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ABSTRACT

In this paper we introduce SimTDE, a simple knowledge distillation

framework to compress sentence embeddings transformer models

with minimal performance loss and significant size and latency

reduction. SimTDE effectively distills large and small transformers

via a compact token embedding block and a shallow encoding

block, connected with a projection layer, relaxing dimension match

requirement. SimTDE simplifies distillation loss to focus only on

token embedding and sentence embedding.We evaluate on standard

semantic textual similarity (STS) tasks and entity resolution (ER)

tasks. It achieves 99.94% of the state-of-the-art (SOTA) SimCSE-

Bert-Base performance with 3 times size reduction and 96.99%

SOTA performance with 12 times size reduction on STS tasks. It

also achieves 99.57% of teacher’s performance on multi-lingual ER

data with a tiny transformer student model of 1.4𝑀 parameters

and 5.7𝑀𝐵 size. Moreover, compared to other distilled transformers

SimTDE is 2 times faster at inference given similar size and still 1.17

times faster than a model 33% smaller (e.g. MiniLM). The easy-to-

adopt framework, strong accuracy and low latency of SimTDE can

widely enable runtime deployment of SOTA sentence embeddings.

CCS CONCEPTS

• Information systems → Language models; Similarity mea-

sures.
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1 INTRODUCTION

Sentence embeddings capture the lexical and semantic meaning of

given text and are fundamental for Information Retrieval [13]. It

allows quantitative assessment of whether text pairs share similar

meaning, e.g. semantic textual similarity (STS) task, and allows

linking between references of the same canonical entity, e.g. entity

resolution (ER) task [7]. ER is a crucial component of the spoken

language understanding pipeline for voice assistants (VAs) such as

Amazon Alexa and Apple Siri, where ER resolves entity mentions

in user utterances to actionable entities stored in catalogs [16].

The state-of-the-art (SOTA) of sentence embeddings learning

has been advanced by transformer [25] model architecture [6] [17].

However, transformer’s high computational complexity and mem-

ory consumption poses challenges to deploy SOTA sentence embed-

dings in runtime. Knowledge distillation (KD) [11] has been shown

as a promising method to compress transformer model [19] [21]

[12] [26]. KD transfers knowledge from a large teacher network to a

small student network [11], such that the student model mimics the

teacher model obtaining competitive or even superior performance.

In this paper, we introduce SimTDE, a simple yet effective trans-

former model KD framework for sentence embeddings. Existing

KD methods often start with a task-agnostic distillation design to

benchmark with BERT [5] on multiple NLP tasks and have evolved

into multi-steps distillation with complicated distillation objec-

tives which is computational costly, time consuming and constrains

the student model architecture design. Specifically, DistillBERT

[19] requires student hidden size to match with the teacher and

needs soft target probabilities in loss objectives; BERT-PKD [21]

requires layer-to-layer distillation and also soft target probabilities;

TinyBERT[12] requires layer-to-layer distillation plus hidden states

and self-attention distillation and relies on a two-stage-distillation:

general then task-specific, miniLM [26] requires self-attention dis-

tillation and distillation assistant intermediary models.

SimTDE presents a single stage distillation with loss objective

composed of only token embedding loss and output embedding

loss. For the student model we use a compact token embedding

block and a shallow encoding block connected with a projection

layer. This design offers significant latency benefits, allowing 2
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times faster than deep and narrow student architectures used in

other study [26] under similar model size. The projection layer

allows the token embedding and encoding blocks to have different

dimensions. It can effectively further compress distilled transformer

model where token embedding block takes up a major size portion.

In the encoding block, SimTDE keeps the same dimension as the

teacher with a reduced number of transformer layers. We initialize

encoder with teacher’s weights without additional hidden layer

and self-attention distillation.

We summarize our main contributions as follows: (1) We propose

a simple yet novel KD framwork, SimTDE, to effectively compress

large and small transformer-based sentence embedding models. (2)

We conduct extensive experiments and demonstrate SimTDE can

achieve 99.94% of SOTA SimCSE-bert-base performance with 𝑋3

size reduction and 96.99% SOTA performance with 𝑋12 size reduc-

tion on STS tasks. Additionally, it achieves > 99.5% of teacher’s

performance on multi-lingual ER data set with a tiny transformer

student model of 1.4𝑀 parameters and 5.7𝑀𝑏 size. (3) We compare

SimTDE inference time with a collection of transformer models

and demonstrate at least 𝑋3 faster than teacher and 𝑋2 faster than

other distilled student of the same size.

Figure 1: SimTDE framework overview

2 RELATEDWORK

Universal sentence embeddings learning has been extensively stud-

ied in literature such as InferSent [4], Universal Sentence Encoder

[3] and Sentence-BERT [17]. Recently, researchers have adopted

new techniques for further improvement, such as data augmenta-

tion and contrastive learning. ConSERT [28] uses a combination of

four data augmentation strategies: adversarial attack, token shuf-

fling, cut-off, and dropout. SimCSE [6] proposes a simple yet effec-

tive approach with contrastive objectives and dropout noises and

advances state-of-the-art performance.

Model compression techniques [9] aim to reduce model size

and accelerate inference while preserving performance on target

tasks. Common approaches of model compression includes quanti-

zation which uses fewer bits to represent parameter weights [8],

weight pruning [10] which reduce or dilute network connections

and knowledge distillation that extract desired knowledge from

teacher model and distill it into a student model of smaller size

[18, 22, 23]. Knowledge distillation has proven to be a promis-

ing method for model compression. [11] first proposed using the

soft target distribution to train the student model and impart the

knowledge of teachers to students. DistilBERT [19] uses soft-label

cross-entropy loss and cosine hidden-state embedding loss between

teacher and student. It requires the student to have the same hid-

den size as the teacher. BERT-PKD [21] further incorporates loss

from output of intermediate transformer layers. TinyBERT [12]

adds additional self-attention distillation. It introduces learnable

projection matrices between teacher and student layers to remove

the limit on model compression but requires layer-to-layer distil-

lation and needs a general and a task-specific distillation stage.

MiniLM [26] further improves with deep self-attention distillation

and introduces a intermediary teacher assistant model.

3 METHODOLOGY

SimTDE’s framework is illustrated in Figure 1. We first propose a

compact token embedding block. Specifically, we define 𝑑𝑇𝐸
𝑆

<<

𝑑𝑇𝐸
𝑇

where 𝑑𝑇𝐸
𝑆

and 𝑑𝑇𝐸
𝑇

are the token embedding dimension of the

student and teacher model. The total reduction effect is factored

by the vocabulary size 𝑣 (𝑣 >> 𝑑𝑇𝐸
𝑆/𝑇 ). For a large transformer

model, this easily reduces size with minimal performance impact.

For a compact transformer model, this further reduces model size

significantly as the token embedding layer consumes a major size

portion, e.g. token embedding accounts for 55% of MiniLM-384-L6

parameters and 91% of BertTiny-128-L2.

For the encoding block, we propose to use a shallow and wide

block which demonstrates better performance and significant la-

tency improvement (See Section 4) compared to a narrow and

deep design [26]. Our encoding layers dimension matches with

the teacher’s instead of the student token embedding as in [12] [26],

and we reduce the number of encoding layer to 𝐾 . We introduce

a projection layer to align the compact token embedding output

with the teacher encoding dimension. This does not need learn-

able projection matrices to distill every hidden layer [12] which is

computationally intensive. With the aligned dimension, we further

simplify the framework to reuse the selected last 𝐾 teacher encoder

layers’ weights to initialize the student encoder without additional

layer-to-layer distillation as in [21]. This allows a simple loss objec-

tive composed of only the token embedding and output embedding

distillation. We introduce a hyper-parameter 𝛼 to adjust the weight

of each loss component (𝛼 = 0.5 in our experiments), detailed as

follows:

𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑇 = 𝐸𝑚𝑏𝑇 (𝐼𝑇 ), 𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑆 = 𝐸𝑚𝑏𝑆 (𝐼𝑆 ) (1)

𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏
𝑝𝑟𝑜 𝑗

𝑆
= 𝑃𝑟𝑜 𝑗 (𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑆 ) (2)

𝐿𝑇𝐸 = 𝑀𝑆𝐸 (𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑝𝑟𝑜 𝑗
𝑆

,𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑇 ), (3)

𝐿𝑆𝐸 = 𝑀𝑆𝐸 (𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸𝑚𝑏𝑆 , 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸𝑚𝑏𝑇 ) (4)

𝐿𝐾𝐷 = 𝛼𝐿𝑇𝐸 + (1 − 𝛼)𝐿𝑆𝐸 (5)

where 𝑆 and 𝑇 are the subscription labels student and teacher

networks respectively; 𝐼 is the tokenized input; 𝐸𝑚𝑏 is the token

embedding layer; 𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏 is the generated token embedding

(𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑇 ∈ R𝑑𝑇𝐸
𝑇

×𝑣
, 𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏𝑆 ∈ R𝑑𝑇𝐸

𝑆
×𝑣
); 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸𝑚𝑏 is

the generated sentence embedding; 𝑃𝑟𝑜 𝑗 is the added projection

layer; 𝑇𝑜𝑘𝑒𝑛𝐸𝑚𝑏
𝑝𝑟𝑜 𝑗

𝑆
∈ R𝑑𝑇𝐸

𝑇
×𝑣

is the projected student token

embedding which has the same dimension as the teacher; 𝐿𝐾𝐷
is the full distillation loss composed of the token embedding loss

𝐿𝑇𝐸 and the sentence embedding loss 𝐿𝑆𝐸 . It is worth noting that

we relax the distillation from using ground truth label. We fully

rely on the intermediary and final output of the teacher model in
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a semi-supervised manner. Therefore, no labeled training data is

needed which can reduce data annotation cost.

4 EXPERIMENT

We conduct our experiments on standard semantic textual similarity

(STS) task and Entity Resolution (ER) task. Our STS tasks follow a

zero shot setup where STS data sets are only used in testing and

not involved in model training. Full model is constructed with a

dual-encoder design [17], which holds a sentence embedding model

in siamese and triplet network structures and derive embeddings

for each sentence to a common embedding space for similarity

comparison. This is widely used for runtime sentence-pair modeling

and has inference speed advantage over cross-encoder.

All models use AdamW [14] as the optimizer. In all tasks, un-

less noted otherwise, we create final representations using mean

pooling over all tokens. We train our base models (e.g. small model

without KD) on a server with 4 * V100 (16GB) GPUs and distill

from large models on a server with 8 * A100 (40GB) GPUs. All main

experiments have the same fixed random seed.

4.1 Semantic Textual Similarity (STS) task

STS is a standard natural language processing task to quantitatively

assess the semantic similarity between text pairs. Following [6, 17,

20], we use Spearman rank correlation to measure the correlation

quality between calculated similarity and human labels to assess

the performance on 7 STS tasks from STS Benchmark [2] and SICK-

Relatedness [15]. Spearman correlation ranges from -1 and 1 and

increases when predicted similarities ranks align with groundtruth.

We use large (supervised-SimCSE-Bert-Base) and compact (MiniLM)

transformer as our teacher models and distill student models to

different sizes using SimTDE. We implemented supervised-SimCSE-

Bert-Base according to [6] and trained model with QQP, QNLI,

MRPC, NLI datasets: SNLI [1], MNLI [27] and NLI for SimCSE [6].

Next, we compare our SimTDE students model with SOTA sen-

tence embedding models including Sentence BERT models [17],

SimCSE [6] and recent TENC-mutual [13], and we also compare

with different KD methods. Comparisons are performed in the

aspects of accuracy and model size, measured by the number of

parameters. Lastly, we perform inference time analysis of models

with different size and distilled with different methods.

4.2 Entity Resolution (ER) Task

ER in voice assistants resolves entity mentions in user utterance,

query, with canonical entities from catalogs, during which query

and each catalog entity are paired up for relevancy prediction.

The performance is measured by Recall@1(R@1) which calculates

the percentage that the predicted top-1 relevant entity of a given

query matches the groundtruth. We construct the data set from

radio station voice search in 5 European languages: Italian, German,

English, French and Spanish, in the format of (query, entity, binary
label). Train, dev, test data size are respectively 11M, 1M and 1M.

In the ER tasks, we use SimTDE to push already compact trans-

former model to extreme to enable application under limited compu-

tational resources and tiny footprint budget (e.g. edge devices). We

use 17MB BERT-Tiny [24] model with 128 embedding dimension

and 2 transformer encoding layers as teacher and distill student

models to size below 10MB while having strong performance.

4.3 Results

Accuracy: Table 1 shows that via proposed SimTDE the student

model achieves 99.94% of SOTA STS performance, exceeding widely

used SentenceBert embedding by 7.5%, while having 31% size reduc-

tion. Also, SimTDE is capable of further distilling compact trans-

former model and achieves 96.99% of SOTA STS performance, ex-

ceeding SentenceBert embedding by 4.27% [17], while having 9% of

the size. Specifically, we denotemodel in the convention of𝑚𝑒𝑡ℎ𝑜𝑑−
𝑡𝑜𝑘𝑒𝑛_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑑𝑖𝑚−𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑙𝑎𝑦𝑒𝑟_𝑛𝑢𝑚(𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑙𝑎𝑦𝑒𝑟_𝑑𝑖𝑚).
The SimTDE-384-L3(768) student model is distilled from supervised-

SimCSE-Bert-Base by reducing the token embedding size from 768

to 384 and reducing the encoding layer number from 12 to 3, and

initialize with the last 3 encoder layers’ weights from teacher. The

SimTDE-128-L3(384) student model is distilled from MiniLM by re-

ducing the token embedding size from 384 to 128 and reducing the

encoding layer from 6 to 3 and with similar initialization strategy.

In Table 2, we compare SimTDE with other KD methods: 1)

Layer Reduction KD (LRN-KD): distill a small model with the same

hidden size as the teacher and reduce the encoder layers inspired

by BERT-PKD [21], but we did not use target soft probabilities to

keep the semi-supervised setting. The LRN-KD-768-L2(768) student

model has a token embedding dimension of 768 and 2 encoding

layer of 768D (last 2 layers from teacher) 2) Learnable Matrix KD

(LMX-KD): build a small BERT model with smaller hidden size and

add learnable linear projection matrices to perform layer-to-layer

distillation inspired by Tiny-Bert [12]. We only distill the hidden

states not the self-attention in the encoding block and the training

time per epoch is already 𝑋5 longer. The LMX-KD-384-L12(384)

student model has a token embedding dimension of 384 and 12

encoding layer of 384D (distilled each layer from teacher). SimTDE

demonstrates superior performance than both.

Besides distilling large transformer model, we also distill from al-

ready compact transformer. To our knowledge this has been rarely

explored in other sentence embedding distillation literature which

often directly fine tunes the compact model on target tasks. Our

SimTDE allows for different distillation strategy in token embed-

ding and encoding blocks, focusing on dimension size reduction

and depth reduction respectively. When the encoding block is al-

ready shallow we can still effectively reduce the overall size by

compacting token embedding. On STS task, Table 2 demonstrates

that SimTDE is able to distill MiniLM to 41.85% of the size while

retaining 99.00% of the performance. On ER task, Table 3 shows

that SimTDE is able to retain 99.57% of the BERT-Tiny-128-L2(128)

teacher model’s performance while having 31.82% of its size and

only takes up 5.7𝑀𝑏 storage. SimTDE-32-L2(128) reduces the token

embedding size from 128 to 32, retains 2 encoding layer structure

as the teacher and uses teacher’s weights for initialization. These

extremely small models should enable wider runtime application

of transformer sentence embedding models even on edge devices

with low footprint budget and computational resources.

Inference Speed: To assess the latency benefit, we compare the

inference time for a full pass over STS-B (1379 pairs) on CPU using

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1. The statistics is an average from 3 runs. Table 4
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Table 1: SimTDE performance comparison with SOTA sentence embeddings models. SBERT models’ performances are cited from [6], TENC-

mutual’s performance is cited from [13] and SimCSE result is from self-implementation according to [6]

Model STS12 STS13 STS14 STS15 STS16 SICKR STSB Average Params

SBERT-base 70.97 76.53 73.19 79.09 74.3 72.91 77.03 74.89 109.5M

SBERT-base-flow 69.78 77.27 74.35 82.01 77.46 76.21 79.12 76.60 109.5M

SBERT-base-whitening 69.65 77.57 74.66 82.27 78.39 76.91 79.52 77.00 109.5M

TENC-mutual 75.09 85.10 77.90 85.08 83.05 72.76 83.90 80.41 109.5M

SimCSE-bert-base 75.47 82.40 76.78 85.36 80.71 80.22 82.69 80.52 109.5M

SimTDE-384-L3(768):Base 75.44 83.06 77.24 85.35 80.60 79.66 81.93 80.47 34.1M

SimTDE-128-L3(384):Small 73.44 77.82 74.30 84.18 79.35 76.49 81.04 78.09 9.5M

Table 2: SimTDE performance comparison with other distillation methods and ablation study on SimTDE:Base

Model STS12 STS13 STS14 STS15 STS16 SICKR STSB Average %SimCSE (%Tcher) Params

Tchr:SimCSE-768-L12(768) 75.47 82.40 76.78 85.36 80.71 80.22 82.69 80.52 100.00% 109.5M

LRN-KD-768-L2(768) 74.00 81.13 75.94 84.60 79.75 78.59 80.78 79.53 98.77% 38.4M

LMX-KD-384-L12(384) 75.11 80.03 75.39 83.76 79.43 79.09 80.97 79.11 98.25% 33.4M

SimTDE-384-L3(768):Base 75.44 83.06 77.24 85.35 80.60 79.66 81.93 80.47 99.94% 34.1M

- Encoding layer reduction 75.96 82.10 77.26 85.39 80.36 79.96 82.36 80.51 99.99% 97.9M

+ Hidden states distillation 74.63 81.95 76.35 84.84 79.82 78.98 81.06 79.66 98.94% 34.1M

- Token embedding loss 75.02 82.42 77.11 84.95 80.46 79.49 81.87 80.19 99.59% 34.1M

Tchr:MiniLM-384-L6(384) 72.37 80.60 75.60 85.39 78.99 77.15 82.03 78.87 97.96% (100%) 22.7M

SimTDE-128-L3(384):Small 73.44 77.82 74.30 84.18 79.35 76.49 81.04 78.09 96.99% (99.00%) 9.5M

Table 3: SimTDE performance on ER multi-lingual data in relative terms w.r.t to the BertTiny teacher performance

Model German English Spanish French Italian Average Params TokEmbParams Size

Tchr: BertTiny-128-L2(128) - - - - - - 4.4M 4M 17.6 MB

SimTDE-64-L2(128) +0.32% -1.26% +0.31% +1.09% -0.05% +0.09% 2.4M 2M 9.7 MB

SimTDE-32-L2(128) -0.17% -0.89% -0.12% -0.39% -0.53% -0.43% 1.4M 1M 5.7MB

Table 4: Inference time comparison

Model Params Time (seconds)

SimCSE-BERT-base-768-L12(768) 109.5M 55.3 (X1)

LMX-KD: BERT-base-384-L12(384) 33.4M 37.3 (X1.5)

MiniLM: BERT-base-384-L6(384) 22.7M 22.0 (X2.5)

SimTDE-384-L3(768):Base 34.1M 18.7 (X3)

SimTDE-128-L3(384):Small 9.5M 14.0 (X4)

illustrates that SimTDE:Base is 𝑋3 faster than the teacher model;

𝑋2 faster than LMX-KD model which adopts a deep and narrow

student structure (i.e 12 encoding layers of 384𝐷), despite of similar

size; 25% faster than MiniLM which also adopts a deep and narrow

student structure (i.e 6 encoding layers of 384𝐷) and is 33% smaller.

Our results indicate that the number of transformer layer is more

latency costly than its dimension when running on CPU which

is most common in runtime deployment. This also explains that

although SimTDE:Small is 𝑋3 smaller in size than SimTDE:Base,

having the same number of encoding layers, its inference is only

𝑋1.3 faster.

Ablation Study: As shown in Table 2, we first remove the to-

ken embedding layer number reduction and only use a compact

token embedding with a projection layer. It demonstrates that a

compact token embedding merely drops the performance of a large

transform by 0.01% while the size reduces 11%, which is very effec-

tive. Next, we replace the encoder layer initialization with teacher’s

weight in SimTDE by layer-to-layer distillation (last 3 layers from

teacher). However, this method results 1% worse performance. We

suspect the model performs better with retrained encoding layers

instead of pegged distillation to specific teacher encoder layer. It

is possible the results can improve if we perform more advanced

layer mapping. Nevertheless, this requires additional loss objective

and computation compared to our proposal. We also investigate the

effects of token embedding loss component and observe consistent

performance improvement in every single STS task with 𝐿𝑇𝐸 by

up to 0.77% indicating the necessity of this component. Lastly, we

assess the effects of various forms of output loss component calcu-

lation, such as MSE loss and KL divergence loss on the sentence

embedding, and MSE and MAE loss on the cosine similarity em-

beddings pairs. MSE loss on the output sentence embedding mildly

outperforms the others and become our choice.

5 CONCLUSION

We propose SimTDE to compress large and compact transformer

models for sentence embeddings. This easy-to-adopt framework

with strong accuracy and low latency can widely enable runtime

deployment of SOTA sentence embeddings, even on edge devices

with limited footprint budget and computational resources. We

demonstrate that SimTDE generates high-quality sentence embed-

dings comparable to SOTA models with a fraction of their sizes.

On STS tasks, it achieves 99.95% of SOTA performance with
1

3
size

and 96.99% of performance with
1

12
size. On ER tasks, SimTDE

compresses a compact transformer model to 1.4M parameters and

5.7𝑀𝑏 while retaining 99.57% of teacher’s performance. In inference,

SimTDE:Base is𝑋3 faster than teacher and𝑋2 faster than other dis-

tilled transformer of similar size; SimTDE:Small is 𝑋4 times faster

than teacher. Our current approach aims to maximally transfer

knowledge from teacher. Next, it will be interesting to explore fine-

tuning techniques (e.g. data augmentation) to further advance the

student’s performance. Another direction is to compound different

compression techniques for additional size and latency reduction.
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