limitations of uncensored crowd wisdom by
splitting evidence into competing narratives
and leveraging LLMs for reasoned verification.
More recently, CorXFact (Tan et al., 2025)
proposes simulating human fact-checking prin-
ciples by analysing claim-evidence correlations.

A popular approach to improving LLM
fact-checking is Retrieval-Augmented Gener-
ation (RAG). Examples include the use of
basic RAG-based architectures (Singal et al.,
2024), RAG enhanced with fine-grained feed-
back mechanisms for optimising the retrieval
task (Zhang and Gao, 2024), and more ad-
vanced RAG-based architectures focused on
evidence retrieval and contrastive argument
synthesis (Yue et al., 2024).

Other recent approaches focus on specific as-
pects of fact-checking. For instance, FIRE (Xie
et al., 2025) proposes an iterative approach to
fact-checking claims aiming to improve scal-
ability and efficiency and Meng et al. (2025)
address the challenge of zero-day manipulated
content through real-time contextual informa-
tion retrieval.



B Implementation Details

This section presents information about our
experimental setup. We first detail the lan-
guage models employed and their configura-
tion settings, followed by the description and
statistics of the datasets used in our evalu-
ation (Section 4.1). Additionally, we present
our modification to the AlignScore metric (Zha
et al., 2023) (Section 4.3.1).

B.1 Models Settings
We evaluate our framework using a diverse set
of language models, ranging from large-scale
models available through Amazon Bedrock3 to
smaller, open-source alternatives from Hugging
Face4 (Hugging Face models were deployed us-
ing Amazon SageMaker AI5). Table 3 presents
the complete list of models used in our experi-
ments, along with their providers and custom
hyperparameters. For all Amazon Bedrock
models, we set the temperature to 0.0 to en-
sure deterministic outputs. For the Hugging
Face models (SmolLM2 and Qwen3 families),
we configure specific maximum length and to-
ken generation parameters to accommodate
our fact-checking pipeline requirements.

B.2 Datasets
We evaluated the proposed approach on two
fact-checking real-world datasets: LIAR-RAW
and RAWFC (statistics shown in Table 4).
LIAR-RAW (Yang et al., 2022) extends LIAR-
PLUS (Alhindi et al., 2018) and contains
12,590 claims from Politifact6 associated to
six veracity classes. RAWFC (Yang et al.,
2022) comprises of 2,012 claims collected from
Snopes7 with three veracity classes. Both
datasets have their claims split into three
sets: train, test, and validation, containing,
respectively, 80%, 10%, and 10% of the claims.
LIAR-RAW and RAWFC are used in Sec-
tion 4.2 and Section 4.3.1. A modified ver-
sion of LIAR-RAW, called LAIR-RAW (2
labels), used in Sections 4.3.2 and 4.3.3, is
also described in the table. This modifica-
tion maps the original six labels into two
classes: {pants-fire, false, barely-true}

3https://aws.amazon.com/bedrock/
4https://huggingface.co/
5https://aws.amazon.com/sagemaker-ai/
6https://www.politifact.com/
7https://www.snopes.com/

as false, and {half-true, mostly-true,
true} as true, whilst preserving the original
claims split.

Table 4: Statistics of the LIAR-RAW and RAWFC
datasets. | C |ALL denotes the total number of
claims, and | R |avg represents the average number
of reports per claim.

Dataset Statistics Value

LI
A

R
-R

AW

pants-fire 1,013
false 2,466
barely-true 2,057
half-true 2,594
mostly-true 2,439
true 2,021
| C |ALL 12,590
| R |avg 12.3

R
AW

FC
false 646
half 671
true 695
| C |ALL 2,012
| R |avg 21.0

LIAR-RAW false 5,536
(2 labels) true 7,054

B.3 Weighted AlignScore and RQUGE
As described in Section 4.3.1, AlignScore is a
metric based on a general function of informa-
tion alignment to perform automatic factual
consistency evaluation of text pairs (Zha et al.,
2023). We extended AlignScore to weight its re-
sults by the distance of the predicted claim ve-
racity class from the ground truth claim class.

For that, first, based on the semantic distance
between classes, we progressively assign each
class an integer numerical value ranging from
1 (ymin) to | C | (ymax), where C is the set
of possible labels. For instance, in the case of
LIAR-RAW, we assigned each class an integer
numerical value ranging from 1 (pants-fire)
to 6 (true). After, we measure the mean
squared error (MSE) between the predicted
class. Finally, as depicted in Equation (2)),
we weight the macro AlignScore for the pair
answer summarisation text and original claim
using the obtained MSE.

AlignScorew =
(

1− (VC − y)2

(ymax − ymin)2

)
×AlignScore(AC , C)

(2)

https://aws.amazon.com/bedrock/
https://huggingface.co/
https://aws.amazon.com/sagemaker-ai/
https://www.politifact.com/
https://www.snopes.com/


Table 3: Overview of language models used in our experiments, including model providers and custom
hyperparameter settings.

Model Name Model Provider Model Identifier Custom Hyperparameters

Claude 3 Haiku Amazon Bedrock anthropic.claude-3-haiku-20240307-v1:0 temperature = 0.0
Claude 3.5 Haiku Amazon Bedrock us.anthropic.claude-3-5-haiku-20241022-v1:0 temperature = 0.0
Claude 3.5 Sonnet Amazon Bedrock us.anthropic.claude-3-5-sonnet-20241022-v2:0 temperature = 0.0
Claude 3.7 Sonnet Amazon Bedrock us.anthropic.claude-3-7-sonnet-20250219-v1:0 temperature = 0.0
Llama 3.3 70B Amazon Bedrock us.meta.llama3-3-70b-instruct-v1:0 temperature = 0.0

SmolLM2 135M Hugging Face HuggingFaceTB/SmolLM2-135M-Instruct
max_length = 8192
max_new_tokens = 128

SmolLM2 1.7B Hugging Face HuggingFaceTB/SmolLM2-1.7B-Instruct
max_length = 8192
max_new_tokens = 128

Qwen3 0.6B Hugging Face Qwen/Qwen3-0.6B
max_length = 8192
max_new_tokens = 32768

Qwen3 1.7B Hugging Face Qwen/Qwen3-1.7B
max_length = 8192
max_new_tokens = 32768

With this, we penalise the alignment scores
of answer summary AC and claim C where
the fact-checking model prediction VC does not
match the expected class y based on the answer
summary, while considering that predicting
closer classes is better than predicting distinct
classes.

B.4 Weighted RQUGE
As described in Section 4.3.1, RQUGE scores
the acceptability of a generated question given
a context and an answer (Mohammadshahi
et al., 2023). Let qi ∈ QK

ranked be a (formu-
lated contrastive) question for claim C (con-
text) with corresponding answer ai ∈ Ã; de-
note the macro score over a set of K questions
as

RQUGEmacro
(
C

)
= 1

K

K∑
k=1

RQUGE(qk, C, ak).

Analogously to Appendix B.3, we weight
RQUGE by the distance between the model’s
predicted veracity class VC and the gold label
y. Using the same class mapping ymin →ymax
and mean-squared error term, the per-claim
weight is

wC = 1 − (VC − y)2

(ymax − ymin)2 .

We define the weighted RQUGE for a single
question and its macro form as:

RQUGEw(C) = wC × RQUGEmacro(C). (3)

This penalises question-quality scores when the
verifier’s prediction VC deviates from y, while
granting higher credit to questions associated
with closer (semantically adjacent) class pre-
dictions.



C Additional Experiments

C.1 Ablation Study

To evaluate the impact of KG-CRAFT’s com-
ponents and validate its effectiveness as a
complete framework, we conducted a com-
prehensive ablation study on the LIAR-RAW
and RAWFC datasets. Our analysis com-
pares the full KG-CRAFT framework (pro-
posed in Section 3 and results discussed in Sec-
tion 4.2) against three key architectural vari-
ations: Naïve LLM, an LLM augmented with
only the knowledge graph (KG), and an LLM
that generates contrastive questions without
using the KG structure (presented and dis-
cussed in Section 4.3.1). The results, presented
in Table 5, provide a detailed breakdown of
each component’s contribution to the overall
performance.

Naïve LLM The baselines Naïve LLM sec-
tion (presented in Section 4.1 and results dis-
cussed in Section 4.2) shows the performance of
aforementioned backbone LLMs when tasked
with fact-checking using only the claim and its
associated reports. This approach lacks any
structured reasoning or pre-processing of the
reports. The results for these models are no-
tably lower than for KG-CRAFT, confirming
the need for an enhanced reasoning mechanism.

LLM with KG augmentation (no con-
trastive reasoning) This ablation evaluates
the backbone models augmented of the knowl-
edge graphs extracted from the claim and re-
ports, but bypassing the contrastive reasoning
phase. The knowledge graph (KG) is provided
as additional context to the LLM for veracity
assessment. Comparing these results to the
Naïve LLM baselines shows that augmenting
the LLM with the extract (KG) does improve
performance. However, the gains are marginal
compared to the full KG-CRAFT framework,
highlighting that the contrastive reasoning pro-
cess is the primary driver of the significant per-
formance increase. For instance, on the LIAR-
RAW dataset, Llama 3.3 70B shows a 15pp
increase in F1-score with KG augmentation,
but the full KG-CRAFT framework provides
a more substantial 42pp gain compared to the
naïve baseline.

LLM-based Contrastive Questions
(No KG) This ablation directly addresses
RQ2 (Section 4.3) by replacing the KG-based
question formulation with questions generated
purely by the LLM using a few-shot prompt
(presented and discussed in Section 4.3.1).
The results indicate that this approach is
less effective than our KG-based method.
The F1-scores are significantly lower, for
instance, with Llama 3.3 70B achieving only a
29.68% F1-score on LIAR-RAW, compared to
the 73.87% F1-score of the full KG-CRAFT
framework. This suggests that LLMs, when
prompted to generate their own contrastive
questions, often fail to create questions that
are both contextually relevant and aligned
with the provided reports, resulting in overall
lower information alignment (AlignScore)
between the answer summaries and the
original claims and overall lower question
quality (RQUGE) between formulated ques-
tions, generated answers, and the original
claims (Section 4.3.1). This finding reinforces
the value of our knowledge graph approach for
producing evidence-based questions.

KG-CRAFT (ours) The results of KG-
CRAFT framework (proposed in Section 3 and
results discussed in Section 4.2), which com-
bines all proposed components, consistently
outperform all other variations, achieving a
new state-of-the-art on both datasets (Sec-
tion 4.2). This confirms that the combina-
tion of knowledge graph extraction with the
proposed contrastive reasoning significantly en-
hances LLMs’ fact-checking abilities.

C.2 Evaluation with Other Datasets
We further examine whether KG-CRAFT gen-
eralises to scenarios where claims are accom-
panied by fewer and shorter reports by evalu-
ating on two benchmarks: SciFact (scientific
abstracts) and PubHealth (health and policy
claims).

C.2.1 Experimental Settings
Datasets SciFact dataset (Wadden et al.,
2020) targets scientific claim verification from
research paper abstracts. We used its valida-
tion set (also referred to as dev set), retaining
claims with complete supporting or refuting ev-
idence (label classes: supports and refutes).
PubHealth (Kotonya and Toni, 2020) covers



Table 5: Comparative performance analysis (%) of KG-CRAFT and its key components on LIAR-RAW
and RAWFC datasets.

Method
LIAR-RAW RAWFC

Pr Re F1 Pr Re F1
KG-CRAFT (ours)
KG-CRAFTC3.5 62.70 59.38 60.99 67.10 66.25 66.67
KG-CRAFTC3.7 73.92 70.86 72.36 69.37 68.59 68.98
KG-CRAFTL3.3 77.38 70.67 73.87 81.63 81.53 81.58

Naïve LLM
Claude 3.5 Sonnet 29.25 27.83 28.52 54.85 55.04 54.94
Claude 3.7 Sonnet 28.26 26.63 27.42 55.90 57.12 56.50
Llama 3.3 70B 47.21 23.52 31.40 53.16 55.04 54.08
LLM with KG augmentation (no contrastive reasoning)
Claude 3.5 Sonnet 39.96 37.52 38.70 56.73 56.51 56.62
Claude 3.7 Sonnet 60.70 56.42 58.48 68.27 66.09 67.16
Llama 3.3 70B 61.50 38.11 47.06 60.64 58.54 59.57
LLM-based contrastive questions (no KG)
Claude 3.5 Sonnet 34.54 23.25 27.79 65.40 66.56 65.97
Claude 3.7 Sonnet 30.20 27.05 28.54 67.65 68.57 68.11
Llama 3.3 70B 42.18 22.90 29.68 64.98 64.99 64.98

Note: The best and second best results are highlighted across each dataset and metric. KG-CRAFT and
Naïve LLM results are same in Table 1.

health-related and public policy claims. We
use the test split, selecting claims that in-
clude the dataset’s supporting context (label
classes: true, false, mixture). In both set-
tings, we strictly use the reports provided by
each dataset, i.e., no external retrieval (also
known as gold evidence), so observed differ-
ences reflect reasoning rather than retrieval.
Full results are in Tables Table 6 and Table 7.

Comparisons The performance of KG-
CRAFT is benchmarked against seven com-
peting methods, which include encoder-
based classifiers, graph models, program-
style pipelines, and LLM-based approaches.
MLA (RoBERTa) (Kruengkrai et al., 2021)
proposes a sequence inference model which
uses self-attention at both the token and sen-
tence levels to capture information with a pre-
LM encoder (RoBERTa). It also feeds static
positional encodings into its multi-head atten-
tion mechanism. MULTIVERS (Wadden et al.,
2022) leverages a multi-task learning approach
aiming at multi-evidence scientific verification
and rationale extraction from abstracts. Pro-
gramFC (Pan et al., 2023) formulates fact
verification as a programmatic pipeline with
modular steps for evidence usage and deci-
sion making. PACAR (Zhao et al., 2024) is
a prompting-based approach that aggregates
evidence with consistency-oriented reasoning.

GraphFC (Huang et al., 2025) encodes the re-
port structure with an explicit graph and graph
reasoning components. CO-GAT (ELEC-
TRA) (Lan et al., 2025) applies graph attention
over scientific evidence with a pre-LLM encoder
(ELECTRA). GraphCheck (Chen et al., 2025)
is a recent LLM-based verifier that incorpo-
rates lightweight graph signals and instruction-
style prompting. We report KG-CRAFT with
two backbones: KG-CRAFTC3.5 and KG-
CRAFTL3.3, with the same settings as reported
in our main experiments (Section 4.1).

Evaluation Metrics As in our main experi-
ments (Section 4.1), we report precision (Pr),
recall (Re), and F1-score (F1) results. In addi-
tion, to compare with GraphCheck, we report
balanced accuracy (BAcc). For all metrics,
higher values indicate better performance.

C.2.2 Results
On SciFact, KG-CRAFTL3.3 obtains 83.03 F1
(Pr/Re: 84.58/81.53), outperforming five out
of the six competing techniques (e.g., MUL-
TIVERS 72.50 and ProgramFC 71.82; more
than 10pp difference) whilst presenting com-
peting results with the best performing method
(GraphFC 87.37; less than 5pp) (Table 6).
Also, in SciFact, GraphCheckL3.3 obtained
89.40 BAcc, outperforming KG-CRAFTL3.3
in 7.88pp (Table 7). On PubHealth, KG-



Table 6: Performance comparison on the SciFact dataset (%).

Method Pr Re F1

Previous Methods
MLA (RoBERTa) (Kruengkrai et al., 2021)a 80.62 49.76 61.54
MULTIVERS (Wadden et al., 2022) 73.80 71.20 72.50
ProgramFC (Pan et al., 2023)b - - 71.82
PACAR (Zhao et al., 2024) - - 75.06
GraphFC (Huang et al., 2025) - - 87.37
CO-GAT (ELECTRA) (Lan et al., 2025)d 79.58 54.07 64.39

KG-CRAFT (ours)
KG-CRAFTC3.5 76.50 75.18 75.83
KG-CRAFTL3.3 84.58 81.53 83.03

Note: The best and second best results are highlighted across each dataset and metric. All reported results
use the evidence provided by the dataset; thus, no external source is referenced. a Results taken from (Lan
et al., 2025). b Results taken from (Zhao et al., 2024). c Results taken from (Huang et al., 2025). d CO-GAT
(ELECTRA) reported results use the large model and abstract-level evidence settings. MULTIVERS reported

results use the full and abstract-level evidence settings.

Table 7: Performance comparison on the PubHealth and SciFact datasets (%).

Method
PubHealth SciFact

BAcc Pr Re F1 BAcc Pr Re F1

GraphCheckL3.3 (Chen et al., 2025) 73.60 - - - 89.40 - - -
GraphCheckQwen 72B (Chen et al., 2025) 71.70 - - - 86.40 - - -

KG-CRAFT (ours)
KG-CRAFTC3.5 61.02 76.50 75.18 75.83 75.17 76.50 75.18 75.83
KG-CRAFTL3.3 78.66 72.82 73.89 73.35 81.52 84.58 81.53 83.03

Note: The best results for the Balanced Accuracy (BAcc) are highlighted across each dataset. KG-CRAFT
Precision, Recall, and F1-score are reported for completeness; they are not being compared with GraphCheck

results.

CRAFTL3.3 achieves the best BAcc at 78.66,
surpassing GraphCheckL3.3 (73.60; 5.06 pp)
and GraphCheckQwen 72B (71.70; 6.96 pp) (Ta-
ble 7). Whilst KG-CRAFTC3.5 is consistently
weaker than KG-CRAFTL3.3 results, where re-
ported for completeness.

In both datasets, reports associated with each
claim are shorter, we observe less diverse ex-
tracted KGs, i.e., fewer entities and relations,
which directly constrains the space of type-
consistent substitutions and thus the capac-
ity to formulate diverse contrastive questions.
This likely contributes to the residual gap to
GraphFC on SciFact, despite strong overall
results and cross-domain robustness evidenced
by PubHealth.



D Prompt Engineering

This section presents the five prompts used
in the scope of this work: Knowledge Graph
Extraction (Section 3.1), Contrastive Question
Answer Generation (Section 3.2), Answer Sum-
marisation (Section 3.2), Claim Veracity Verifi-
cation (Section 3.3), and Contrastive Question
Formulation (Section 4.3.1). For each prompt,
we provide the template.

D.1 Knowledge Graph Extraction
Prompt

The following prompt describes our phased ap-
proach to knowledge graph extraction, where
the LLM is guided to sequentially identify enti-
ties (E), assign their classes (C), and establish
relationships (R) between them to construct
the input knowledge graph G.

Knowledge Graph Extraction
Prompt

You are a top-tier algorithm designed
for extracting information in
structured formats to build a
knowledge graph.
Knowledge graphs consist of a set of
triples. Each triple contains two
entities (subject and object) and one
relation that connects these subject
and object.
Try to capture as much information
from the text as possible without
sacrificing accuracy. Do not add any
information that is not explicitly
mentioned in the text.
This is the process to extract
information and build a knowledge
graph:
1. Extract nodes [...]
2. Label nodes [...]
3. Extract relationships [...]
Compliance criteria: [...]
Text: {claim or report}

D.2 Contrastive Question Answer
Generation Prompt

The following prompt instructs the LLM
to generate answers to contrastive questions
(QK

ranked) by analysing claim-associated reports
(RC), ensuring responses are grounded in evi-
dence whilst maintaining traceability between
claims, reports, and questions.

Contrastive Question
Answer Generation Prompt

You are an expert answering questions
based only on the provided context.

## Task:
Using the context provided and being
aware of the claim, answer the
question regarding the claim aiming
to fact-check it. Limit your answer
to 200 words at most.

## Desired Outcome:
- Base the concise answer strictly on
the context.
- Present the information neutrally,
without judging or labeling the
claim.
- Do not re-state the claim in the
answer.
- Write in continuous prose (no lists,
bullet points, or meta-commentary).
- Limit your answer to 200 words at
most.

## Input:
* Context: {context}
* Claim: {claim}
* Question: {contrastive question}

## Output:

D.3 Answer Summarisation Prompt

The following prompt instructs the LLM to
generate a concise summary (AC) from the
claim (C) and its associated question-answer
pairs (QK

ranked, Ã), emphasizing key contrast-
ing elements while abstracting non-essential
information.

Answer Summarisation Prompt

You are an expert writing summarizing
information from pairs of question
and answer.

## Task:
Your task is to generate an one
paragraph summary of the information
based on given pairs of question and
answer.

## Desired Outcome:
- A one paragraph summary of the
information contained in the question
and answer.
- Present the information neutrally,
without judging or labeling the
claim.
- Ensure that the summary is clear
and accurately based on the provided
context.



- Write in continuous prose (no lists,
bullet points, or meta-commentary).
- Do not add any utterances (for
example "Here are" statements) to the
final answer.
- Limit your answer to 200 words at
most.

## Input:
* Question 1: {contrastive question}
* Answer 1: {contrastive question
answer}
* [...]

## Output:

D.4 Claim Veracity Verification
Prompt

The following prompt (pcv) instructs the LLM
to determine claim veracity (VC) by analysing
the original claim (C) against the distilled evi-
dence summary (AC), using predefined veracity
labels and their descriptions.

Claim Veracity Verification Prompt

You are an expert fact-checking
claims based solely on the provided
context of the claim.

## Task:
Your task is to categorize the claim
based only on the context as:
- {veracity labels}

## Desired Outcome:
- The veracity of the claim based on
the context provided.
- Your response must be only one of
the he above options. Do not include
any other text.

## Input:
* Context: {context}
* Claim: {claim}

## Output:

D.5 Contrastive Question Formulation
Prompt

The following prompt guides the LLM to gener-
ate contrastive questions directly from claims
and reports, serving as an alternative to the
knowledge graph-based approach for our abla-
tion study.

Contrastive Question Formulation
Prompt

You are an expert writing analyzing a
given claim and generating
contrastive questions based on given
context. Your task is to generate
contrastive questions of given claim
based on given context.

## Desired Outcome:
- Create contrastive questions of an
input claim based on given context.
- Present a list of five contrastive
questions.
- Do not add any utterances (for
example "Here are" statements) to the
final answer.

## Example Prompt:
* Claim: {claim example}
* Context: {reports examples}

## Example Output:
”””
{contrastive questions examples}
”””

## Additional Notes:
- Ensure that the contrastive
questions are clear and accurately
contrasts the claim based on the
provided context.
- Maintain a consistent and readable
format for the output.
- Ensure that the output is only the
contrastive questions, no other
additional text or utterances.

## Input:
* Claim: {claim}
* Context: {reports}

## Output:
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