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Abstract
Neural networks have lead to improvements in demand fore-
cast accuracy for supply chain and retailers. These neural
networks have been designed and trained on data representing
their particular use cases. We investigate the zero-shot perfor-
mance of those deep learning models on retail dataset outside
of their original use case. As such, we focus on the hypothesis
that this zero-shot performance of deep learning models is
linked to how we train a model and balance multiple tasks.
To address this, we introduce a new active sampling bandit
called Goldilocks that samples across multiple tasks, here cor-
responding to difference velocity groups, based on learnable
samples that are not too hard, not too easy, but just right.
For comparison, we also offer a novel Dynamic Importance
Sampling (DIS), an extension of Static Importance Sampling
(SIS) based on demand, used to train neural networks [7, 11].
A temperature hyperparameter in Goldilocks controls the
algorithm’s preference for harder problems, extending the
idea behind DIS. We show out-of-sample convergence results
on a public retail dataset called M5 to evaluate the zero-shot
performance of the sampling strategies.
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To support downstream inventory management decisions, the
supply chain consumes distributional forecasts of demand.
The quantile of interest to the downstream customer depends
on the application in question. For example, when we consider
purchasing a product for the retail market, we are typically
interested in forecast values at or above the 50th quantile
of the distribution. In contrast, when we are interested in
deciding whether to remove or not a product that is not
selling as expected from the inventory, forecasts values at or
below the 10th quantile are of greater interest.

Demand forecasts are thus currently generated via quantile
regression wherein two quantiles (the 50th and 90th) are
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predicted by a deep learning model. Neural networks have
lead to improvements in demand forecast accuracy; starting
with MQ-RNN and MQ-CNN in Wen et al. [10] and, more
recently, an implementation of a Transformer architecture
[9] in MQ-Transformer [3, 4] and in SPADE [11]. These
models generate forecasts for a product based on its demand
history, product attributes and known future information (e.g.
promotions, planned sales, holidays). These neural networks
have been designed and trained by sampling by product
velocities – the total demand per year – on data representing
their particular use cases.

We are interested in understanding the forecasting perfor-
mance on retail tasks outside of where the model was trained.
As a proxy for this zero-shot performance, we evaluate the
models on the well-known public retail dataset called M5
[5, 6]. This public dataset represents sales for a large retailer
on which the models were not trained on, for a time period
outside of the training window used to trained the neural
networks in this paper.

We focus on the hypothesis that this zero-shot performance
of deep learning models is linked to how we train a model
and balance multiple tasks. As such, we focus on curriculum
learning – adapting the curriculum used for training by intro-
ducing a new active sampling bandit called Goldilocks that
samples across multiple tasks, here corresponding to different
velocity groups of products, based on samples that are not
too hard, not too easy, but just right to learn. This extends
the learnability idea from Rutherford et al. [8] wherein it was
shown that an intuitive notion of learnability allowed an agent
outperformed existing methods in several binary-outcome
environments.

For comparison, we also offer a novel Dynamic Importance
Sampling (DIS), an extension of Static Importance Sampling
(SIS) based on demand used to train neural networks similar
to [7, 11]. The extension is dynamic in the sense that the
sampling starts proportional to total demand in one year of
training, as is done with importance sampling, but then the
sampling weights are updated by the latest weighted quantile
error. This extension is natural to the business problem of
forecasting for supply chain as it helps ensure that the overall
quantile loss is low across velocities. A temperature hyperpa-
rameter in Goldilocks controls the algorithm’s preference for
harder problems, extending the idea behind DIS.

In this paper, after introducing the metrics and algorithm,
we show convergence results of convergence on a large online
retailer and and the public retail dataset M5 to evaluate the
zero-shot out-of-sample performance of the models.
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1 Metric: WCRPS
Beyond point estimation, the supply chain management de-
cisions to be made requires a measure of uncertainty that
distributional forecasts provide. The quantile of interest de-
pends on the application in question. For example, when we
are considering purchasing an product for the retail market,
we are typically interested in forecast values at or above the
50th quantile of the distribution. In contrast, when we are
interested in marking down the price of a product that is
not selling as expected, forecast values at or below the 10th
quantile are of greater interest. We thus generate a demand
forecast via quantile regression wherein two quantiles (the
50th and 90th) are predicted by a deep learning model.

For a given forecast 𝑓, demand 𝑑, product 𝑎, horizon ℎ,
percentile 𝑝, for forecast start date 𝑡, the Quantile Loss is

QL𝑝(𝑓𝑎,𝑡 ,ℎ,𝑝, 𝑑𝑎,𝑡 ,ℎ)

∶= 𝑝 ⋅ (𝑑𝑎,ℎ − 𝑓𝑎,ℎ,𝑝)+ + (1 − 𝑝) ⋅ (𝑑𝑎,ℎ − 𝑓𝑎,ℎ,𝑝)−

with superscripts + and - denote the positive and negative
parts. The demand-Weighted Quantile Loss (WQL) is

WQL𝑝(𝑓 , 𝑑) ∶=
∑𝑎,𝑡 ,ℎ QL𝑝(𝑓 , 𝑑)

∑𝑎,ℎ 𝑑𝑎,ℎ

where we sum over all products and all horizons of interests.
WQL is non-negative, and lower is better. The zero forecast
gets WQL90(0, 𝑑) = 0.9 whereas the perfect forecast gets
WQL50(𝑑, 𝑑) = WQL90(𝑑, 𝑑) = 0.

Continuous Ranked Probability Score (CRPS) is the in-
tegral of the quantile function (inverse CDF, 𝐹−1) over the
percentiles,

CRPS(𝐹 , 𝑦) = ∫
1

0
QL𝑝(𝐹

−1(𝑝), 𝑦) 𝑑𝑝

where 𝐹 is the CDF, and y is the target value, see Berrisch
and Ziel [2]. For easier comparison with WQL, we omitted a
factor of 2 in front of the integral. For a neural network 𝑓𝜃,𝑝𝑖
quantiles at percentiles 𝑝𝑖, we can approximate CRPS using
Riemann sum as

CRPS ≈ ∑
𝑝𝑖

QL𝑝𝑖
(𝑓𝜃,𝑝𝑖 , 𝑦) Δ𝑖

where the weights Δ𝑖 chosen constant distances between per-
centiles and sum to 1. Similarly, we define the demand-Weighted
CRPS (WCRPS) is

WCRPS(𝐹 , 𝑦) = ∫
1

0
WQL𝑝(𝐹

−1(𝑝), 𝑦) 𝑑𝑝

≈ ∑
𝑝𝑖

WQL𝑝𝑖
(𝑓𝜃,𝑝𝑖 , 𝑦) Δ𝑖

which is just CRPS normalized by total demand as for WQL.
Unlike Quenneville-Belair et al. [7], where the quantiles where
weighted by empirical evidence collected from applications,
for simplicity here, we define the WCRPS for 𝑃50, and 𝑃90
with a simple symmetric midpoint weighted average, and

provides a simple overall comparison point:

WCRPS50,90 = 0.7 ⋅ WQL50 + 0.3 ⋅ WQL90

which, asymptotically with the number of percentiles, approx-
imate the integral, see Appendix A for a similar discussion
for the mean. The zero forecast gets WCRPS50,90(0, 𝑑) =
0.7 ⋅ 0.5 + 0.3 ⋅ 0.9 = 0.62 whereas the perfect forecast gets
WQL50(𝑑, 𝑑) = WQL90(𝑑, 𝑑) = 0.

2 Algorithm: Goldilocks
In our application for supply chain, we care about each unit
of demand equally (as a lost sale or a product stored), and the
quantile loss accounts for that. However, given the number
of products being in the millions, and the number of training
steps being the thousands, we do not expect to sample the
same product multiple times. As such, we describe a product
segmentation strategy, where the segments correspond to
equally important tasks to forecast.

We assume that ergodicity holds – where the time average
of one individual (or product) is equivalent to the ensemble
average across many individuals (or products). This allows us
to focus on sampling across products with their full history
as is done with forking sequences [3, 4, 7, 11], instead of
sampling products and time windows.

Here, the products are thus assigned to segments in a way
that gives them equal total demand. More precisely, we order
products by total demand for one year of training, and group
them into a pre-determined number of segments so that each
segment has the same total demand. The products with zero
demand can be left in a segment at the end, but dropped in
this paper.

Since segments are now task of equal importance, we can
now sample across them. The idea is then to sample the
segments according to probabilities 𝑝(𝑠) depending on the
WCRPS 𝑤𝑠 of the products in each segment 𝑠. For DIS, the
probability of sampling each segment is simply taken as
WCRPS for recent products in that segment,

𝑝(𝑠) = 𝑤𝑠 (1)

and this means sampling products that are difficult to learn.
In contrast, for Goldilocks, we extend the learnability idea
from Rutherford et al. [8] to our case with WCRPS 𝑤𝑠

𝑝(𝑠) = (𝛾𝑤max − 𝑤𝑠)(𝑤𝑠 − 𝛾−1𝑤min) (2)

where the temperature 𝛾 controls the emphasis on lower or
higher loss, and indicates our preference for harder problem,
extending the idea behind DIS. More precisely, 𝛾 = 1 maxes
out at the midpoint between the minimum and maximum
loss, giving us products that are not too hard, not too easy,
but just right to predict. In contrast, 𝛾 = 2 maxes out near
the maximum, similarly to DIS, see Appendix B for more
details. We detail Goldilocks and DIS in Algorithm 1.

3 Experimental Setup and Results
We conduct our experiments on a dataset of millions of
products for a large e-commerce retailer with the objective
of producing multi-horizon forecasts for the next 52 weeks.
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Table 1: We show the final WQL for P50 and P90, and the combined WCRPS on the two validation datasets DB and M5.
Goldilocks with temperature 2 performed best on M5, the out-of-sample validation dataset. DIS rank second on M5, as expected,
given that both have a similar behavior. We put in bold the best two of each column.

DB M5
P50 P90 WCRPS P50 P90 WCRPS

Uniform 0.4586 0.7060 0.5328 0.4190 0.5646 0.4626
SIS 0.5216 0.8356 0.6158 0.4485 0.5772 0.4871
DIS 0.7479 0.9985 0.8231 0.4168 0.5529 0.4577
Goldilocks 1.0 0.5106 0.8199 0.6034 0.4512 0.5852 0.4914
Goldilocks 1.5 0.5942 0.9718 0.7075 0.4566 0.6382 0.5111
Goldilocks 2.0 0.5844 0.8812 0.6734 0.3989 0.5119 0.4326

Algorithm 1 Using Equation (1) to update 𝑝(𝑠) corresponds
to DIS; whereas using Equation (2) corresponds to Goldilocks.
Skipping the update 𝑝(𝑠) corresponds to SIS, and additionally
using a constant in place of the loss corresponds to Uniform.
The hyperparameter 𝛼 controls the moving average decay.

Segment products by velocity in equal total demand
𝑑𝑠 ← velocity for each segment 𝑠
𝑤𝑠 ← 𝑑𝑠 ⋅ WCRPS0 ▷ scaled loss for zero
while training do

𝑠 ← segment randomly sampled using 𝑝(𝑠)
𝑎 ← product uniformly sampled from segment 𝑠
𝜔′
𝑎 ← 𝑑𝑠 ⋅ WCRPS𝑎 ▷ scaled loss after one step

𝑤𝑠 ← 𝛼𝑤𝑠 + (1 − 𝛼)𝜔′
𝑎

𝑝(𝑠) ← probability updated with 𝑤𝑠
end while

The models are trained on four years of demand data from
this dataset, and evaluated on one year held out for valida-
tion. The features used in each are similar to Eisenach et al.
[4], Quenneville-Belair et al. [7], Wolff et al. [11]. They in-
clude static (e.g. product catalog fields), historical (e.g. past
demand), and future (e.g. promotions). We call the training
part of this dataset DT, and the validation and backtesting
part, DB.

We also validate on M5 [5, 6], a time series public dataset
consisting of sales data covering a time period outside of the
training window. It contains about 68 million sales for 3049
items across 10 stores in the US with date ranging from 2011-
01-29 and 2016-06-19. For these experiments, we aggregate
complete weeks from the week start on Sunday 2011-01-30 to
the week starting on Sunday 2016-06-12. We use one year as
evaluation, and refer to this out-of-sample validation dataset
as M5.

We compare MQ-CNN trained for 20 thousand steps, with
Uniform, SIS, DIS, and Goldilocks. Uniform simply takes
a segment uniformly at random, and then a product from
that segment uniformly at random. For Goldilocks, we exper-
imented with three temperatures: 1.0, 1.5, and 2.0. For each,
we use 100 segments for our experiment, that are automati-
cally assigned so as to give about the same total number of
units of demand per segment, in the training window. We

use 𝛼 = 0.1. We show in Table 1 a comparison of the final
validation losses, see Appendix C for the training trajectories.
We find that Goldilocks with temperature 2 performed best
on M5, the out-of-sample validation dataset. DIS rank second
on M5, as expected, given its similar behavior.

4 Conclusion and Future Work
We introduced a new active sampling bandit called Goldilocks
that samples across multiple tasks, here corresponding to
difference velocity groups of products, based on samples that
are not too hard, not too easy, but just right to learn. We
saw that the out-of-sample validation error on M5 was lowest
for Goldilocks with temperature 2. DIS ranked second on M5,
as expected given its similar behavior of dynamically putting
more emphasis on segments with larger errors.

For now, we assumed that ergodicity holds – where the
time average of one individual (or product) is equivalent to
the ensemble average across many individuals (or products).
This allowed us to focus on sampling across products with
their full history as is done with forking sequences [3, 4, 7, 11],
instead of sampling products and time windows. To test the
ergodicity assumption, a natural extension of this work is to
update the segmentation in a way that orders the products
first by their seasonality or price bands, then by their total
demand, and then continuing as before.
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Appendix A Mean
To recover the mean from an inverse of the cumulative density
function (CDF, the plot of Percentiles vs Quantiles), which
we denote 𝐹(𝑥). As noted in [1], we have the following identity

𝐸[𝑥] = ∫
∞

0
(1 − 𝐹(𝑥)) 𝑑𝑥 − ∫

0

−∞
𝐹(𝑥) 𝑑𝑥

= ∫
∞

0
(1 − 𝐹(𝑥)) 𝑑𝑥 = ∫

1

0
𝐹−1(𝑦) 𝑑𝑦

where we used integration by parts, non-negativity of the
distribution, and 𝐹(0) = 0. Therefore, to recover the expec-
tation of an interpolated distribution, we compute the area
under the curve of the inverse CDF (the plot of Quantiles
vs Percentiles). To approximate the mean when it exists, we
can then proceed with numerical integration.

For example, we could compute the sum of quantiles at
equally spaced percentiles from 0 to 0.99, and divide by 100
to get an approximation of the mean. This would thus assign
to each quantile a weight of 1/100. Asymptotically, as the
number of percentiles increase, the approximation converges
to the mean.

The weights mentioned in Section 1 (e.g. 70%, 30%) can be
used to sum the quantiles directly and provide an approximate
forecast of the mean.

Appendix B Goldilocks Temperature
The maximum of Equation (2) occurs at the midpoint be-
tween the roots,

𝛾−1𝑤min + 𝛾𝑤max
2

.

To find 𝛾 ≥ 1 making the maximum occur at 𝑤max, we solve

𝑤max =
𝛾−1𝑤min + 𝛾𝑤max

2
and get

𝛾 = 1 + √1 − 𝑤min/𝑤max.

We recall that 0 ≤ 𝑤min < 𝑤max, and, if 𝑤min is much less than
𝑤max, then 𝛾 ≈ 2.

Figure 1: The training trajectories of the WCRPS for the
validation datasets, DB and M5, confirm the best two of each
dataset from Table 1.

Appendix C Training Trajectories
We show in Figure 1 the training trajectories of the validation
WCRPS on both DB and M5 for SIS, DIS, and Goldilocks
with temperature 1.0, 1.5, 2.0.
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