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ABSTRACT
We consider the extreme multi-label text classification (XMC) prob-
lem: given an input text, return the most relevant labels from a large
label collection. For example, the input text could be a product de-
scription on Amazon.com and the labels could be product categories.
XMC is an important yet challenging problem in the NLP commu-
nity. Recently, deep pretrained transformer models have achieved
state-of-the-art performance on many NLP tasks including sen-
tence classification, albeit with small label sets. However, naively
applying deep transformer models to the XMC problem leads to
sub-optimal performance due to the large output space and the label
sparsity issue. In this paper, we propose X-Transformer, the first
scalable approach to fine-tuning deep transformer models for the
XMC problem. The proposed method achieves new state-of-the-art
results on four XMC benchmark datasets. In particular, on a Wiki
dataset with around 0.5 million labels, the prec@1 of X-Transformer
is 77.28%, a substantial improvement over state-of-the-art XMC ap-
proaches Parabel (linear) andAttentionXML (neural), which achieve
68.70% and 76.95% precision@1, respectively. We further apply X-
Transformer to a product2query dataset from Amazon and gained
10.7% relative improvement on prec@1 over Parabel.

CCS CONCEPTS
• Computing methodologies→ Machine learning; Natural lan-
guage processing; • Information systems→ Information retrieval.
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1 INTRODUCTION
We are interested in the Extreme multi-label text classification
(XMC) problem: given an input text instance, return the most rele-
vant labels from an enormous label collection, where the number
of labels could be in the millions or more. One can view the XMC
problem as learning a score function f : X ×Y → R, that maps an
(instance, label) pair (x, y) to a score f (x, y). The function f should
be optimized such that highly relevant (x, y) pairs have high scores,
whereas the irrelevant pairs have low scores. Many real-world ap-
plications are in this form. For example, in E-commerce dynamic
search advertising, x represents an item and y represents a bid
query on the market [20, 21]. In open-domain question answering,
x represents a question and y represents an evidence passage con-
taining the answer [4, 11]. In the PASCAL Large-Scale Hierarchical
Text Classification (LSHTC) challenge, x represents an article and y
represents a category of the Wikipedia hierarchical taxonomy [17].

XMC is essentially a text classification problem on an industrial
scale, which is one of the most important and fundamental topics in
machine learning and natural language processing (NLP) communi-
ties. Recently, deep pretrained Transformers, e.g., BERT [5], along
with its many successors such as XLNet [30] and RoBERTa [13],
have led to state-of-the-art performance on many tasks, such as
question answering, part-of-speech tagging, information retrieval,
and sentence classification with very few labels. Deep pretrained
Transformermodels induce powerful token-level and sentence-level
embeddings that can be rapidly fine-tuned on many downstream
NLP problems by adding a task-specific lightweight linear layer on
top of the transformer models.

However, how to successfully apply Transformer models to XMC
problems remains an open challenge, primarily due to the extremely
large output space and severe label sparsity issues. As a concrete
example, Table 1 compares the model size (in terms of the number
of model parameters) and GPU memory usage, when applying a 24-
layer XLNet model to a binary classification problem (e.g., the MNLI
dataset of GLUE [27]) versus its application to anXMCproblemwith
1 million labels. Note that the classifier for the MNLI problem and
XMC problem has a model size of 2K and 1025M, respectively. This
means that the latter is a much harder problem than the former from
the model optimization point of view. Additionally, in attempting
to solve the XMC problem, we run out of GPU memory even for a
single example mini-batch update. Table 1 gives the details of the
GPU memory usage in the training stages of one forward pass, one
backward pass and one optimization step, respectively.

In addition to the computational challenges, the large output
space in XMC is exacerbated by a severe label sparsity issue. The
left part of Figure 1 illustrates the “long-tailed” label distribution
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XLNet-large model (# params) (batch size, sequence length)=(1,128)
problem encoder classifier total load model +forward +backward +optimizer step

GLUE (MNLI) 361 M 2 K 361 M 2169 MB 2609 MB 3809 MB 6571 MB
XMC (1M) 361 M 1,025 M 1,386 M 6077 MB 6537 MB OOM OOM

Table 1: On the left of are themodel sizes (numbers of parameters) when applying the XLNet-largemodel to theMNLI problem
vs. the XMC (1M) problem; on the right is the GPU memory usage (in megabytes) in solving the two problems, respectively.
The results were obtained on a recent Nvidia 2080Ti GPU with 12GB memory. OOM stands for out-of-memory.

in the Wiki-500K data set [25]. Only 2% of the labels have more
than 100 training instances, while the remaining 98% are long-tail
labels with much fewer training instances. How to successfully
fine-tune Transformer models with such sparsely labeled data is a
tough question that has not been well-studied so far, to the best of
our knowledge.

Figure 1: On the left,Wiki-500K shows a long-tail distribution
of labels. Only 2.1% of the labels havemore than 100 training
instances, as indicated by the cyan blue regime. On the right
is the clusters distribution after our semantic label indexing
based on different label representations; 99.4% of the clusters
have more than 100 training instances, which mitigates the
data sparsity issue for fine-tuning of Transformer models.

Instead of fine-tuning deep Transformer models and dealing
with the bottleneck classifier layer, an alternative is to use a more
economical transfer learning paradigm as studied in the context
of word2vec [15], ELMo [19], and GPT [22]. For instance, ELMo
uses a (bi-directional LSTM) model pretrained on large unlabeled
text data to obtain contexualized word embeddings. When applying
ELMo on a downstream task, these word embeddings can be used as
input without adaptation. This is equivalent to freezing the ELMo
encoder, and fine-tuning the downstream task-specific model on
top of ELMo, which is much more efficient in terms of memory as
well as computation. However, such a benefit comes at the price of
limiting the model capacity from adapting the encoder, as we will
see in the experimental results in Section 4.

In this paper, we propose X-Transformer, a new approach that
overcomes the aforementioned issues, with successful fine-tuning
of deep Transformer models for the XMC problem. X-Transformer
consists of a Semantic Label Indexing component, a Deep Neural
Matching component, and an Ensemble Ranking component. First,
Semantic label Indexing (SLI) decomposes the original intractable
XMC problem into a set of feasible sub-problems of much smaller
output space via label clustering, which mitigates the label sparsity
issue as shown in the right part of Figure 1. Second, the Deep Neural

Matching component fine-tunes a Transformer model for each of
the SLI-induced XMC sub-problems, resulting in a better mapping
from the input text to the set of label clusters. Finally, the Ensemble
Ranking component is trained conditionally on the instance-to-
cluster assignment and neural embedding from the Transformer,
and is used to assemble scores derived from various SLI-induced
sub-problems for further performance improvement.

In our experiments, the proposed X-Transformer achieves new
state-of-the-art results on four XMC benchmarks and leads to im-
provement on two real-would XMC applications. On a Wiki dataset
with a half million labels, the precision@1 of X-Transformer reaches
77.28%, a substantial improvement over the well-established hierar-
chical label tree approach Parabel [20] (i.e., 68.70%) and the compet-
ing deep learning method AttentionXML [32] (i.e., 76.95%). Further-
more, X-Transformer also demonstrates great impact on the scalabil-
ity of deep Transformer models in real-world large applications. In
our application of X-Transformer to Amazon Product2Query prob-
lem that can be formulated as XMC, X-Transformer significantly
outperforms Parabel too. The dataset, experiment code, models are
available: https://github.com/OctoberChang/X-Transformer.

2 RELATEDWORK AND BACKGROUND
2.1 Extreme Multi-label Classification

Sparse LinearModels. To overcome computational issues, most
existing XMC algorithms use sparse TF-IDF features (or slight
variants), and leverage different partitioning techniques on the
label space to reduce complexity. For example, sparse linear one-vs-
all (OVA) methods such as DiSMEC [1], ProXML [2] and PPDSparse
[31] explore parallelism to speed up the algorithm and reduce the
model size by truncating model weights to encourage sparsity. OVA
approaches are also widely used as building blocks for many other
approaches, for example, in Parabel [20] and SLICE [7], linear OVA
classifiers with smaller output domains are used.

The efficiency and scalability of sparse linear models can be fur-
ther improved by incorporating different partitioning techniques
on the label spaces. For instance, Parabel [20] partitions the labels
through a balanced 2-means label tree using label features con-
structed from the instances. Recently, several approaches are pro-
posed to improve Parabel. Bonsai [9] relaxes two main constraints
in Parabel: 1) allowing multi-way instead of binary partitionings
of the label set at each intermediate node, and 2) removing strict
balancing constraints on the partitions. SLICE [7] considers build-
ing an approximate nearest neighbor (ANN) graph as an indexing
structure over the labels. For a given instance, the relevant labels
can be found quickly from the nearest neighbors of the instance
via the ANN graph.
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Deep Learning Approaches. Instead of using handcrafted TF-
IDF features which are hard to optimize for different downstream
XMC problems, deep learning approaches employ various neural
network architectures to extract semantic embeddings of the in-
put text. XML-CNN [12] employs one-dimensional Convolutional
neural networks along both sequence length and word embedding
dimension for representing text input. As a follow-up, SLICE con-
siders dense embedding from the supervised pre-trained XML-CNN
models as the input to its hierarchical linear models. More recently,
AttentionXML [32] uses BiLSTMs and label-aware attention as the
scoring function, and performs warm-up training of the models
with hierarchical label trees. In addition, AttentionXML consider
various negative sampling strategies on the label space to avoid
back-propagating the entire bottleneck classifier layer.

2.2 Transfer Learning Approaches in NLP
Recently, the NLP community has witnessed a dramatic paradigm
shift towards the “pre-training then fine-tuning” framework. One
of the pioneering works is BERT [5], whose pre-training objectives
are masked token prediction and next sentence prediction tasks.
After pre-training on large-scale unsupervised corpora such as
Wikipedia and BookCorpus, the Transformer model demonstrates
vast improvement over existing state-of-the-art when fine-tuned
on many NLP tasks such as the GLUE benchmark [27], named
entity recognition, and question answering. More advanced vari-
ants of the pre-trained Transformer models include XLNet [30] and
RoBERTa [13]. XLNet considers permutation language modeling as
the pre-training objective and two-stream self-attention for target-
aware token prediction. It is worth noting that the contextualized
token embeddings extracted from XLNet also demonstrate compet-
itive performance when fed into a task-specific downstream model
on large-scale retrieval problems. RoBERTa improves upon BERT
by using more robust optimization with large-batch size update,
and pre-training the model for longer till it truly converges.

However, transferring the success of these pre-trained Trans-
former models on the GLUE text classification to the XMC problem
is non-trivial, as we illustrated in Table 1. Before the emergence of
BERT-type end-to-end fine-tuning, the canonical way of transfer
learning in NLP perhaps comes from thewell-knownWord2Vec [15]
or GloVe [18] papers. Word2vec is a shallow two-layer neural net-
work that is trained to reconstruct the linguistic context of words.
GLoVe considers a matrix factorization objective to reconstruct the
global word-to-word co-occurrence in the corpus. A critical down-
side of Word2vec and GloVe is that the pre-trained word embed-
dings are not contextualized depending on the local surrounding
word. ELMo [19] and GPT2 [22] instead present contextualized
word embeddings by using large BiLSTM or Transformer models.
After the models are pre-trained, transfer learning can be easily
carried out by feeding these extracted word embeddings as input
to the downstream task-specific models. This is more efficient com-
pared to the BERT-like end-to-end additional fine-tuning of the
encoder, but comes at the expense of losing model expressiveness.
In the experimental results section, we show that using fixed word
embeddings from universal pre-trained models such as BERT is not
powerful enough for XMC problems.

2.3 Amazon Applications
Many challenging problems at Amazon amount to finding relevant
results from an enormous output space of potential candidates: for
example, suggesting keywords to advertisers starting new cam-
paigns on Amazon, predicting next queries a customer will type
based on the previous queries he/she typed. Here we discuss key-
word recommendation system for Amazon Sponsored Products,
as illustrations in Fig.2, and how it can be formulated as XMC
problems.

Keyword recommendation system. Keyword Recommenda-
tion Systems provide keyword suggestions for advertisers to create
campaigns. In order to maximize the return of investment for the
advertisers, the suggested keywords should be highly relevant to
their products so that the suggestions can lead to conversion. An
XMC model, when trained on an product-to-query dataset such as
product-query customer purchase records, can suggest queries that
are relevant to any given product by utilizing product information,
like title, description, brand, etc.

Figure 2: keyword recommendation system

3 PROPOSED METHOD: X-TRANSFORMER
3.1 Problem Formulation

Motivations. Given a training set D = {(xi , yi ) |xi ∈ X, yi ∈
{0, 1}L , i = 1, . . . ,N }, extreme multi-label classification aims to
learn a scoring function f that maps an input (or instance) xi and a
label l to a score f (xi , l ) ∈ R. The function f should be optimized
such that the score is high when yil = 1 (i.e., label l is relevant
to instance xi ) and the score is low when yil = 0. A simple one-
versus-all approach realizes the scoring function f as

f (x, l ) = wT
l ϕ (x)

where ϕ (x) represents an encoding and W = [w1, . . . ,wL]T ∈
RL×d is the classifier bottleneck layer. For convenience, we further
define the top-b prediction operator as

fb (x) = Top-b
( [
f (x, 1), . . . , f (x,L)

])
∈ {1, . . . ,L},

where fb (x) is an index set containing the top-b predicted labels.
As we pointed out in Table 1, it is not only very difficult to fine-tune
the Transformer encoders ϕT (x;θ ) together with the intractable
classifier layer W, but also extremely slow to compute the top-K
predicted labels efficiently.



Figure 3: The proposed X-Transformer framework. First, Semantic Label Indexing reduces the large output space. Transform-
ers are then fine-tuned on the XMC sub-problem that maps instances to label clusters. Finally, linear rankers are trained
conditionally on the clusters and Transformer’s output in order to re-rank the labels within the predicted clusters.

High-level Sketch. To this end, we propose X-Transformer as
a practical solution to fine-tune deep Transformer models on XMC
problems. Figure 3 summarizes our proposed framework.

In a nutshell, X-Transformer decomposes the intractable XMC
problem to a feasible sub-problem with a smaller output space,
which is induced from semantic label indexing, which clusters the
labels. We refer to this sub-problem as the neural matcher of the
following form:

д(x,k ) = wT
k ϕT (x), k = 1, . . . ,K (1)

where K is the number of clusters which is significantly smaller
than the original intractable XMC problem of size O (L). Finally,
X-Transformer currently uses a linear ranker that conditionally
depends on the embedding of transformer models and its top-b
predicted clusters дb (x).

f (x, l ) =



σ
(
д(x, cl ),h(x, l )

)
, if cl ∈ дb (x),

−∞, otherwise.
(2)

Here cl ∈ {1, . . . ,K } represents the cluster index of label l , д(x, cl )
is the neural matcher realized by deep pre-trained Transformers,
h(x, l ) is the linear ranker, and σ () is a non-linear activation func-
tion to combine the final scores from д and h. We now further
introduce each of these three components in detail.

3.2 Semantic Label Indexing
Inducing latent clusters with semantic meaning brings several ad-
vantages to our framework. We can perform a clustering of labels
that can be represented by a label-to-cluster assignment matrix
C ∈ {0, 1}L×K where clk = 1 means label l belongs to cluster k . The
number of clusters K is typically set to be much smaller than the
original label space L. Deep Transformer models are fine-tuned on
the induced XMC sub-problem where the output space is of size K ,
which significantly reduces the computational cost and avoids the
label sparsity issue in Figure 1. Furthermore, the label clustering
also plays a crucial role in the linear ranker h(x, l ). For example,
only labels within a cluster are used to construct negative instances
for training the ranker. In prediction, ranking is only performed
for labels within a few clusters predicted by our deep Transformer
models.

Given a label representation, we cluster theL labels hierarchically
to form a hierarchical label tree with K leaf nodes [7, 9, 20, 32]. For
simplicity, we consider binary balanced hierarchical trees [14, 20]
as the default setting. Due to the lack of a direct and informative
representation of the labels, the indexing system for XMC may be
noisy. Fortunately, the instances in XMC are typically very informa-
tive. Therefore, we can utilize the rich information of the instances
to build a strong matching system as well as a strong ranker to
compensate for the indexing system.

Label embedding via label text. Given text information about
labels, such as a short description of categories in the Wikipedia
dataset or search queries on the Amazon shopping website, we can
use this short text to represent the labels. In this work, we use a
pretrained XLNet [19] to represent the words in the label. The label
embedding is the mean pooling of all XLNet word embeddings in
the label text. Specifically, the label embedding of label l is

ψtext-emb (l ) =
1

|text(l ) |
∑

w ∈text (l )

ϕxlnet (w )

where ϕxlnet (w ) is the hidden embedding of tokenw in label l .

Label embedding via embedding of positive instances. The
short text of labels may not contain sufficient information and is
often ambiguous and noisy for some XMC datasets. Therefore we
can derive a label representation from embedding of its positive
instances. Specifically, the label embedding of label l is

ψpifa-tfidf (l ) = vl /∥vl ∥, vl =
∑

i :yil=1
ϕtf-idf (xi ), l = 1, . . . ,L,

ψpifa-neural (l ) = vl /∥vl ∥, vl =
∑

i :yil=1
ϕxlnet (xi ), l = 1, . . . ,L.

We refer to this type of label embedding as Positive Instance Feature
Aggregation (PIFA), which is used in recent state-of-the-art XMC
methods [7, 9, 20, 32]. Note that X-Transformer is not limited by
the above mentioned label representations; indeed in applications
where labels encode richer meta information such as a graph, we
can use label representations derived from graph clustering and
graph convolution.



3.3 Deep Transformer as Neural Matcher
After Semantic Label Indexing (SLI), the original intractable XMC
problem morphs to a feasible XMC sub-problem with a much
smaller output space of size K . See Table 2 for the exact K that
we used for each XMC data set. Specifically, the deep Transformer
model now aims to map each text instance to the assigned rel-
evant clusters. The induced instance-to-cluster assignment ma-
trix is M = YC = [m1, . . . ,mi , . . . ,mN ]T ∈ {0, 1}N×K where
Y ∈ RN×L is the original instance-to-label assignment matrix and
C ∈ RL×K is the label-to-cluster assignment matrix provided by
the SLI stage. The goal now becomes fine-tuning deep Transformer
models д(x,k ;W,θ ) on {(xi ,mi ) |i = 1, . . . ,N } such that

min
W,θ

1
NK

N∑
i=1

K∑
k=1

max
(
0, 1 − M̃ikд(x,k ;W,θ )

)2
, (3)

s.t. д(x,k ;W,θ ) = wT
k ϕtransformer (x),

where M̃ik = 2Mik − 1 ∈ {−1, 1}, W = [w1, . . . ,wK ]T ∈ RK×d ,
and ϕtransformer (x) ∈ Rd is the embedding from the Transformers.
We use the squared-hinge loss in the matching objective (3) as it
has shown better ranking performance as shown in [31]. Next, we
discuss engineering optimizations and implementation details that
considerably improve training efficiency and model performance.

Pretrained Transformers. We consider three state-of-the-art
pre-trained Transformer-large-cased models (i.e., 24 layers with
case-sensitive vocabulary) to fine-tune, namely BERT [5], XLNet [30],
and RoBERTa [13]. The instance embedding ϕ (x) is the "[CLS]"-like
hidden states from the last layer of BERT, RoBERTa and XLNet.
Computationally speaking, BERT and RoBERTa are similar while
XLNet is nearly 1.8 times slower. In terms of performance on XMC
tasks, we found RoBERTa and XLNet to be slightly better than
BERT, but the gap is not as significant as in the GLUE benchmark.
More concrete analysis is available in Section 4.

It is possible to use Automatic Mixed Precision (AMP) between
Float32 and Float16 for model fine-tuning, which can considerably
reduce the model’s GPU memory usage and training speed. How-
ever, we used Float32 for all the experiments as our initial trials of
training Transformers in AMPmode often led to unstable numerical
results for the large-scale XMC datasetWiki-500K.

Input Sequence Length. The time and space complexity of the
Transformer scales quadratically with the input sequence length,
i.e., O (T 2) [26], where T = len(x) is the number of tokenized sub-
words in the instance x. Using smaller T reduces not only the GPU
memory usage that supports using larger batch size, but also in-
creases the training speed. For example, BERT first pre-trains on
inputs of sequence length 128 for 90% of the optimization, and the
remaining 10% of optimization steps on inputs of sequence length
512 [5]. Interestingly, we observe that the model fine-tuned with
sequence length 128 v.s. sequence length 512 does not differ signif-
icantly in the downstream XMC ranking performance. Thus, we
fix the input sequence length to be T = 128 for model fine-tuning,
which significantly speeds up the training time. It would be interest-
ing to see if we can bootstrap training the Transformer models from
shorter sequence length and ramp up to larger sequence length
(e.g., 32, 64, 128, 256), but we leave that as future work.

Figure 4: Training rankers with the Teacher Forcing Nega-
tives(TFN) strategy. For illustration, we have N = 6 instances, L = 20
labels,K = 4 label clusters, andM ∈ {0, 1}6×4 denotes the instance-to-
cluster assignment matrix. For example, Cluster 1 with the orange
color contains the first 5 labels. The nonzeros of the first column of
M correspond to {x1, x2, x6 }, which are instances with at least one
positive label contained in Cluster 1. For each label in the first clus-
ter, the ranker using Teacher Forcing Negatives (TFN) only consid-
ers these three instances. Matcher-aware Negatives (MAN) strategy
is introduced in Section 3.4 to further add improved hard negatives
to enhance the TFN strategy.

Bootstrapping Label Clustering and Ranking. After fine-
tuning a deep Transformer model, we have powerful instance rep-
resentation ϕtransformer (x) that can be used to bootstrap semantic
label clustering and ranking. For label clustering, the embedding
label l can be constructed by aggregating the embeddings of its
positive instances. For ranking, the fine-tuned Transformer embed-
ding can be concatenated with the sparse TF-IDF vector for better
modeling power. See details in the ablation study Table 5.

3.4 Ranking
After the matching step, a small subset of label clusters is retrieved.
The goal of the ranker is to model the relevance between the in-
stance and the labels from the retrieved clusters. Formally, given a
label l and an instance x, we use a linear one-vs-all (OVA) classifier
to parameterize the ranker h(x, l ) = wT

l ϕ (x) and train it with a
binary loss. For each label, naively estimating the weightswl based
on all instances {(xi ,Yi,l )}Ni=1 takes O (N ), which is too expensive.
Instead, we consider two sampling strategies that only include hard
negative instances to reduce the computational complexity: Teacher
Forcing Negatives (TFN) and Matcher-aware Negatives (MAN).

Teacher Forcing Negatives (TFN). for each label l , we only
include a subset of instances induced by the instance-to-cluster
assignment matrix M = YC. In particular, in addition to the pos-
itive instances corresponding to the l-th label, we only include
instances whose labels belong to the same cluster as the l-th label,
i.e., {(xi ,yi,l : i ∈ {i : Mi,cl = 1}}. In Figure 4, we illustrate the
TFN strategy with a toy example. As the first five labels belong to
Cluster 1, and only {x1, x2, x6} contain a positive label within this
cluster, we only consider this subset of instances to train a binary
classifier for each of the first five labels.

Matcher-aware Negatives (MAN). The Teacher Forcing strat-
egy only includes negative instances which are hard from the
“teacher”, i.e., the ground truth instance-to-clustering assignment
matrixM used to train our neural matcher. However,M is indepen-
dent from the performance of our neural matcher. Thus, training
ranker with the TFN strategy alone might introduce an exposure



bias issue, i.e., training-inference discrepancy. Instead, we also con-
sider including matcher-aware hard negatives for each label. In
particular, we can use the instance-to-cluster prediction matrix
M̂ ∈ {0, 1}N×K from our neural matcher, where the nonzeros of
the i-th row of M̂ correspond to the top-b predicted clusters from
дb (xi ). In practice, we observe that a combination of TFN and MAN
yields the best performance, i.e., using M′ = YC + M̂ to include
hard negatives for each label. See Table 5 for a detailed Ablation
study.

For the ranker input representation, we not only leverage the
TF-IDF features ϕtf-idf (x), but also exploit the neural embeddings
ϕneural (x) from either the pre-trained or fine-tuned Transformer
model. After the ranker is trained, the final ranking scores are
computed via (2). We can further ensemble the scores from different
X-Transformer models, which are trained on different semantic-
aware label clusters or different pre-trained Transformer models
such as BERT, RoBERTa and XLNet.

4 EMPIRICAL RESULTS
The experiment code, including datasets and fine-tuned models are
publicly available. 1

4.1 Datasets and Preprocessing
XMCBenchmark Data. We consider four multi-label text clas-

sification data sets used in AttentionXML [32] for which we had
access to the raw text representation, namely Eurlex-4K, Wiki10-
31K, AmazonCat-13K and Wiki-500K. Summary statistics of the
data sets are given in Table 2. We follow the training and test split
of [32] and set aside 10% of the training instances as the validation
set for hyperparameter tuning.

Amazon Applications. We consider an internal Amazon data
set, namely Prod2Query-1M, which consists of 14 million instances
(products) and 1 million labels (queries) where the label is positive
if a product is clicked at least once as a result of a search query. We
divide the data set into 12.5 million training samples, 0.8 million
validation samples and 0.7 million testing samples.

4.2 Algorithms and Hyperparameters
ComparingMethods. We compare our proposedX-Transformer

method to the most representative and state-of-the-art XMC meth-
ods including the embedding-based AnnexML [24]; one-versus-all
DiSMEC [1]; instance tree based PfastreXML [8]; label tree based
Parabel [20], eXtremeText [29], Bonsai [9]; and deep learning based
XML-CNN [12],AttentionXML [32] methods. The results of all these
baseline methods are obtained from [32, Table 3]. For evaluation
with other XMC approaches that have not released their code or
are difficult to reproduce, we have a detailed comparison in Table 6.

Evaluation Metrics. We evaluate all methods with example-
based ranking measures including Precision@k (k = 1, 3, 5) and
Recall@k (k = 1, 3, 5), which are widely used in the XMC litera-
ture [3, 8, 20, 21, 23].

Hyperparameters. ForX-Transformer, all hyperparameters are
chosen from the held-out validation set. The number of clusters
1https://github.com/OctoberChang/X-Transformer

are listed in Table 2, which are consistent with the Parabel setting
for fair comparison. We consider the 24 layers cased models of
BERT [5], RoBERTa [13], and XLNet [30] using the Pytorch imple-
mentation from HuggingFace Transformers [28]2. For fine-tuning
the Transformer models, we set the input sequence length to be
128 for efficiency, and the batch size per GPU to be 16 along with
gradient accumulation step of 4, and use 4 GPUs per model. This
together amounts to a batch size of 256 in total. We use Adam [10]
with linear warmup scheduling as the optimizer where the learn-
ing rate is chosen from {4, 5, 6, 8} × 10−5. Models are trained until
convergence, which takes 1k, 1.4k, 20k, 50k optimization steps for
Eurlex-4K,Wiki10-31K, AmazonCat-13K,Wiki-500K, respectively.

4.3 Results on Public XMC Benchmark Data
Table 3 compares the proposed X-Transformer with the most repre-
sentative SOTA XMC methods on four benchmark datasets. Follow-
ing previous XMCworks, we focus on top predictions by presenting
Precision@k, where k = 1, 3, 5.

The proposed X-Transformer outperforms all XMC methods, ex-
cept being slightly worse than AttentionXML in terms of P@3 and
P@5 on the Wiki-500K dataset. We also compare X-Transformer
against linear baselines using Parabel model with three different
input representations: (1) ϕpre-xlnet denotes pretrained XLNet em-
beddings (2) ϕtfidf denotes TF-IDF embeddings (3) ϕfnt-xlnet ⊕ ϕtfidf
denotes finetuned XLNet embeddings concatenated with TF-IDF
embeeddings. We clearly see that the performance of baseline (1)
is significantly worse. This suggests that the ELMo-style transfer
learning, though efficient, is not powerful to achieve good perfor-
mance for XMC problems. The performance of baseline (2) is similar
to that of Parabel, while baseline (3) further improves performance
due to the use of fine-tuned XLNet embeddings.

AttentionXML [32] is a very recent deep learning method that
uses BiLSTM and label-aware attention layer to model the scoring
function. They also leverage hierarchical label trees to recursively
warm-start the models and use hard negative sampling techniques
to avoid using the entire classifier bottleneck layer. Some of the
techniques in AttentionXML are complementary to our proposed X-
Transformer, and it would be interesting to see how X-Transformer
can be improved from those techniques.

4.4 Results on Amazon Applications.
Recall that the Amazon data consists of 12 million products and
1 million queries along with product-query relevance. We treat
queries as output labels and product title as input.We use the default
Parabel method (using TFIDF features) as the baseline method and
show X-Transformer’s relative improvement of precision and recall
over the baseline in Table 4.

4.5 Ablation Study
We carefully conduct an ablation study of X-Transformer as shown
in Table 5. We analyze the X-Transformer framework in terms of its
four components: indexing, matching, ranker input representation,
and training negative-sampling training algorithm. The configu-
ration Index 9 represents the final best configuration as reported

2https://github.com/huggingface/transformers

https://github.com/OctoberChang/X-Transformer
https://github.com/huggingface/transformers


Dataset ntrn ntst |Dtrn | |Dtrn | L L̄ n̄ K

Eurlex-4K 15,449 3,865 19,166,707 4,741,799 3,956 5.30 20.79 64
Wiki10-31K 14,146 6,616 29,603,208 13,513,133 30,938 18.64 8.52 512

AmazonCat-13K 1,186,239 306,782 250,940,894 64,755,034 13,330 5.04 448.57 256
Wiki-500K 1,779,881 769,421 1,463,197,965 632,463,513 501,070 4.75 16.86 8192

Table 2: Data Statistics. ntrn ,ntst refer to the number of instances in the training and test sets, respectively. |Dtrn |, |Dtst | refer
to the number of word tokens in the training and test corpus, respectively. L is the number of labels, L̄ the average number of
labels per instance, n̄ the average number of instances per label, and K is the number of clusters. The four benchmark datasets
are the same as AttentionXML [32] for fair comparison.

Methods Prec@1 Prec@3 Prec@5 Methods Prec@1 Prec@3 Prec@5
Eurlex-4K Wiki10-31K

AnnexML [24] 79.66 64.94 53.52 AnnexML [24] 86.46 74.28 64.20
DiSMEC [1] 83.21 70.39 58.73 DiSMEC [1] 84.13 74.72 65.94

PfastreXML [8] 73.14 60.16 50.54 PfastreXML [8] 83.57 68.61 59.10
Parabel [20] 82.12 68.91 57.89 Parabel [20] 84.19 72.46 63.37

eXtremeText [29] 79.17 66.80 56.09 eXtremeText [29] 83.66 73.28 64.51
Bonsai [9] 82.30 69.55 58.35 Bonsai [9] 84.52 73.76 64.69

MLC2seq [16] 62.77 59.06 51.32 MLC2seq [16] 80.79 58.59 54.66
XML-CNN [12] 75.32 60.14 49.21 XML-CNN [12] 81.41 66.23 56.11

AttentionXML [32] 87.12 73.99 61.92 AttentionXML [32] 87.47 78.48 69.37
ϕpre-xlnet + Parabel 33.53 26.71 22.15 ϕpre-xlnet + Parabel 81.77 64.86 54.49
ϕtfidf + Parabel 81.71 69.15 58.11 ϕtfidf + Parabel 84.27 73.20 63.66

ϕfnt-xlnet ⊕ ϕtfidf + Parabel 84.09 71.50 60.12 ϕfnt-xlnet ⊕ ϕtfidf + Parabel 87.35 78.24 68.62
X-Transformer 87.22 75.12 62.90 X-Transformer 88.51 78.71 69.62

AmazonCat-13K Wiki-500K
AnnexML [24] 93.54 78.36 63.30 AnnexML [24] 64.22 43.15 32.79
DiSMEC [1] 93.81 79.08 64.06 DiSMEC [1] 70.21 50.57 39.68

PfastreXML [8] 91.75 77.97 63.68 PfastreXML [8] 56.25 37.32 28.16
Parabel [20] 93.02 79.14 64.51 Parabel [20] 68.70 49.57 38.64

eXtremeText [29] 92.50 78.12 63.51 eXtremeText [29] 65.17 46.32 36.15
Bonsai [9] 92.98 79.13 64.46 Bonsai [9] 69.26 49.80 38.83

MLC2seq [16] 94.26 69.45 57.55 MLC2seq [16] - - -
XML-CNN [12] 93.26 77.06 61.40 XML-CNN [12] - - -

AttentionXML [32] 95.92 82.41 67.31 AttentionXML [32] 76.95 58.42 46.14

ϕpre-xlnet + Parabel 80.96 63.92 50.72 ϕpre-xlnet + Parabel 31.83 20.24 15.76
ϕtfidf + Parabel 92.81 78.99 64.31 ϕtfidf + Parabel 68.75 49.54 38.92

ϕfnt-xlnet ⊕ ϕtfidf + Parabel 95.33 82.77 67.66 ϕfnt-xlnet ⊕ ϕtfidf + Parabel 75.57 55.12 43.31
X-Transformer 96.70 83.85 68.58 X-Transformer 77.28 57.47 45.31

Table 3: Comparing X-Transformer against state-of-the-art XMCmethods on Eurlex-4K,Wiki10-31K, AmazonCat-13K, andWiki-500K.
The baselines’ results are from [32, Table 3]. Note thatMLC2seq and XML-CNN are not scalable onWiki-500K. We also present
linear baselines (Parabel) with three input representations. Specifically, ϕpre-xlnet denotes pre-trained XLNet embeddings, ϕtfidf
denotes TF-IDF embeddings, ϕfnt-xlnet ⊕ ϕtfidf denotes fine-tuned XLNet embeddings concatenate with TF-IDF embeddings.

Precision Recall
Methods @1 @5 @10 @1 @5 @10

X-Transformer 10.7% 7.4% 6.6% 12.0% 4.9% 2.8%

Table 4: Relative improvement over Parabel on the
Prod2Query data set.

in Table 3. There are four takeaway messages from this ablation
study, and we describe them in the following four paragraphs.

RankerRepresentation andTraining. Config. ID 0, 1, 2 shows
the effect of input representation and training strategy for the rank-
ing. The benefit of using instance embedding from fine-tuned trans-
formers can be seen from config. ID 0 to 1. In addition, from ID 1
to 2, we observe that using Teacher Forcing Negatives (TFN) is not
enough for training the ranker, as it could suffer from the exposure



Dataset Config. ID X-Transformer Ablation Configuration Evaluation Metric
indexing matching ranker input negative-sampling P@1 P@3 P@5 R@1 R@3 R@5

Eurlex-4K

0 pifa-tfidf BERT ϕtfidf (x) TFN 83.93 70.59 58.69 17.05 42.08 57.14
1 pifa-tfidf BERT ϕtfidf (x) ⊕ ϕneural (x) TFN 85.02 71.83 59.87 17.21 42.79 58.30
2 pifa-tfidf BERT ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 85.51 72.95 60.83 17.32 43.45 59.21
3 pifa-tfidf RoBERTa ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 85.33 72.89 60.79 17.32 43.39 59.16
4 pifa-tfidf XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 85.07 72.75 60.69 17.25 43.29 59.01
5 pifa-neural XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 84.81 72.39 60.38 17.19 42.98 58.70
6 text-emb XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 85.25 72.76 60.20 17.29 43.25 58.54
7 all XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 86.55 74.24 61.96 17.54 44.16 60.24
8 pifa-neural all ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 85.92 73.43 61.53 17.40 43.69 59.86
9 all all ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 87.22 75.12 62.90 17.69 44.73 61.17

Wiki-500K

0 pifa-tfidf BERT ϕtfidf (x) TFN 69.52 49.87 38.71 22.30 40.62 48.65
1 pifa-tfidf BERT ϕtfidf (x) ⊕ ϕneural (x) TFN 71.90 51.58 40.10 23.27 42.14 50.42
2 pifa-tfidf BERT ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 74.68 53.64 41.50 24.56 44.26 52.50
3 pifa-tfidf RoBERTa ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 75.40 54.32 42.06 24.85 44.93 53.30
4 pifa-tfidf XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 75.45 54.50 42.24 24.81 45.00 53.44
5 pifa-neural XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 76.34 55.50 43.04 25.15 45.88 54.53
6 text-emb XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 74.12 52.85 40.53 24.18 43.30 50.98
7 all XLNet ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 75.85 56.08 44.24 24.80 46.36 56.35
8 pifa-neural all ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 77.44 56.84 44.37 25.61 47.18 56.55
9 all all ϕtfidf (x) ⊕ ϕneural (x) TFN + MAN 77.28 57.47 45.31 25.48 47.82 57.95

Table 5: Ablation study of X-Transformer on Eurlex-4K andWiki-500K data sets. We outline four take away messages: (1) Config.
ID= {0, 1, 2} demonstrates better performance by using Matcher-aware Negatives (MAN) and Neural embedding for training
the rankers; (2) Config. ID= {2, 3, 4} suggests that, performance-wise, XLNet is similar to RoBERTa, and slightly better than
BERT; (3) Config. ID={4, 5, 6}manifests the importance of label clusters induced fromdifferent label representations. (4) Config.
ID={7, 8, 9} indicates the effect of ensembling various configuration of the models.

bias of only using the ground truth clustering assignment, but ig-
nores the hard negatives mistakenly produced by the Transformer
models. Note that techniques such as adding Matcher-aware neg-
atives (MAN) from previous model’s prediction to bootstrap the
next level’s model training is also used in AttentionXML [32].

Different Transformer Models. Next, we analyze how the
three different Transformer models (i.e., BERT, RoBERTa, XLNet)
affect the performance, as shown in Config. ID 2, 3, 4. For Wiki-
500K, we observe that the XLNet and RoBERTa are generally more
powerful than the BERT models. On the other hand, such an ad-
vantage is not clear for Eurlex-4K, possibly due to the nature of the
data set.

Label Representation for Clustering. The importance of dif-
ferent label representation for clustering is demonstrated in Config.
ID 4, 5, 6. For Eurlex-4K, we see that using label text embedding
as representation (i.e. text-emb) leads to the strong performance
compared to pifa-tfidf (id 4) and pifa-neural (id 5). In contrast, pifa-
tfidf becomes the best performing representation on theWiki-500K
dataset. This phenomenon could be due to the label text ofWiki-
500K being more noisy compared to Eurlex-4K, which deteriorates
the label clustering results on Wiki-500K.

Ensemble Ranking. Finally, we show the advantage of ensem-
bing prediction from different models as shown in Config. ID 7, 8, 9.
For Eurlex-4K, combining predictions from different label represen-
tations (ID 7) is better than from different Transformer models (ID
8). Combining all (ID 9) leads to our final model, X-Transformer.

4.6 Cross-Paper Comparisons
Many XMC approaches have been proposed recently. However, it
is sometimes difficult to compare metrics directly from different pa-
pers. For example, the P@1 of Parabel onWiki-500K is 59.34% in [7,
Table 2] and 68.52% in [20, Table 2], but we see 68.70% in Table 3.
The inconsistency may be due to differences in data processing,
input representation, or other reasons. We propose an approach to
calibrate these numbers so that various methods can be compared
in a more principled way. In particular, for each metricm(·), we use
the relative improvement over a common anchor method, which is
set to be Parabel as it is widely used in the literature. For a compet-
ing method X with a metricm(X) on a data set reported in a paper,
we can compute the relative improvement over Parabel as follows:
m (X)−m (Parabel)

m (Parabel) × 100%, wherem(Parabel) is the metric obtained
by Parabel on the same data set in the same paper. Following the
above approach, we include a variety of XMC approaches in our
comparison. We report the relative improvement of various meth-
ods on two commonly used data sets, Eurlex-4K and Wiki-500K, in
Table 6. We can clearly observe that X-Transformer brings the most
significant improvement over Parabel and SLICE.

5 CONCLUSIONS
In this paper, we propose X-Transformer, the first scalable frame-
work to fine-tune Deep Transformer models that improves state-of-
the-art XMC methods on four XMC benchmark data sets. We fur-
ther applied X-Transformer to a real-life application, product2query
prediction, showing significant improvement over the competitive
linear models, Parabel.



Eurlex-4K Wiki-500K

Method Source
Relative Improvement

Method Source
Relative Improvement

over Parabel (%) over Parabel (%)
Prec@1 Prec@3 Prec@5 Prec@1 Prec@3 Prec@5

X-Transformer Table 3 +6.27% +9.08% +8.55% X-Transformer Table 3 +12.49% +15.94% +17.26%
SLICE [7, Table 2] +4.27% +3.34% +3.11% SLICE [7, Table 2] +5.53% +7.02% +7.56%
GLaS [6, Table 3] -5.18% -5.48% -5.34% GLaS [6, Table 3] +4.77% +3.37% +4.27%

ProXML [2, Table 5] +3.86% +2.90% +2.43% ProXML [2, Table 5] +2.22% +0.82% + 2.92%
PPD-Sparse [20, Table 2] +1.92% +2.93% +2.92% PPD-Sparse [20, Table 2] +2.39% +2.33% + 2.88%

SLEEC [9, Table 2] -3.53% -6.40% -9.04% SLEEC [9, Table 2] -29.84% -40.73% -45.08%
Table 6: Comparison of Relative Improvement over Parabel. The relative improvement for each state-of-the-art (SOTA)method
is computed based on the metrics reported from its original paper as denoted in the Source column.
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