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Abstract
As autonomous social robots become more prevalent in home envi-
ronments, they must decide where to position themselves within
many different types of rooms or spaces, balancing accessibility
with staying out of the way. This paper presents a machine learning
approach to modeling user preferences for robot parking spots in
the home using standard 2D occupancy maps. Our method learns
spatial patterns from the information available in the occupancy
maps and user-annotated floorplans without requiring specialized
inputs. We evaluate the approach using floorplan data from 84
users who provided parking spot preferences after living with and
evaluating a social robot in their homes for at least two weeks.
Our method significantly outperforms a state-of-the-art baseline
focused exclusively on avoiding walking paths. We demonstrate
how the approach extends to additional map features and share in-
sights about the types of preference patterns learned by the model.
This contribution provides a framework that can incorporate new
environmental inputs as robot perception capabilities evolve.

CCS Concepts
• Computer systems organization → Robotic autonomy; •
Computing methodologies→ Robotic planning; • Human-
centered computing→ Empirical studies in HCI.
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Figure 1: Left: The Astro home robot, Right: user-annotated
parking preference map (yellow = good, red = bad).

1 Introduction
At the California Computer History Museum’s “The First 2000
Years of Computing” exhibit, in the section on robotics and artificial
intelligence, sits a 1984 home robot kit, Hero Jr., designed to “roam
hallways, play games, act as an alarm clock, and even seek to remain
near human companions” [25, 35]. This early vision recognized that
social robots need the flexibility to position themselves wherever
interaction might naturally occur. While the technology needed to
deliver these user experiences more seamlessly wasn’t yet ready
[50], it is notable that most modern robots more closely follow
the vision presented in Isaac Asimov’s The Robots of Dawn (1983),
in which robots waited inside designated wall niches, akin to the
fixed charging docks of today’s robots [2]. While a dock provides
a utilitarian means to keep robots out of the way when not in
use, we argue that social robots living with users in the home
will require a dynamic approach to parking spot selection [30], in
order to provide opportunities for spontaneous social interaction
in a variety of rooms and spaces. This evolution in robot behavior
presents a fundamental challenge: selecting socially appropriate
parking spots that balance accessibility and unobtrusiveness.

Poor parking spot selection can create immediate safety risks like
trip hazards or blocked pathways, while also affecting long-term
robot acceptance and adoption. A robot that frequently obstructs
movement, blocks access to furniture or appliances, or positions
itself where it is difficult to find when needed may quickly become
more of a nuisance than a help. These challenges are particularly
acute in home environments where the functional and social use of
space may be influenced by many factors (e.g., the size of the home,
its layout, pedestrian traffic patterns, etc.) and vary significantly
between households [4, 9, 18].
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Recent advances in sensing, perception, and computational mod-
eling have made the vision of socially intelligent home robots feel
closer to reality than ever before with several robots emerging in
both academic research [12, 14, 27, 41] and commercial products
[30] (Figure 1, left). However, while decades of research have ad-
vanced robots’ ability to navigate through dynamic environments,
this work has primarily focused on reaching known destinations.
A related challenge that has been less explored is determining how
to select the parking spot in the first place, which often requires an
understanding of the social use of the space.

Glas and Smart argued that “the most fundamental factor in
determining acceptability of a parking spot is whether it blocks any
of the main walking paths in a space” and presented a method using
geometry to infer primary pedestrian walking paths for identifying
out-of-the-way parking spots [17]. While this heuristic approach
provides a valuable foundation, the complexity of home environ-
ments suggests that additional spatial patterns and relationships
may also influence social acceptability of parking spots [17].

To address these complexities, this paper presents a machine
learning approach to model user preferences for robot parking spots
using standard occupancy maps. Our key contributions include:

(1) A flexible ML framework for learning social acceptability
of parking spots from standard robot occupancy maps;

(2) A specialized loss function and sampling strategy to
balance overall parking spot quality estimation with region-
level spot selection; and

(3) Experimental validation of our approach using data
from 84 home robot users, revealing key patterns about hu-
man expectations for robot parking behavior.

2 Related Work
Understanding where a robot should park in a home environment
intersects multiple areas of research including human-robot in-
teraction [30], socially aware robot navigation [43], and machine
learning from spatial data [37].

2.1 Social Robots in Home Environments
The potential for social robots to operate and interact with peo-
ple in home environments has been extensively studied in HRI
research, with applications ranging from household tasks [16], and
educational assistance [6], to pet care [51], and companionship [33].
Recent studies have found that home robots engaging in proactive
behaviors and socially-aware repositioning during idle time lead
to higher levels of user engagement, acceptance, and prolonged
use [11, 30, 32, 42]. This suggests that effective parking strategies
are essential for maintaining long-term robot adoption. To achieve
this, robots will need to develop both spatial and social awareness
of their surroundings. While significant progress has been made
in robot navigation and mapping, understanding the social use of
space remains a key challenge for autonomous home robots [8, 50].

2.2 Social Navigation & Positioning
Prior work in social navigation has explored various aspects of robot
movement and positioning in human environments. Researchers

have investigated personal space preservation [21], human trajec-
tory prediction [46], socially-aware approach paths [3], conversa-
tional positioning [5, 24, 38], and approach techniques for moving
users [40]. Particularly relevant to our work are approaches that
model patterns of human space utilization. Kanda et al. [26] de-
veloped spatiotemporal maps and clustering models of dynamic
motion to understand aggregate patterns of human behavior, which
were used to customize robot patrolling and approaching behavior.
While these works provide valuable insights into human-relative
positioning, they primarily focus on active interaction scenarios
rather than proactive positioning without explicit instruction.

The challenge of selecting parking locations has received less
attention, as many current home robots simply return to a charging
dock after task completion [17, 47]. While prior work has addressed
dock placement from an energy efficiency perspective [29], our
work focuses on social factors rather than energy constraints.

Kitade et al. explored robot waiting positions in shopping malls
using computational features like distance to walls and shops [28].
Glas and Smart developed a method for selecting parking spots
based on a model of mutual passing along likely walking paths
estimated from occupancy maps [17]. However, modern sensing ca-
pabilities can recognize more features in the environment, through
segmentation of walls and clutter [34], detection of architectural
features like doors and stairs [45], and semantic scene understand-
ing capturing furniture, appliances, and other objects [44, 49]. We
aim to use this rich environmental context to support machine
learning for socially-aware parking.

2.3 Machine Learning with Spatial Data
Applying machine learning to spatial data presents unique chal-
lenges related to spatial dependence, scale, and feature engineering
[37]. Tobler’s First Law establishes that spatial correlation typically
decreases with distance [36], suggesting that parking spot quality
is most influenced by immediate surroundings rather than distant
features. For example, whether a spot is positioned between two
pieces of furniture likely has significant impact on its appropri-
ateness for parking, while the presence of a bed in a distant room
has little relevance. This principle has motivated patch-based sam-
pling to emerge as a common practice for capturing these local
spatial relationships, enabling models to focus on the most relevant
contextual features across various spatial analysis domains [13, 23].

The effectiveness of patch-based methods depends heavily on
appropriate patch size selection [37]. While satellite imagery appli-
cations often require large patches to capture meaningful patterns
[23], medical imaging may use small patches for cell-level analysis
[22]. In the context of robot parking, too large a patch size can
introduce noise by capturing unrelated areas in the home. For ex-
ample, a patch surrounding a parking spot in the living room might
unnecessarily include a nearby bedroom that has no effect on the
spot’s appropriateness for parking. Thus, appropriate patch size is
one question we investigate in this work.

Another key consideration in our application is scale preserva-
tion. Unlike many image recognition tasks where scale invariance
is desirable, robot parking requires preserving precise spatial scale
where each cell in a patch corresponds to specific real-world di-
mensions. To process this type of spatial data, convolutional neural
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Figure 2: Learning robot parking preferences through feature patches from occupancy maps (left), a hybrid CNN–attention
model with specialized loss functions (center), and resulting parking spot quality map (right).

networks (CNNs) are well-suited for learning hierarchical local
features through convolutional filters, and—with fixed-scale patch
sampling and limited pooling—can maintain the critical relation-
ship between physical dimensions and spatial patterns [37]. At the
same time, patch-level decisions can depend on contextual cues
that extend beyond local receptive fields (e.g., doorways or circula-
tion paths spanning adjacent rooms). To capture such longer-range
dependencies without sacrificing scale fidelity, we employ a hybrid
CNN–attention approach in which a convolutional backbone pro-
vides local spatial encodings and cross-attention integrates broader
contextual information across the patch. Building on these prin-
ciples, we present an approach that applies patch-based sampling
with scale-preserving CNNs augmented by attention to learn pat-
terns of socially acceptable robot parking locations from annotated
home floorplans.

3 Learning Robot Parking Preferences
We frame the task of modeling socially appropriate robot parking
spots as generating a pose quality map of the environment where
higher values represent more suitable parking spots. This repre-
sentation allows a robot to efficiently query the estimated social
appropriateness of any potential parking pose during operation
after the map has been generated. Following this formulation, we
first identify a discrete set of allowed poses 𝑃 over a given floorplan
𝑓 . Next, our approach generates a pose quality map 𝑈 over this set.
A mobile robot can then estimate the social appropriateness of any
potential pose 𝑝 = (𝑝𝑥 , 𝑝𝑦) by querying this map as 𝑈 (𝑝). Note
that we use “pose” and “parking spot” interchangeably throughout.

Most homes are naturally organized into distinct rooms or re-
gions based on functional, social, and cultural patterns of space
utilization [7]. While these divisions aren’t always strict (e.g., open
floor plans, partially divided rooms, etc.), they provide a natural
framework for evaluating poses within meaningful spaces. In this
work, we assume these regions have been defined in the represen-
tation of the floorplan with each cell being assigned to a named
region. A key challenge specific to learning parking preferences
is that a robot must not only estimate the quality of individual
poses, but must also reliably identify a high quality pose within
each region. We define region-level spot selection as the task of
identifying the most appropriate pose within a given region 𝑟 from
the set of available poses in that region.

One typical way to measure accuracy of the pose quality map
would be to simply evaluate pairwise error between predicted scores
and ground truth annotations across the entire floorplan. This spot-
level metric would provide a broad evaluation of model fit, but it
would not necessarily provide an accurate measure of the quality
of the top poses selected by the model (i.e., the poses that would be
observable to users), as these are selected relative to other poses in
the region. This calls for using a region-level metric that measures,
say, the ground truth quality of the chosen pose within the region.
This misalignment between spot-level and region-level metrics
can open a significant gap—for instance, a pose quality map might
achieve low spot-level error yet still incur high region-level error by
failing to identify the best poses within each region. While training
the model to optimize the region-level metric most closely aligns
with model usage, it lacks the fine-grained supervision of the spot-
level metric which utilizes our detailed pixel-level ground truth
annotations. Therefore, our overall objective is to optimize two
complementary goals: (1) accurately estimating pose quality across
the entire floorplan (spot-level), and (2) correctly identifying the
most appropriate poses within each region (region-level).

To achieve our dual spot-level and region-level objectives, we
developed a specialized approach that incorporates both considera-
tions during training and evaluation. In the following sections, we
describe our flexible ML framework (C1) that learns user parking
preferences from floorplan features.

3.1 Input Features and User Annotations
Our approach builds upon standard occupancy maps that most
mobile robots use for navigation, which represent basic information
about free and occupied space in the environment. From these
maps, we can infer fundamental spatial features such as walls,
clutter, and navigable space. As we investigate later, other semantic
features, such as doors, cabinets, or appliance locations, can be
incorporated if they are available via the robot’s perception systems.
We represent this environmental information as a set of 2D feature
layers that maintain the spatial relationships and physical scale
of the environment. These layers are represented as a discrete
grid where each cell represents a fixed physical dimension (e.g.,
5cm × 5cm), ensuring that spatial patterns learned by the model
correspond to real-world measurements.

Let 𝑋 = {𝑋 (1) , 𝑋 (2) , ..., 𝑋 (𝑘 ) } represent a set of 𝑘 concatenated
2D feature channels extracted from the floorplan 𝑓 . Here each
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channel has the same spatial extent as the floorplan and captures
salient information about the environment (e.g., walls, clutter, navi-
gable space). The feature set 𝑋 is flexible and can incorporate any
spatially-encoded information available to the robot.

For each floorplan 𝑓 , our ground truth training data consists
of human-annotated robot parking preferences 𝑈 ∗ over the entire
floorplan. Specifically, these annotations are not limited to the best
spots within each region, which allows us to gain a fine-grained
understanding of user preferences. For any pose 𝑝 ∈ 𝑃 , the user
preference 𝑈 ∗ (𝑝) is categorized as 0 (bad), 1

2 (neutral), or 1 (good).
Section 4.1 provides further details on this data collection.

3.2 Method Overview
We train a hybrid CNN–attention model 𝑀 to predict the quality
of a given pose 𝑝 by consuming a square 𝑠 × 𝑠 patch 𝑋𝑝 centered
on that pose:

𝑈 (𝑝) = 𝑀 (𝑋𝑝 ) (1)
Note that 𝑋𝑝 is extracted from 𝑋 and contains 𝑘 feature channels,
as described in Section 3.1. The model 𝑀 is trained to optimize a
weighted combination of the spot-level and region-level metrics.
Such a model would typically be trained over several steps, using
Gradient Descent on a batch of randomly sampled poses at each
iteration. This strategy suffices to optimize the spot-level metric.
Optimizing the region-level metric, however, requires simultaneous
access to multiple within-region poses at each step, so the model
can learn to identify the best amongst them. This necessitates a
2-step sampling strategy to construct each batch: first sample the
regions, and then sample multiple poses for each region. The loss
functions corresponding to the spot-level and the region-level met-
rics are averaged over the spots and the regions within each batch,
respectively, before taking their weighted combination to compute
the batch loss at training. Finally, once the model is trained, a single
pose (or an arbitrary batch of poses) may be used at inference. We
next describe each step of our methodology in detail.

3.3 Patch Sampling Strategy
Pose Generation. Given a floorplan 𝑓 with cell resolution 𝑚

meters and a navigability matrix 𝑁 where 𝑁 (𝑥,𝑦) ∈ {0, 1}, we first
create the set of all parking spots 𝑃 by generating poses every 𝑚

meters along both axes:

𝑃 = {𝑝 = (𝑝𝑥 , 𝑝𝑦) |𝑁 (𝑝𝑥 , 𝑝𝑦) = 1, 𝑝 ∈ 𝑓 } (2)
Additionally, for each region 𝑟 on the floorplan, we construct the
set of allowed poses within the region 𝑃𝑟 = 𝑟 ∩ 𝑃 .

Patch Extraction. For each pose 𝑝 ∈ 𝑃 , we extract a square
patch of size 𝑠 × 𝑠 cells (representing 𝑠 ·𝑚 × 𝑠 ·𝑚 meters) centered
at 𝑝 from each feature channel in 𝑋 . This patch represents a win-
dow view of the environmental features near the pose of interest,
limiting the model’s evaluation to only the local spatial context to
determine the pose’s appropriateness for parking. The patch size
selection trades off between capturing meaningful local context and
minimizing the influence of distant, irrelevant features. Using larger
patch sizes also presents risks of overfitting and increased model
complexity, especially if training data is limited. The multi-channel
patch tensor for each pose is 𝑋𝑝 ∈ R𝑠×𝑠×𝑘 , where 𝑘 is the number
of feature channels in 𝑋 . Figure 2 illustrates this patch extraction

process, showing sample patches extracted from different locations
on a floorplan across three feature channels.

Patch Sampling. At training, the model 𝑀 is trained in several
steps, employing a batch of 𝐵 sampled patches at each iteration.
Our sampling strategy is guided by the choice of our objective func-
tion, which factors in both spot and region level considerations.
The region-level metric incentivizes the model to correctly identify
the best patch amongst those sampled from the same region. This
requires sampling multiple patches within each region at training.
We employ a 2-step strategy to operationalize this: first sample 𝐵𝑟
regions over the entire train set, and next sample 𝐵𝑝 poses uni-
formly from each sampled region 𝑟 . Here, the regions are sampled
in proportion to their size |𝑃𝑟 |, effectively ensuring a uniform dis-
tribution over the poses in the train set. Note that the overall batch
size is 𝐵 = 𝐵𝑟 · 𝐵𝑝 , where 𝐵𝑝 > 1 ensures we consider multiple
within-region poses for computing the region-level metric.

3.4 Model Architecture
We frame pose quality estimation as a three-class supervised classi-
fication problem, with classes bad, neutral, and good, representing
socially inappropriate, acceptable, and desirable poses, respectively.
We choose classification over regression since parking preferences
are often expressed as categorical judgments rather than continu-
ous values. Furthermore, we opted not to use ordinal classification
methods (such as CORAL [10]), as standard categorical classifica-
tion better captures bimodal user preferences, e.g., when a patch is
considered desirable by some users but inappropriate by others.

We implement this classification framework using a hybrid CNN–
attention model designed to process multi-channel patches of the
environment, described in Algorithm 1. The network is designed
to scale with patch size to ensure appropriate receptive fields for
different spatial scales. As patch size increases, a deeper network is
needed to allow each output neuron to be influenced by a larger
portion of the input space, enabling the model to capture spatial
relationships across the entire patch. We adopt a standard CNN
backbone augmented with cross-attention, as this combination
effectively captures local spatial features within regions while also
modeling longer-range contextual dependencies across regions.

The model outputs class confidences c(𝑝) = [𝑐1 (𝑝), 𝑐2 (𝑝), 𝑐3 (𝑝)]
through a softmax layer, representing probabilities of bad, neutral,
and good parking quality respectively. These are converted to a
final quality score 𝑈 (𝑝) ∈ [0, 1] using weighted averaging:

𝑈 (𝑝) = 0 · 𝑐1 (𝑝) +
1
2
· 𝑐2 (𝑝) + 1 · 𝑐3 (𝑝) (3)

3.5 Training Objective
In line with recent works [15, 48], we seek to align the training ob-
jective of our model with the decision-making it drives. We combine
a per-patch classification loss with a differentiable surrogate loss
for region-level spot selection. For each patch 𝑝 , the model outputs
class probabilities c(𝑝) and a scalar prediction 𝑈 (𝑝) ∈ [0, 1] via
Eq. (3). Ground-truth supervision is provided by𝑈 ∗ (𝑝), introduced
in Section 3.1.

Spot-level objective. Let 𝑦 (𝑝) ∈ {1, 2, 3} be the class index ob-
tained by mapping the ground truth annotation 𝑈 ∗ (𝑝) ∈ {0, 1

2 , 1}
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Algorithm 1 CNN Architecture for Patch Processing

Require: Input patch 𝑋𝑝 ∈ R𝑠×𝑠×(𝑘 )
Ensure: Pose quality score 𝑈 (𝑝)

1: ℎ ← 𝑋𝑝 {Initialize hidden state}
2: 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 ← ⌊log2 (𝑠)⌋ − 2 {e.g., 4 blocks for s=64, 3 for s=32}
3: for 𝑖 ← 1 to 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 do

4: ℎ ← Conv2D(ℎ, filters = 32 · 2⌊𝑖/2⌋ )
5: ℎ ← BatchNorm(ℎ)
6: ℎ ← ReLU(ℎ)
7: if 𝑖 ≥ 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 − 1 then

8: ℎ ← ℎ + CrossAttention(ℎ)
9: end if

10: end for
11: ℎ ← GlobalAvgPool(ℎ)
12: c← Softmax(Dense(ℎ)) {Class probabilities}
13: 𝑈 (𝑝) ← 0 · 𝑐1 + 1

2 · 𝑐2 + 1 · 𝑐3 {Weighted quality score}
14:
15: return 𝑈 (𝑝)

to its categorical label. We train the classifier with cross-entropy,
using the class 𝑦 (𝑝) as ground truth. The loss averages over all 𝐵
patches in the batch:

LCE = − 1
𝐵

∑︂
𝑝

log 𝑐𝑦 (𝑝 ) (𝑝). (4)

This cross-entropy loss (LCE) allows the model to harness the fine-
grained user preferences captured by our annotated data.

Region-level objective. The model aids in region-level spot se-
lection by selecting the pose with the highest predicted score. We
create a differentiable surrogate for this argmax operation by em-
ploying a soft relaxation. Specifically, we use the standard softmax
distribution over the predicted scores𝑈 (𝑝) for all the sampled poses
within one region. This can be seen as the top-1 special case of
NeuralSort [19] and SoftStart [39].

Let 𝑆𝑟 denote the set of sampled poses for region 𝑟 in the current
batch. Within each region 𝑟 , we form a temperature-controlled soft
selection over its poses using the model’s scalar predictions 𝑈 (𝑝):

𝛼𝑝 |𝑟 (𝜏) =
exp

(︁
𝑈 (𝑝)/𝜏

)︁∑︁
𝑞∈𝑆𝑟

exp
(︁
𝑈 (𝑞)/𝜏

)︁ , 𝑝 ∈ 𝑆𝑟 , (5)

with temperature 𝜏 > 0 (higher 𝜏 yields smoother weights; lower
𝜏 approaches a hard argmax). The soft choice is then evaluated
against the region’s ground truth. The region-level loss averages
the squared gap over the 𝐵𝑟 regions:

Lregion =
1
𝐵𝑟

∑︂
𝑟

©­«max
𝑝∈𝑆𝑟

𝑈 ∗ (𝑝) −
∑︂
𝑝∈𝑆𝑟

𝛼𝑝 |𝑟 (𝜏) ·𝑈 ∗ (𝑝)
ª®¬

2

. (6)

Overall objective. The final loss is a weighted combination of the
two terms:

L = LCE + 𝜆 · Lregion, (7)
where 𝜆 balances spot-wise accuracy against reliable region-level
spot selection.

3.6 Quality Map Construction
Given a floorplan 𝑓 , we generate a quality map by evaluating each
navigable pose 𝑝 ∈ 𝑃 :

𝑈 = {𝑈 (𝑝) | 𝑝 ∈ 𝑃} (8)
This map can be regenerated whenever the floorplan is updated

to reflect changes in the environment.

4 Evaluation
To evaluate our proposed method for robot parking spot prediction,
we conducted a user data collection to obtain annotated floorplan
data from 84 participants with direct robot experience in their
homes (C3), which was then used to train and evaluate the model.

We investigated four research questions related to the implemen-
tation and effectiveness of the proposed model. As a baseline for
comparison, we used the approach from Glas and Smart [17] that
estimates parking spot quality based on avoidance of estimated
walking paths, which we will designate “WP”.

(1) Patch Size: How much nearby spatial context (patch size)
is most effective to learn human parking spot preferences?

(2) Improvement Over Baseline: How effectively does our ML
model capture user preferences for robot parking spots? How
does performance compare to the state-of-the-art baseline?

(3) Learned Spatial Patterns: What high-level spatial patterns
about good parking locations has the model learned?

(4) Approach Extensibility: How does incorporating addi-
tional semantic features affect model performance and our
understanding of parking spot selection?

4.1 Data Collection
Our study uses floorplan data and robot parking preference an-
notations from 84 employees of a technical company who had
experience with the Astro robot [1] in their homes for at least two
weeks. 16.7% of participants were unpaid volunteers and 83.3% were
paid participants recruited through the company’s beta testing pro-
gram. This data collection was conducted in accordance with our
company’s legal, ethical, and privacy policies, with informed con-
sent obtained from all participants. From each home, we collected
the robot’s occupancy map and used it to generate a set of poten-
tial parking poses. These poses were sampled uniformly across all
navigable space (areas accessible to the 0.5m-wide Astro robot) at
𝑚 = 0.25m intervals, as shown in Figure 3.

As part of the standard robot setup process, participants divided
their homes into regions corresponding to rooms or other semanti-
cally meaningful spaces. To collect robot parking preferences, we
presented each participant with a 2D visualization of their home
floorplan and asked them to identify good and bad areas for robot
parking, with instructions to mark at least one good parking area
in each room where possible. The 2D representation captured (𝑥,𝑦)
positions only. Orientation can be determined post-hoc based on
geometry or user locations [30].

We processed the annotated floorplans to align them with the cor-
responding occupancy maps, assigning scores of 1 to areas marked
as good for parking, 0 to areas marked as bad, and 0.5 to unmarked
areas. The resulting dataset consists of 84 de-identified floorplan
maps containing 47,618 unique poses grouped into 728 regions. The
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Figure 3: Example floorplans with user-annotated parking
preferences and semantic features on maps. Each colored
square represents a viable pose in navigable space.

distribution of scores (mean = 0.40, SD = 0.14) reflects the inherent
scarcity of good parking spots in home environments, where many
areas are unsuitable for robot parking due to spatial and social
constraints (see Table 1).

4.2 Experimental Design
To evaluate RQ1 on patch size, we generated 7 variants of the feature
dataset 𝑋 using patch sizes in {2, 4, 8, 16, 32, 64, 128} (i.e., ranging
from 0.1m to 6.4m width on a side, centered on a potential parking
spot). A model was designed using the architecture described in
Section 3.5 for each dataset variant with its respective patch size.
The temperature parameter 𝜏 was annealed from 1.0 to 0.1 over the
first 20 epochs of training and the region-level loss weight 𝜆 was
set to 1.0.

For RQ2, we compared the best performing model to two base-
lines, a state-of-the-art walking path avoidance model (WP) [17],
and random spot selection (RS).

For RQ3, we analyzed the spatial patterns learned by the model
through clustering analysis of poses where it significantly outper-
formed the baseline.

Finally, we evaluated the model’s extensibility (RQ4). Our base
model used three basic environmental features available from stan-
dard robot occupancy maps: walls, clutter, and navigable space,
where “clutter” represents any obstacle lower than ceiling height
(e.g., furniture, counters). We then augmented this base feature set
with additional semantic information: doors, stairs, appliances, and
cabinets. We evaluated the model’s performance with these richer
environmental representations and identified which semantic fea-
tures contributed most through an ablation study.

Table 1: Summary statistics of the parking preference dataset
(mean ± standard deviation where applicable).

Metric Total Per Floorplan Per Region
Poses 47,618 566.9 ± 302.0 65.4 ± 63.0
Score Dist.

Bad (0) 42.1% 40.8 ± 19.8% 49.9 ± 37.8%
Neutral (0.5) 35.0% 34.0 ± 24.6% 32.9 ± 34.6%
Good (1) 22.9% 25.2 ± 18.2% 17.2 ± 24.9%

Mean score 0.40 ± 0.39 0.42 ± 0.14 0.34 ± 0.27

4.3 Evaluation Metrics
Following [17], we evaluate our approach using three complemen-
tary metrics that capture different aspects of model performance.
Each metric is computed using the user preference map 𝑈 ∗ and
our computed quality map 𝑈 containing the predicted scores from
model 𝑀 . All scores are scaled to [0, 1], with higher values indi-
cating better/more preferred positions. Poses are organized into
user-defined regions 𝑅, where each pose 𝑝 belongs to one region
𝑟 ∈ 𝑅. The metrics are:
• Estimation Accuracy (EA): Measures overall fit between pre-

dicted and user preferences across all poses:

𝐸𝐴 = 1 − 1
𝑛

𝑛∑︂
𝑖=1
|𝑈 ∗ (𝑖) −𝑈 (𝑖) | (9)

EA ranges from 0 to 1, with 1 indicating perfect alignment be-
tween model predictions and user preferences. This metric pro-
vides a global view of model performance across all poses.
• Spot Quality (SQ): Evaluates the quality of the parking poses

with the highest predicted score in each region:

𝑆𝑄 =
1
|𝑅 |

∑︂
𝑟 ∈𝑅

𝑈 ∗ (arg max
𝑝∈𝑃𝑟

𝑈 (𝑝)) (10)

where 𝑃𝑟 is the set of poses in region 𝑟 . SQ ranges from 0 to 1,
but notably, the maximum achievable score may be less than 1 in
regions where the best available pose(s) were marked as neutral
(0.5) rather than good (1).
• Region Agreement (RA): Agreement between model and user

preferences on whether regions should contain parking spots:

𝑃𝐴 =
number of regions where model and user agree

|𝑅 | (11)

where agreement occurs when both the model’s maximum score
in the region (max𝑝∈𝑃𝑟 𝑈 (𝑝)) and the user’s maximum score in
the region (max𝑝∈𝑃𝑟 𝑈

∗ (𝑝)) are either both ≥ 0.5 or both < 0.5.
These metrics collectively provide a comprehensive evaluation of
the model’s performance. While Estimation Accuracy provides
a overall view of model performance across the entire floorplan,
it doesn’t fully capture the nuances of parking spot selection. In
practice, a robot may only need to identify one to a few good parking
spots in each region, so the accuracy of the poses with the highest
predicted scores are important. To address these limitations, we
use Spot Quality to evaluate the model’s ability to identify the best
parking spot in each region, and Region Agreement to assess how
well the model identifies parkable and non-parkable regions across
the home. Together, these metrics provide a more comprehensive
evaluation of the model’s performance in real-world scenarios.

5 Results
5.1 Effect of Patch Size on Model Performance
As shown on the left of Figure 4, model performance improved with
patch size, achieving best overall results at 64×64 pixels (3.2m side
length), beyond which performance degraded.

Patches below 16 pixels (0.8m side length at 5cm resolution)
appeared to lack sufficient context to learn meaningful patterns.
Performance improved with increasing patch size up to 3.2m as
more relevant features (e.g., from small furniture and doorways up
to walking paths and room shapes) became visible, then declined at
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Figure 4: Left: Performance across different patch sizes for our three evaluation metrics, with walking path baseline (WP,
orange), random selection baseline (RS, red), and Ours (blue). Right: Performance comparison between 64 patch size model
and baselines. Green line indicates maximum achievable scores for each metric (1.0 for EA and RA; 0.65 average for SQ,
following [17]). Error bars show 95% bootstrapped confidence intervals. Statistical significance: *** p < 0.001, * p < 0.05.

128 pixels (6.4m), likely due to noise from irrelevant distant areas
and increased model complexity. Based on this observation, we
recommend tuning patch size to capture approximately 3.2m of
real-world context for home environments.

5.2 Comparison with Baselines
Next, we evaluate how well the best trained model captures user
preferences in comparison to two baselines, the walking path (WP)
approach [17], and random spot selection (RS). The WP baseline
provides predictions across the full floorplan, enabling comparison
on all metrics, while RS is only meaningful for spot quality as it
simply selects poses at random within each region.

As shown in Figure 4 (right), Wilcoxon signed-rank tests reveal
that the ML model significantly outperforms the WP baselines in
estimation accuracy (𝑊 = 724.5, 𝑝 < 0.001, Cohen’s |𝑑 | = 0.553,
large effect) and spot quality (𝑊 = 1199.0, 𝑝 < 0.05, Cohen’s
|𝑑 | = 0.222, small effect). No significant difference was observed
for region agreement (𝑊 = 317.5, 𝑝 = 0.608). For spot quality, both
ML and WP approaches significantly outperformed random spot
selection (RS) with small effects (ML vs RS: Cohen’s |𝑑 | = 1.08; WP
vs RS: Cohen’s |𝑑 | = 0.99, both 𝑝 < 0.001), demonstrating that both
methods were successful in identifying appropriate parking poses.

5.3 Analysis of Learned Spatial Patterns
The WP approach primarily identifies narrow corridors and bottle-
necks, so our aim in RQ3 was to understand what spatial patterns
beyond this our model had learned. We manually identified map
areas where the ML model’s predictions outperformed the WP base-
line in capturing user preferences. From these examples, we broadly
identified three categories where our model displayed noticeable
improvement across multiple floorplans, illustrated in Figure 5:

(1) Hallways: Even wide hallways make poor parking locations.
Although the WP algorithm generally identified hallways as bad
spots to park, variations in hallway width (real or perceived)
sometimes led to a mix of negative and neutral ratings, whereas
our algorithm often cleanly marked entire hallways as bad, likely
due to visually recognizing the feature as a hallway.

(2) Transitional Spaces: Sometimes major rooms or functional
spaces were connected by an opening or short passage which is
wide enough that WP judges it as good for parking. However,

we observed several cases where users marked these connecting
areas as bad, which our model successfully captured.

(3) Dead Ends: Enclosed spaces such as nooks, tight corners, bath-
rooms, and utility areas were sometimes marked as bad by users.
We observed cases where these dead ends were considered wide
enough by the WP approach but correctly evaluated as bad by
our model, possibly based on the room shapes and sizes.

In each of these scenarios, while the WP baseline measured
adequate physical space for a human and robot to pass each other,
users rated these locations poorly, ostensibly for social or functional
reasons. Our model appears to have captured enough spatial context
to better predict user preferences in these cases.

5.4 Incorporating Additional Semantic Features
One advantage of our approach is that it is straightforward to
extend the model with new types of feature layers. To evaluate this
extensibility (RQ4), we augmented the feature set with additional
semantic information for 46 of the 84 total user map annotations,
with examples shown in Figure 3. We hypothesized that features like
doors, stairs, appliances, and cabinets would be useful in identifying
bad spots for parking, so we asked users to manually label these
features on their floorplan maps during the annotation process,
providing additional feature layers for model training.

After retraining the model with these additional features, we
again observed significant improvement over the WP baseline in
estimation accuracy (𝑊 = 708.0, 𝑝 < 0.001, Cohen’s |𝑑 | = 0.553,
medium effect) and spot quality (𝑊 = 942.5, 𝑝 < 0.01, Cohen’s
|𝑑 | = 0.337, small effect). No significant difference was observed
for region agreement (𝑊 = 615.0, 𝑝 = 0.063). Compared to the RS
baseline, we observed an even stronger effect (Cohen’s |𝑑 | = 1.32,
𝑝 < 0.0001) than the model with only the basic features (|𝑑 | = 1.08).

When we compared the model with the added features to model
with the original feature set, we found no significant differences for
any of the three metrics, though we observed a slight increase in
spot quality (from 0.565 ± 0.241 to 0.583 ± 0.255, Wilcoxon signed-
rank test:𝑊 = 1604.000, 𝑝 = 0.790). Since only 54% of our dataset
was augmented with the additional features, we were not expecting
large improvements in overall performance.

We conducted a feature importance analysis using an ablation
study, measuring the observed change in overall estimation accu-
racy (Figure 6). Among the semantic features, doors emerged as
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Figure 5: Selected scenarios where ML outperformed WP (three examples per pattern). Rows: user preferences (top), baseline
WP pose quality maps (middle), ML pose quality maps (bottom). The insights of interest are circled.

the most impactful. Doors were also the most frequent feature in
our dataset (averaging 4.85 per map, std: 3.25), while stairs were
the least frequent (averaging 0.89 per map, std: 1.20). This suggests
that door recognition capabilities could be particularly valuable
for autonomous robot parking systems, aligning with prior work
emphasizing the importance of keeping doorways clear [8].

6 Discussion and Limitations
Real-time data. The method developed here is limited to static

inputs. By contrast, the majority of research into socially-aware
navigation focuses on the locations and behavior of humans [43].
A natural next step for this work would be to incorporate real-time
data about human locations and behaviors to dynamically choose
parking spots in a socially-aware way.

Robot platform. As with many initial studies in robot behav-
ior learning, our evaluation focused on a single robot platform to
establish foundational principles that could later extend to other
form factors. We expect that actual parking spot preferences may
differ for robots of different sizes or shapes, although the proposed
technique should still be an effective way to model them.

User diversity. To ensure realism of the collected preference
data, we needed to structure our experimental validation around
map annotations from users with direct robot experience, although
this limited the potential diversity of our dataset. It would be inter-
esting to collect more data across diverse users and environments
(varying home layouts, sizes and household compositions), although
doing this in practice presents significant logistical challenges [31].

Individual preferences. In our data collection we observed dif-
ferences in some individual preferences, visible in the two examples
shown in Figure 3. Selected post-hoc followup revealed some users
strongly preferred wall-adjacent parking to minimize obstruction
(right), "Always [park] near walls to be out of the way, yet accessible.
Avoid being a trip hazard", while others valued visibility and inter-
action potential (left), "[Parking in open space], that is my preference.
I prefer Astro is visible when people are around", and were less sensi-
tive to the robot being in the way, "I don’t mind him [parking] in
the middle of the room if I have enough space to walk". While these
responses support individual differences, our floorplan data alone
cannot disentangle whether variance stems from personal prefer-
ences or environmental characteristics not captured in the maps.

Figure 6: Impact of semantic features on model performance
vs. frequency per floorplan, measured through ablation.

Future work could build on these findings to support adaptation to
individual or household-specific parking behavior [20].

7 Conclusion
The vision of social robots operating autonomously in the home
environment has persisted since early prototypes like the Hero Jr.
robot kit in 1984, which highlighted the importance of robots being
accessible and ready for use without explicit instruction [25].

In this work, we presented a flexible machine learning approach
to modeling the social appropriateness of robot parking in the
home. We designed a learning framework and novel loss function
that balance accurate pose quality estimation across the floorplan
with effective region-level spot selection. Our approach was vali-
dated using a dataset of robot parking preferences collected from
84 users with at least 2 weeks of experience using the Astro robot
in their homes. Our results demonstrated that the ML approach
significantly outperformed a state-of-the-art baseline [17] in estima-
tion accuracy and spot quality. We presented examples of features
learned by the system, and we demonstrated its extensibility by
incorporating additional semantic features, leading to incremental
improvements in model performance. As robot sensing capabili-
ties continue to evolve, our approach presents an adaptable and
extensible framework that can support space selection for a variety
of intelligent social robot behaviors, not limited to parking. Four
decades after Hero Jr., this work represents another step toward
realizing the vision of robots that can seamlessly coexist in our
home environments.
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