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Abstract

Recent open-domain TableQA models are typi-
cally implemented as retriever-reader pipelines.
The retriever component is usually a variant
of the Dense Passage Retriever, which com-
putes the similarities between questions and
tables based on a single representation of each.
These fixed vectors can be insufficient to cap-
ture fine-grained features of potentially very
big tables with heterogeneous row/column in-
formation. We address this limitation by 1) ap-
plying late interaction models which enforce a
finer-grained interaction between question and
table embeddings at retrieval time. In addition,
we 2) incorporate a joint training scheme of the
retriever and reader with explicit table-level sig-
nals, and 3) embed a binary relevance token as
a prefix to the answer generated by the reader,
so we can determine at inference time whether
the table used to answer the question is reliable
and filter accordingly. The combined strategies
set a new state-to-the-art performance on two
public open-domain TableQA datasets.

1 Introduction

Tabular data is ubiquitous on the Web. Open-
domain Table Question Answering (TableQA), the
task of answering questions grounded in tables, is
increasingly attracting attention of both public and
commercial research, for its value in real-world
applications. Research TableQA pipelines are typ-
ically implemented with two components: a re-
triever and a reader. The retriever chooses a small
set from the entire pool of table candidates, while
the reader generates answers processing each ta-
ble candidate. State-of-the-art implementations use
transformer-based models for both components. In
particular, the retriever is built with variants of
Dense Passage Retriever (Karpukhin et al., 2020,
DPR), which computes question-table similarity by
using single vector representations of the question
and the table. Retriever and reader can be trained
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separately (Herzig et al., 2021) or jointly (Pan
et al., 2022) via Retrieval Augmented Generation
loss (Lewis et al., 2020b, RAG). We observe three
limitations which we address in this paper.

First, a table can be very large and might contain
heterogeneous information across rows/columns;
encoding into a fixed size vector risks information
loss, which can have an impact in QA quality. One
way to alleviate this issue is to replace DPR with a
Latent Interaction (LI) model, which encodes text
into token-level representations. In particular, we
find ColBERT (Khattab and Zaharia, 2020) to be
very effective, even if not pretrained for tables.

Second, RAG uses only an implicit signal to
guide the retriever. Recently, Lin and Byrne (2022)
proposed RAGE loss (Retrieval Augmented Gener-
ation with Explicit Signals) for visual QA, which
in our setting rewards the retriever with table-level
signals from the reader model in joint training.

Third, we observe empirically that the reader
does not always rank answers coming from the
gold table at the top. As our reader is a sequence-to-
sequence model, we propose a simple modification
to the training data: we prepend binary relevance
tokens (‘yes/no’) to the answer itself. The reader
learns to generate a first token indicating whether
the table is relevant to the question or not.

Using these techniques, we build an end-to-end
framework, LI-RAGE, and achieve state-of-the-
art results on two benchmarks for open-domain
TableQA, NQ-TABLES (Herzig et al., 2021) and
E2E-WTQ (Pan et al., 2021). 1

2 Related Work

While open-domain TableQA is yet a relatively un-
explored problem, with only a few applications
in the past couple of years, there has been exten-
sive work on table retrieval and TableQA sepa-
rately. In table retrieval, recent advances in ma-

1We make our code available at: https://github.com/
amazon-science/robust-tableqa
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chine learning have enabled extracting deep fea-
tures for tables with Transformers (Vaswani et al.,
2017), by designing models to parse complex tab-
ular structure (Herzig et al., 2021; Wang et al.,
2021), or by simply linearizing tables with inter-
leaving tokens to preserve its structure (Pan et al.,
2022; Wang et al., 2022). In TableQA, until re-
cently researchers assumed gold tables were given
and focused on developing models that understood
and answered questions over tables, i.e. the read-
ers. Earlier models generated commands in logical
forms (e.g. SQL queries) that were executable over
tables (Yu et al., 2018; Lin et al., 2019; Xu et al.,
2018), while recent state-of-the-art models directly
predict the answers from the input question and
table by either classification (Herzig et al., 2020;
Yang et al., 2022, TaPas) or autoregressive gener-
ation (Liu et al., 2022, TaPEx). Following these
advances, in open-domain TableQA the best per-
forming systems are based on a retriever-reader
pipeline (Herzig et al., 2021; Pan et al., 2022).
Herzig et al. (2021, DTR) leverages TaPas (Herzig
et al., 2020) to both initialize a DPR-like retriever
and the reader. T-RAG (Pan et al., 2022) uses DPR
as retriever of rows/columns by decomposing the
table and generates the answer via a sequence-to-
sequence reader (Lewis et al., 2020a), applying the
RAG loss to refine the retriever with implicit sig-
nals during end-to-end TableQA fine-tuning. Un-
like DTR and T-RAG, CLTR (Pan et al., 2021)
employs only retrieval of rows and columns and ob-
tains the answer cell by intersecting the top-scored
ones. In this work we focus mainly on the retriever,
and unlike previous work that relies on single vec-
tor embeddings, we leverage late interaction re-
trievers (Khattab and Zaharia, 2020) to achieve a
finer-grained interaction between questions and ta-
bles. In contrast to T-RAG and CLTR, we do not
need to decompose the table into rows and columns,
but retrieve a whole table from the corpus, ensuring
that the reader is given all the relevant information.
In addition, we explore different techniques for
explicitly refining the retriever during end-to-end
TableQA achieving superior performance.

3 Methodology

Given a question q, the tasks are to find the gold
table t∗ from a table corpus T, i.e. table retrieval
(§ 3.1), and to derive the answer denotations S (1
or more cells from the table), i.e. question answer-
ing over the retrieved tables (§ 3.2). We assume

that labeled datasets consisting of triples {(q, S,
t∗)} are available to us. We flatten the tables into
sequences with interleaving special tokens that en-
code its structure (see Appendix A).

3.1 Table Retrieval

In order to exploit question-table similarity at a
finer-grained level than when using DPR models,
we leverage LI models to encode and retrieve tables
for a question. We use ColBERT, which consists
of a question encoder Fq and a table encoder Ft, to
encode questions and tables at the token level:

Q = Fq(q) ∈ Rlq×d;T = Ft(t) ∈ Rlt×d, (1)

where lq and lt are input token lengths of q and t.
The relevance score accounts for the interactions
between all question and table token embeddings:

r(q, t) =

lq∑
i=1

lt
max
j=1

QiT
⊤
j (2)

LI models extract multi-dimensional question/table
embeddings and token-level similarity, as opposed
to finding the similarity of single embeddings for
the whole question/table in DPR, thus capturing a
finer-grained interaction between them.

To train the model we exploit the gold (positive)
table t∗ for each question q, i.e. explicitly consid-
ering the table-level ground truth. We use in-batch
negative sampling for training, per Karpukhin et al.
(2020). All documents in a training batch other
than t∗ are considered negative for q, and denoted
as N(q). We train with the contrastive loss LCL:

−
∑
(q,t∗)

log
exp (r(q, t∗))

exp (r(q, t∗)) +
∑

z∈N(q)

exp (r(q, z))
(3)

To this end, for each q, the retriever outputs
K top-scoring tables {tk}Kk=1. Finally, following
RAG, we obtain their (approximate2) conditional
probability pθ(·|q) with the retriever parameters θ:

pθ(tk|q) =
exp(r(q, tk))∑K
j=1 exp(r(q, tj))

(4)

3.2 Retrieval-based TableQA

For the TableQA task we make use of a sequence-
to-sequence Transformer-based model that directly

2because we sum over the top-K tables instead of all tables,
assuming their probabilities are small and irrelevant.



produces an answer for a given question and table.
The TableQA model pϕ takes as input a sequence
composed of the question q and each of the re-
trieved tables tk as described in §3.1, and generates
an answer yk for each input table tk:

yk = argmax
y

pϕ(y|q, tk) (5)

Finally, the model returns the answer associated
with the highest probability/confidence:

ŷ, t̂ = argmax
y,tk

pϕ(y|q, tk) (6)

3.3 Joint Training of Retrieval and TableQA
We train both modules jointly using a composi-
tional loss (Lin and Byrne, 2022, RAGE), which
considers signals from table relevance and answer
prediction, as follows:

−
∑
(q,S)

( K∑
k=1

log pϕ(s
∗
k|q, tk) +

∑
k∈P+(q,S)

log pθ(tk|q)
)
(7)

where s∗k is a concatenation of all comma-separated
answers in S and P+(q,S) = {k : yk = s∗k ∧
tk = t∗} is a subset of the retrieved K tables,
which contains those tables that satisfy (1) being
a gold table relevant to answering the question;
(2) the answer generator successfully produces the
correct answer from that table. The core idea is
to leverage the signal from model prediction to
decide which tables are beneficial to producing
the correct answer. Their scores are dynamically
adjusted during training, which tailors the retriever
to better serve the answer generation.

3.4 Learned Table Relevance
The answer generator is trained to produce s∗k for
each input (q, tk) pair. Ideally, we would assume
that the answer generated from the gold table t∗ is
also associated with the highest probability from
the answer generator. However, it might happen
that an answer derived from a non-gold retrieved ta-
ble may achieve higher confidence than the answer
derived from a gold retrieved table. We propose a
simple yet effective approach to improve this pro-
cess: we add a binary relevance token preceding
s∗k as ‘yes’ if tk = t∗, ‘no’ otherwise. This design
aims at guiding the model to prioritize reliable an-
swer sources at training time. At generation time, if
the leading generation of a (q, tk) pair is ‘yes’, we
consider tk to be a more reliable answer source and

prioritize it over other input tables—that generate
‘no’ instead—when selecting the final prediction.
We rely on the confidence scores if the leading
token of all the candidates is ‘no’.

4 Experimental Setup

Datasets and metrics. We evaluate our system
on two benchmarks, i.e. NQ-TABLES (Herzig
et al., 2021) and E2E-WTQ (Pan et al., 2021).3

NQ-TABLES contains generally hard questions
extracted from the NaturalQuestions (Kwiatkowski
et al., 2019) dataset, comprising the questions that
can be answered from tables rather than plain text.
For this benchmark, we evaluate the models us-
ing: Token F1, i.e. token-wise F1 score; and exact
match (EM) or accuracy, i.e. whether predictions
match the annotations.
E2E-WTQ contains look-up questions that require
cell selection operation and is a subset of Wik-
iTableQuestions (Pasupat and Liang, 2015). In
E2E-WTQ train/valid/test splits are the same as
in WikiTableQuestions, with questions limited to
those that do not aggregations across multiple table
cells. We evaluate models via accuracy4.

In addition, we report Recall@K for the retrieval
performance in both, which measures whether the
gold table is among the top-K retrieved tables.5

System configurations. For the table retrieval
component, we conduct contrastive experiments
using both DPR and LI. We first fine-tune the
official pretrained DPR or ColBERTv2 model on
each dataset before using them in the joint retriever-
reader training. We do not train the TableQA model
from scratch, instead we warm-start the training
with TaPEx, a state-of-the-art pre-trained model for
tabular data understanding based on BART (Lewis
et al., 2020a). Since the E2E-WTQ is very small
and not enough for learning a robust TableQA
model, we additionally fine-tune TaPEx on its su-
perset, i.e. WikiTableQuestions. Note that no test
samples are leaked due to this as the dataset splits
of E2E-WTQ are the same as WikiTableQuestions.
We select the best checkpoints based on the valida-
tion set. We set K=5 since it shows the best balance
between performance and latency by both RAG
and RAGE. Training details, computational cost

3Dataset statistics are shown in Appendix B.
4Also named as Hit@1 in Pan et al. (2021, 2022)
5We do not report metrics such as P@K, N@K, MAP

used by T-RAG and CLTR, which decompose tables, being
incompatible with our setting (see Appendix C).



Models NQ-TABLES E2E-WTQ

Token F1 EM Recall@K Accuracy Recall@K

DTR+hn (Herzig et al., 2021) 47.70 37.69 81.13@10 - -
CLTR (Pan et al., 2021) - - - 46.75 -
T-RAG (Pan et al., 2022) 50.92 43.06 85.40@10 50.65 -

RAG 39.67 38.33 69.16@5 38.05 61.29@5
DPR-RAGE 49.68 43.02 84.35@5 48.79 59.68@5
LI-RAGE 54.17 46.15 87.90@5 62.10 81.85@5

(w/o joint training) 53.53 45.52 85.21@5 59.27 81.45@5
(w/o relevance tokens) 50.56 42.53 86.90@5 53.69 81.75@5
(w/o joint training & relevance tokens) 49.83 42.19 85.21@5 50.16 81.45@5

Table 1: End-to-end TableQA performance on NQ-TABLES and E2E-WTQ. Best performances are in bold.

Models NQ-TABLES E2E-WTQ

K=1 K=5 K=10 K=50 K=1 K=5 K=10 K=50

BM25 17.62 35.97 43.80 61.00 58.09 74.27 79.67 87.55
DPR-RAGE 58.29 84.35 90.72 97.08 33.61 59.68 66.80 88.38

(w/o joint training) 53.07 84.25 90.62 97.81 32.78 58.47 66.39 88.38
LI-RAGE 59.12 87.90 92.81 97.60 68.46 81.85 85.89 93.36

(w/o joint training) 53.75 85.21 90.10 97.71 66.13 81.45 84.27 93.55

Table 2: Retrieval performance on NQ-TABLES and E2E-WTQ. Best performances are in bold.

and software solution are provided in Appendix D.

Comparison systems. We compare with models
from the literature, i.e. DTR, CLTR, T-RAG (see
§2), and BM25—sparse retrieval baseline. More-
over, we build the following model variants:
LI-RAGE: our main system that leverages Col-
BERT as retriever, TaPEx as answer generator,
RAGE loss for joint training and the binary rel-
evance token in output. We also ablate the system
showing the effectiveness of each feature. When
disabling joint training, i.e., for ablating the model,
the retriever is not updated.
DPR-RAGE: similar to LI-RAGE, except for the
retriever being a DPR model.
RAG: we train the RAG (Lewis et al., 2020b) in
TableQA data, initializing the retriever and answer
generator with our fine-tuned DPR and TaPEx, re-
spectively. Different from DPR-RAGE, RAG does
not produce the binary relevance token and updates
the retriever only with the RAG loss, which is an
implicit signal from the reader.

5 Results and Discussions

5.1 Main Results
As shown in Table 1, LI-RAGE achieves the best
performance across the board on both datasets,
with more than 3 points improvements in Token
F1 and EM in NQ-TABLES, and 11.45 points in

E2E-WTQ with respect to previously best reported
results in the literature. We attribute these results
to the high performance of the LI retriever. On NQ-
TABLES it obtains the best recall rate (87.90%)
when only 5 tables are retrieved, as opposed to the
previous models that achieve a lower recall rate
with K = 10 tables, and also performs better when
compared with RAG and DPR-RAGE, by a large
margin.
Effects of Joint Training. Similar to the observa-
tion of Lin and Byrne (2022), joint training with
RAGE improves over the frozen system on both
retrieval and TableQA performance. As shown
in Table 1, joint training improves the end-to-end
TableQA performance on both datasets by ∼0.6-
2.83%, and shows a superior retrieval ability espe-
cially on NQ-TABLES (85.21 to 87.90).
Effects of Binary Relevance Tokens. As shown
in Table 1, removing the binary relevance tokens
greatly reduces system performance, by around
3.6% Token F1 and EM in NQ-TABLES and 8.4%
in E2E-WTQ accuracy.
Effects of LI. We report the retrieval performance
in Table 2. LI-RAGE achieves the highest recall,
outperforming BM25 in both datasets, and DPR
by ∼3% on NQ-TABLES and by over 20-30%
Recall@5/1 on E2E-WTQ. The large margin on
E2E-WTQ is because it contains generally long ta-
bles with diverse information, and LI models prove



beneficial in learning richer table representations.

5.2 Remarks of Design Rationale

We tailor our solution for TableQA, with the spe-
cific design of two main components, i.e., adding a
relevance token and modifying the RAGE loss.
Relevance token. In open-domain QA, open-
ended questions may have multiple correct answers
and can be answered by different passages. As a
result, increasing the number of retrieved passages
(K) often improves the retrieval performance by
enlarging the coverage of search. However, this is
not the case for tables; in open-domain TableQA,
the question often has only one gold table and most
of the questions focus on a particular cell in the
gold table. In our experiments, increasing K de-
creased the performance when K > 5 since pre-
senting more tables to the answer generator only
increases confusion and chance of mistakes (over-
confident on some wrongly retrieved tables). When
using relevance tokens as per our design, increas-
ing K does not adversely impact the performance
since irrelevant tables are dropped. In addition, we
also explored alternative strategies that leverage
retrieval scores to determine document reliability.
The first strategy predicts the final answer from the
table with the highest retrieval score. This setting
achieves 41.04 EM on NQ-TABLES, which is even
lower than our ablated LI-RAGE w/o joint training
& relevance tokens attaining 42.19 EM (see Table
1). A second strategy weights predictions from
different tables with the corresponding retrieval
score, i.e., by multiplying the retrieval score (from
the retriever) with the answer confidence (from the
answer generator) when using K=5. This again
performs poorer than our ablated LI-RAGE w/o
joint training & relevance tokens that uses only
answer generator confidence, achieving 40.91 EM
on NQ-TABLES and 42.19 EM, respectively. In
summary, relevance tokens work better than doc-
ument retrieval scores or combination of retriever
and reader scores.
RAGE loss. We modify the original RAGE
loss (Lin and Byrne, 2022) to adapt it to the do-
main of tables. In particular, we dropped the third
term in the equation, which penalizes documents
when they do not contain gold answers and also
do not contribute to successful question-answering.
Enabling this term in the loss, penalizes K − 1
documents in most cases, which leads to collapsed
performance of the retriever in joint training for

TableQA. This is motivated by the same fact that
gold tables are relatively sparse in TableQA and
penalizing wrong documents leads to instability of
training and quick retriever overfitting. Disabling
this term instead, softens the RAGE loss by only
awarding “good” tables and distinguishing good
tables from bad ones, which improved the perfor-
mance by around 1% EM on NQ-TABLES.

6 Conclusion

We introduce a novel open-domain TableQA frame-
work, LI-RAGE, that leverages late interaction re-
trievers to enable finer-grained interaction between
questions and tables. Additionally, LI-RAGE incor-
porates the RAGE loss and binary relevance tokens
which enable significant improvements over the
state-of-the-art in two challenging TableQA tasks.

7 Limitations

Our proposed system was tested on two open-
domain TableQA datasets, with one of them (E2E-
WTQ) being relatively small compared to the other.
Also, the current open-domain TableQA datasets
are limited to look-up questions. They do not
cover more complicated questions that involve mul-
tiple cells and complex table operations, such as
SUM/MAX/MIN/SUBTRACT in some questions
of WikiSQL and WikiTableQuestion. Therefore,
the effectiveness of our system should be further
evaluated on more complicated datasets of larger
scale in the future. Another limitation lies in the
token length limit of modern Transformer models.
The best-achieving models typically accept up to
1024 tokens (e.g. BART, the base model of TaPEx).
This limitation becomes more obvious when tables
grow longer and the information being sought go
beyond the limit. We believe that, with better ap-
proaches addressing this limitation, our system can
achieve better performance. The solution can be
either applying sampling strategies to pick the rows
and columns that are most relevant to answering
the question, or increasing the capacity of future
Transformer models.
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A Table Linearization

In the retriever component, the input table is lin-
earized into a sequence with separation tokens
interleaving the table elements to make the in-
put structure-aware, e.g. “<SOT> [table title]
<EOT> <BOC> mountain peak <SOC> eleva-
tion <EOC> <BOR> red slate mountain <SOR>
13,162 ft <EOR> <BOR> ...”.

In the reader component, the TaPEx tokenizer
linearizes the table with structure-aware separation,
for example, “[HEAD] mountain peak | elevation
[ROW] 1 : red slate mountain | 13 , 162 ft [ROW]
2 ...”.

B Dataset Statistics

Dataset Train Dev Test #Tables

NQ-TABLES 9,594 1,068 966 169,898
E2E-WTQ 851 124 241 2,108

Table 3: Dataset statistics.

Parameter Value

Negative samples 4 (per positive sample)
Total GPUs 8
Learning rate 0.0001
Optimizer Adam
Batch size (per device) 8 (DPR) / 6 (LI)
Grad. accum. steps 4
Training steps 6000 (NQ-TABLES)

600 (E2E-WTQ)

Table 4: Hyperparameters for DPR and LI training.

Parameter Value
(NQ-TABLES)

Value
(E2E-WTQ)

Warmup steps 0
Epochs 20 15
Reader LR 0.00002 0.000015
Retriever LR 0.00001
LR decay Linear None
Optimizer AdamW
Total GPUs 8
Batch size 1 (per device)
Grad. accum. steps 4
Weight decay 0.01
Label smoothing 0.1

Table 5: Hyperparameters for LI-RAGE training.

C CLTR and T-RAG Evaluation

In these open-domain TableQA datasets, each ques-
tion is associated with only one gold table. As a
result, Precision@K in retrieval has a certain upper
bound at 1

K . Therefore, evaluating the retriever
with Recall@K is more reasonable in this case.

We confirmed with the authors of CLTR and T-
RAG that they decomposed tables into single rows
and columns to form the table database. In evalu-
ating their systems on the E2E-WTQ dataset, the
authors reported some retrieval metrics including
Precision@K (P@K) which goes beyond the 1

K
limit (e.g. T-RAG achieved 0.7806 P@5). This is
because they reported a hit for a retrieved row/col-
umn as long as it belongs to the gold table. With
different setups for table corpus, the retrieval met-
rics of their systems are not directly comparable.
Therefore, we compare Recall@K with BM25 and
DPR only, and compare the end-to-end TableQA
accuracy with CLTR and T-RAG (which is called
Hit@1 in their papers).
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Models
Training Speed

(iter/sec)
Training

Batch Size
Training Time

(mins)
Inference Speed ↑

(sec/iter)
Inference

Batch Size

DPR 1.10 8 60 (NQ)/ 10 (WTQ) - -
LI 1.75 6 60 (NQ)/ 10 (WTQ) - -

DPR-RAGE 2.1 1 300 (NQ)/ 35 (WTQ) 1.22 4
LI-RAGE 0.74 1 450 (NQ)/ 50 (WTQ) 1.40 4

Table 6: Computational cost for DPR/LI retriever models and LI-RAGE and DPR-RAGE.

Parameter Value

Warmup steps 1000
Epochs 40
Learning Rate 0.00002
LR decay Linear
Optimizer AdamW
Total GPUs 8
Batch size 1 (per device)
Grad. accum. steps 4
Weight decay 0.01
Label smoothing 0.1

Table 7: Hyperparameters for tapex-large fine-tuning
on WikiTableQuestions for E2E-WTQ.

D Technical Details

D.1 Hyperparameters

The training hyperparameters are shown in Table 4,
5, and 7. The tuning of hyperparameters was per-
formed on validation performance.
DPR: The dimension of the extracted table/ques-
tion embeddings is d = 768.
LI: The dimension of the extracted table embed-
dings is lt × d = lt × 128, where lt depends on the
length of input tables. Following Santhanam et al.
(2022b), the dimension of the extracted question
embeddings is fixed to lq × d = 32× 128. We pad
the questions with less tokens than lq.

D.2 Indexing and Dynamic Retrieval

DPR. Following Lewis et al. (2020b), one-
dimensional table embeddings are pre-extracted
with the DPR model that has been finetuned on
the retrieval task. The FAISS system (Johnson
et al., 2019) is used to index all table embeddings
which enables fast nearest neighbour search with
sub-linear time complexity. In training LI-RAGE,
question embeddings are dynamically extracted
from the retriever, and tables with highest scores

are retrieved using the precomputed index.
LI. Khattab and Zaharia (2020) proposed the first
version of ColBERT, and Santhanam et al. (2022b)
introduced ColBERTv2, which is an enhanced ver-
sion of ColBERT. Santhanam et al. (2022a) de-
veloped an efficient search engine, PLAID, for
ColBERTv2, which significantly improved the re-
trieval latency. We redirect readers to the aforemen-
tioned papers for more details. We started from
the official ColBERTv2 implementation 6and refac-
tored the code base. We integrated ColBERTv2
into our training framework, so that fast and dy-
namic retrieval can be done during end-to-end joint
training.

D.3 Computational Cost
In Table 6 we report computational cost of the pro-
posed models. It is clear that time spent on the
training of LI is not significantly increased com-
pared to DPR training. This is because both models
use contrastive learning in training. But we note
that the index building time of LI is around 5 mins
while that of DPR only takes 40 seconds.

In terms of joint training, the end-to-end training
time of LI-RAGE is longer. This is due to (1)
slightly slower dynamic retrieval during end-to-
end training; (2) refining the retriever via larger
multi-dimensional embeddings in comparison to
one-dimensional embeddings used in DPR-RAGE.
However, the inference speed is not affected much
(from 1.22 sec/iteration to 1.40). This suggests that
when deployed as real applications, LI-RAGE does
not bring significant increase in computation.

6https://github.com/stanford-futuredata/
ColBERT
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