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Abstract
In this paper, we investigate the problem of quantifying fairness in
Retrieval-Augmented Generation (RAG) systems, particularly for
complex cognitive tasks that go beyond factual question-answering.
While RAG systems have demonstrated effectiveness in informa-
tion extraction tasks, their fairness implications for cognitively
complex tasks - including ideation, content creation, and analytical
reasoning — remain under-explored. We propose a novel evalua-
tion framework that extends IR fairness metrics by incorporating
centrality-based measures to account for influence of retrieved
documents on generated output beyond ranking. Our framework
evaluates RAG systems across various cognitive dimensions us-
ing two ranking approaches: lexical (BM25) and dense (BGE), and
language models of varying sizes. Our findings provide insights
into: (1) the propagation of fairness disparities from retrieval to
generation phases, and (2) the variation in system performance
across different cognitive dimensions.
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• Information systems → Evaluation of retrieval results.
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1 Introduction
Retrieval-Augmented Generation (RAG) systems have become in-
creasingly popular following the widespread deployment and use
of Large Language Models (LLMs). Their appeal lies in grounding
LLM responses within specific contexts, thereby delivering focused
responses while also mitigating hallucinations [14]. However, the
combination of search systems and LLMs brings forth a new critical
challenge: the compounding of fairness issues inherent to both in-
formation retrieval systems and LLMs themselves. Recent research
has examined bias propagation in RAG systems, focusing primarily
on Q&A, classification, and regression-style tasks [13, 14, 23]. In
these tasks, the evaluation metrics are well-bounded and clearly
defined. However, as enterprises increasingly deploy RAGs as pro-
ductivity tools for employees [21], users are positioned to employ
these systems for complex cognitive tasks like ideation, content
creation, analytical reasoning, and other activities that go beyond
simple information extraction.

Traditional fairness metrics in information retrieval, such as Ex-
pected Exposure [5] and attention-based measures [18, 20], were
designed with clear assumptions about user behavior and relevance
(i.e., monotonically decreasing attention with rank position, clear
relevance judgments, and position-based exposure models that di-
rectly correlate with user attention patterns). In these traditional
ranking systems, a document’s exposure weight is derived primarily
from its position in the ranking, following a monotonically decreas-
ing function that models how user attention naturally decays as
they traverse down a ranked list.

RAG systems fundamentally challenge these assumptions. Unlike
conventional ranking systems where documents lower in the list
consistently receive less attention, RAGs exhibit more complex and
non-monotonic attention patterns from their Generator component.
Recent work has shown that the Generator can place significant
attention on passages appearing later in the context [15, 17, 27],
with attention distributions that deviate substantially from the
predictable decay patterns observed in traditional ranking systems.
We confirm this observation in our empirical analysis (Figure 1).
These fundamental differences motivate a new approach to measure
exposure and fairness in RAG systems.

To address these challenges, we propose a novel evaluation
framework that extends IR fairness metrics [6] by incorporating
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centrality-based measures [16, 28] to account for influence of re-
trieved documents on generated output beyond ranking. Addition-
ally, to evaluate the RAG systems for a variety of cognitive tasks,
we use Anderson and Krathwahl’s taxonomy of educational objec-
tives [2], and focus on the cognitive process dimension. This particu-
lar framework has been used in prior IR studies to study user search
behavior [22]. We experiment with different retrieval systems: lexi-
cal (BM25) and dense (BGE), different context sizes: {8, 16, 32}, and
a generator using LLMs of different sizes and architectures. We in-
vestigate two research questions: (RQ1) What is the fairness gap
between retrieval and generation? and (RQ2)How is response fairness
shaped by system components including (a) retriever architecture, (b)
task complexity, and (c) generator characteristics?

2 Related Work
Fairness in Information Retrieval: The measurement of fair-
ness in information retrieval has been fundamentally shaped by
empirical studies of how users interact with ranked results [12].
Traditional IR research has established that user attention broadly
follows a monotonic decay as users traverse down a ranked list,
making position a crucial factor in measuring fairness [6]. This
understanding has influenced how we conceptualize and measure
fairness across different stakeholders and definitions. Early work on
fairness focused on group-level metrics, with approaches like statis-
tical parity incorporating logarithmic position discounting [24] and
extensions considering different prefixes of ranked lists [25]. The
role of position and attention was further emphasized in individual
fairness measures, such as amortized attention allocation [4] and
pairwise exposure comparisons [3]. More recent frameworks have
provided flexible approaches to modeling user attention patterns,
such as the Attention-Weighted Ranking Fairness (AWRF) [20] and
Expected Exposure of stochastic rankers [5]. These frameworks
explicitly model how position affects exposure and consequently,
fairness. These position-based fairness metrics, while effective for
traditional search systems, need rethinking with the emergence of
RAG systems where information consumption patterns by the Gen-
erator module of a RAG deviates significantly from user behavior.

Evaluation of RAG systems: The evaluation of RAG systems has
primarily focused on end-to-end performance metrics [9, 11, 14],
with recent work moving towards component-level effectiveness [8,
19, 23]. While these frameworks address system effectiveness, few
studies have examined bias and fairness concerns in RAG systems
beyond QA tasks [23]. Recent work has revealed several concerning
patterns: Abolghasemi et al. [1] demonstrated systematic biases
in how RAG systems attribute information to different types of
authors, and Kim and Diaz [13] examined fairness issues in the
ranking component and how it affects the quality of generation.
Notably, recent studies show that the generator component in RAGs
exhibits complex and non-monotonic attention patterns [26], differ-
ing significantly from how humans process ranked results [12]. This
distinction challenges conventional IR metrics, and, in turn, fairness
metrics that rely on position-based exposure models. Zhang et al.
[26] further revealed that LLMs exhibit position bias when accessing
information from retrieved documents. Building on these insights,
we introduce a unified framework that accounts for the unique
attention patterns of RAGs across different cognitive tasks.

Figure 1: Comparison of attentionweights: traditional rank-based decay versus
our attribution-based weights for passages retrieved by the BGE ranker and
processed by mistral-large (𝐾=16).

3 Methods
Our approach to measuring fairness in RAG systems consists of
three components: designing a benchmark for cognitive tasks, im-
plementing varied RAG system configurations, and methodologies
for defining fairness in RAGs.
Benchmark: In this study, we utilize and adapt the TREC 2022 Fair
Ranking Track corpus [7]. This benchmark consists of 46 informa-
tional queries (topics), each of which is provided with a well-studied
target distribution over individual and inter-sectional fairness di-
mensions such as gender or geolocation. Our choice of this dataset
was motivated by two key factors: first, it provides rigorously es-
tablished target distributions that are critical for developing our
fairness metrics, and second, it enables evaluation of open-ended
user inquiries across a broad spectrum of topics. This dataset is par-
ticularly relevant as RAG systems enable users to engage in complex
tasks such as ideation, content creation, and analytical reasoning.
We contrast this with QA and extractive tasks, as informational
queries may lack definitive ground truth or clear boundaries for
what constitutes sufficient information.

Table 1: Templates used for different cognitive dimensions

Dimension Template

Understand
•What are the main characteristics and important aspects
of {𝑡𝑜𝑝𝑖𝑐 }?
• How has {𝑡𝑜𝑝𝑖𝑐 } developed and changed over time?

Analyze
• What factors have shaped or influenced {𝑡𝑜𝑝𝑖𝑐 }?
• What are the relationships between different aspects of
{𝑡𝑜𝑝𝑖𝑐 }?

Evaluate
• What are the major challenges and significant develop-
ments related to {𝑡𝑜𝑝𝑖𝑐 }?
• What aspects of {𝑡𝑜𝑝𝑖𝑐 } have proven most valuable or
significant, and why?

Create
• What possible future developments might we see in
{𝑡𝑜𝑝𝑖𝑐 }?
• How could our understanding and study of {𝑡𝑜𝑝𝑖𝑐 } be
innovatively reimagined?

To systematically explore the diverse ways users interact with
RAG systems, we adapt TREC topics following Anderson and Krath-
wohl’s taxonomy of educational objectives [2]. We focus on four
cognitive dimensions: create (generate new content by synthe-
sizing information), evaluate (assess and compare information
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to form conclusions), analyze (identify relationships across docu-
ments), and understand (interpret key concepts)1. For each dimen-
sion, we created two template query variants (Table 1), designed
to be topic-agnostic while maintaining clear distinctions between
cognitive dimensions. Using these 8 templates across our 46 topics,
we generated 368 informational queries.

RAG Implementation:We implemented two ranking approaches:
(1) BM25 (from Pyserini2), a traditional lexical model, and (2) BGE3,
a dense retrieval model. Documents were split into 1024-character
chunks with 50-character overlap. BGE was implemented as a re-
ranker operating on the top 500 BM25-retrieved chunks. For gen-
eration, we used Llama3 and Mistral models, chosen for their
state-of-the-art performance and open-weight availability.

Fairness Metrics for Ranking: We quantify ranking fairness
using Expected Exposure (EE-L), measuring the disparity between
actual and target exposure distributions. Let 𝐴 be an 𝑛 × 𝑘 binary
matrix representing 𝑘 group attributes for 𝑛 retrieved passages. The
actual exposure vector is:

𝜉𝐴 = 𝐴𝑇𝑊, where𝑊 = [𝑤1, . . . ,𝑤𝑛]𝑇 , 𝑤𝑖 =
1

log(1 + 𝑖) (1)

For the target exposure distribution, we define:

𝜉∗ =
1
2
(𝐴𝑇 𝑟𝑞 + 𝑎𝑤𝑜𝑟𝑙𝑑 ) ·

𝑛∑︁
𝑖=1

1
log(1 + 𝑖) (2)

where 𝑟𝑞 represents relevance judgments and 𝑎𝑤𝑜𝑟𝑙𝑑 represents
world population distribution for geographic attributes and equal
distribution for gender attributes. The scaling factor ensures com-
parability with actual exposure. For intersectional fairness, we use
the Cartesian product of attribute sets.

The EE-L metric for ranking is computed as:

ℓranker (𝜉𝐴, 𝜉∗) = ∥𝜉𝐴 − 𝜉∗∥22 (3)

Fairness Metrics for RAG Response: Unlike ranking systems
where exposure is determined by rank position, RAG systems’ ex-
posure patterns depend on how the generator utilizes passages to
construct responses. We adapt EE-L by measuring each passage’s
contribution to the generated text.

For a generated text 𝐺 = {𝑠1, . . . , 𝑠𝑚} with retrieved passages
𝑃 = {𝑝1, . . . , 𝑝𝑛}, we compute attribution weights as follows:

1. Sentence-level centrality scores:

𝑐𝑖 =
1

𝑚 − 1

∑︁
𝑗≠𝑖

BERTScore-F1(𝑠𝑖 , 𝑠 𝑗 ) (4)

2. Passage-sentence entailment via RefChecker [10]:

𝐸𝑖, 𝑗 =

{
1 if passage 𝑝 𝑗 entails sentence 𝑠𝑖
0 otherwise

(5)

1Two dimensions were excluded: “remember” (fact recall) and “apply” (procedural
execution), as they are less relevant for our investigation.
2https://github.com/castorini/pyserini
3https://huggingface.co/BAAI/bge-large-en

3. Attribution weights normalized to match ranking exposure
scale:

𝑤 𝑗 =
∑︁
𝑖

(𝑐𝑖 × 𝐸𝑖, 𝑗 ) ·
∑𝑛
𝑖=1

1
log(1+𝑖 )∑𝑛

𝑗=1
∑
𝑖 (𝑐𝑖 × 𝐸𝑖, 𝑗 )

(6)

The exposure vector 𝜉𝐴 = 𝐴𝑇𝑊 uses these weights, while target
exposure 𝜉∗ remains as defined in the ranking metric. The final
EE-L metric is:

ℓresponse (𝜉𝐴, 𝜉∗) = ∥𝜉𝐴 − 𝜉∗∥22 (7)

This approach captures both the importance of sentences (via
centrality) and their information sources (via entailment), while
ensuring fairness scores are comparable between ranking and gen-
eration through normalized weights.

Data Analysis: For RQ1, we used the Wilcoxon signed-rank test
with a one-sided alternative hypothesis to compare retrieval and
generation fairness scores. We analyzed both absolute scores and
relative differences to understand fairness degradation. For RQ2, we
employed mixed-effects regression models to analyze how ℓresponse
varies with ranker type, ℓranker, task type, context size, and LLM
choice, using topic_id as the random effect.

4 Results

Figure 2: Comparison of ranking (ℓ𝑟𝑎𝑛𝑘𝑖𝑛𝑔) and generation fairness (ℓ𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 )
across different model sizes and context windows.

Figure 3: ℓ𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 across cognitive dimensions and context sizes.

RQ1: What is the fairness gap between retrieval and genera-
tion? Our analysis suggests a consistent fairness degradation from
retrieval to generation across all context sizes. For small contexts
(K=8), the generated responses were significantly more unfair (i.e.,
higher EE-Lresponse) compared to retrieved results (𝑝 < 0.001).
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Figure 4: Fairness patterns across model sizes and context windows. Larger
models achieve better fairness in both Llama (left) and Mistral (right) families.

While this gap narrowed with larger contexts (K=16, K=32), our
analysis confirms that generation consistently produces less fair
results than retrieval across all context sizes (𝑝 < 0.01). This demon-
strates the existence of a persistent fairness gap between retrieval
and generation components, though its severity can be moderated
by increasing context size.

RQ2a: How is response fairness shaped by the retriever archi-
tecture? Our analysis reveals two distinct aspects of how retrievers
influence fairness in RAG systems. First, the initial retrieval fairness
(EE-Lranker) strongly determines response fairness, though this re-
lationship linearly reduces as context size increases (K=8, 𝛽=0.969,
𝑝 < 0.001); (K=16, 𝛽=0.800, 𝑝 < 0.001); (K=32, 𝛽=0.770, 𝑝 < 0.001).
This suggests that while generated responses largely inherit the
fairness characteristics (bias) of retrieved passages, larger contexts
provide the generator more flexibility to deviate from these initial
bias patterns.

The architectural impact of retrievers (BM25 vs BGE) presents an
interesting dynamic, particularly evident in small contexts. At K=8,
if both retrievers achieved the same level of retrieval fairness, BGE
would lead to significantly fairer responses than BM25 (𝛽=0.011,
𝑝=0.002). For instance, with a retrieval fairness score of 0.02, BGE
would yield responses with fairness around 0.019, while BM25would
yield less fair responses around 0.030. This architectural advantage
of BGE diminishes with larger contexts, becoming non-significant
at K=16 (𝛽=0.003, 𝑝=0.238) and K=32.

RQ2b: How is response fairness shaped by task complexity?
Our analysis suggests that the task types’ impact on response fair-
ness happens only with larger context windows (K=32), with no sig-
nificant differences observed at smaller contexts. At larger contexts,
both create (𝛽=−0.004, 𝑝=0.039) and understand tasks (𝛽=−0.004,
𝑝=0.031) show higher fairness in comparison to evaluate tasks.
This suggests that for create and understand tasks, the generator
module is able to source information from passages in a manner
that better aligns with the target distribution.

In terms of interactions between task type and retriever choice,
we observe significant effects at large context windows (K=32).
We find that BGE helps maintain more consistent fairness levels
across different task types, while BM25 shows more variation in
fairness depending on the task type. Specifically, when using BM25,
analyze (𝛽=0.006, 𝑝=0.025) and create tasks (𝛽=0.005, 𝑝=0.038)

show significantly higher EE-Lresponse scores (less fair) compared
to evaluate tasks.

RQ2c: How is response fairness shaped by generator char-
acteristics? For model size effects, we find a consistent pattern
across both the Llama and Mistral model families: larger mod-
els tend to produce fairer responses. In the Llama family (3-1-8b
> 3-2-3b > 3-2-1b), we observe that the largest model 3-1-8b
consistently generates responses that better align with the target
distribution. At context K=8, the middle-sized model 3-2-3b shows
significantly higher unfairness compared to both the largest model
(𝛽=0.011, 𝑝=0.001) and the smallest model (𝛽=0.008, 𝑝=0.011). At
K=16, both smaller models show significantly higher unfairness
compared to 3-1-8b (3-2-3b: 𝛽=0.007, 𝑝 < 0.001; 3-2-1b: 𝛽=0.006,
𝑝=0.002). The trend continues at context K=32, though with smaller
effect sizes (3-2-1b vs 3-1-8b: 𝛽=0.004, 𝑝=0.010). Similarly, in the
Mistral family, we observe that the larger model mistral-large
produces fairer responses compared to mixtral at context K=32
(𝛽=0.002, 𝑝=0.012). These findings suggest that larger models are
better at sourcing information from the passages in a manner that
better aligns with the target distribution.

5 Discussion and Conclusion
Our results highlight an interesting interplay between the retrieval
and generation components in RAG systems’ fairness outcomes.
The strong and consistent effect of EE-Lranker across all contexts
and model sizes demonstrates significant propagation of retrieval
biases to the final response. However, the influence of the ranker’s
biases linearly decreases with an increase in the context window,
allowing the generator module to introduce its own patterns of
bias, potentially through selective attention to certain passages or
emphasis on particular aspects of the retrieved content. Interest-
ingly, these generator-introduced biases vary systematically with
model size. Larger models consistently produce fairer responses
despite receiving the same retrieved passages as their smaller coun-
terparts, suggesting that increased model capacity helps in better
utilizing retrieved information while minimizing the introduction
of additional biases.

Task complexity’s impact on fairness emerges only with larger
contexts (K=32), while at smaller contexts, response unfairness pri-
marily stems from the retrieval component. At K=32, BGEmaintains
consistent fairness across task types, while BM25 shows variable per-
formance - particularly for analyze (𝛽=0.006, 𝑝=0.025) and create
tasks (𝛽=0.005, 𝑝=0.038) which show higher unfairness compared
to evaluate tasks. This suggests dense retrievers may maintain
stable fairness across cognitive tasks with larger context windows.
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