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Improved Color Modeling in Different Color Spaces
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Abstract

We present a model that grounds color com-
parative adjectives in 2 different color spaces.
We find that modifiers represented as vectors
from reference colors to target colors show
different behaviors in RGB and HSV color
space. Based on this finding we design mod-
els that primarily improve modeling of color
related modifiers, such as ”pinkish”. In exper-
iments, we pre-train basic models in different
color spaces and train hard and soft ensemble
models. Experimental results show significant
and consistent improvements compared to the
state-of-the-art baseline model.

1 Introduction

Comparative color descriptions are employed to
describe colors which are not covered by ba-
sic colors terms (Monroe et al., 2017), for in-
stance, ”greenish blue” cannot be expressed by
only ”blue” or ”green”. Comparative descriptions
are essential for image captioning (Karpathy and
Fei-Fei, 2015), object recognition (van de Sande
et al., 2010) and other grounded language under-
standing problems.

In this paper, we present models that are able to
predict a target color given a reference color and a
modifier. For example, for the triple (“red”, “pink-
ish”, “pinkish red” ) in RGB space, r, m and t are
three strings which refer to “red”, “pinkish” and
“pinkish red” respectively. In addition, vectors ~r
and ~t are the corresponding RGB codes for r and
t. According to Munroe (2010), in this example
~r =

[
229 0 0

]> and ~t =
[
241 12 69

]>.
The recent state-of-the-art model (Winn and

Muresan, 2018) learns a vector ~m as a function
of ~r and m such that ~t = ~r + ~m. We note that
this model simply represents a modifier as a set of
vectors with almost the same direction in different
situations, and as a result, it fails to model mod-

Figure 1: Each arrow refers to a ~m. (a) and (c) show
~mi in RGB space and HSV space where i ∈ { i |mi =
“dirty”}. Similarly, (b) and (d) show ~mj in RGB space
and HSV space where j ∈ { j |mj = ‘dark”}.

ifiers with complex transformations, for example,
color related modifiers, like “greenish”.

As shown in Figure 1, vectors show local con-
vergence in RGB space and local parallels in HSV
space. That is, their behavior is correlated to r in
each instance. Since ~m shows different patterns in
RGB and HSV, we present the two types of mod-
els: RGB model and the HSV model. In addi-
tion, combining the RGB model and HSV model,
we trained a hard ensemble model to select which
space should be used for prediction given a certain
(~r,m) pair.

Experiments show that our hard ensemble
model achieves state-of-the-art performance in
terms of both Cosine similarity and the Delta-E
evaluation metric.

2 Methods

Here we describe the methods employed for color
modeling. Formally, the task is to predict a target
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color t in RGB space from a reference color r and
a modifier m. These three objects are represented
as vectors which we call ~t, ~r and ~m, respectively.

2.1 Baseline

Winn and Muresan (2018) present a model
(WM18) which represents a vector ~m ∈ R3 as
a function of (m, ~r) pointing from a reference
color vector ~r to the target color vector ~t, such that
~t = ~r + ~m. In the simplest case the modifier m
does not depend on the reference color r and can
thus be represented by the same vector for all col-
ors. This assumption, however, does not hold in
all situations. For example, when predicting an in-
stance with “greenish” as the modifier, WM18 get
a ~m with cosine similarity −0.76 which is in the
almost opposite direction.

In order to resolve this problem, we model mod-
ifiers in both RGB and HSV space and train a
model for color space selection.

Diagonal Covariance For our Diagonal Covari-
ance model(DC), instead of being modeled as a
vector from ~r to ~t, ~m which is a function of m is
represented as a point in RGB space. Given ~r and
m, to predict the ~t, ~m is predicted first. Based on
the prediction, we model the target as

~t = ~r + αm × (~m− ~r), (1)

where αm ∈ [0, 1] is a scalar which only depends
on m and measures the distance from ~r to ~m.
Given the error term ε ∼ N (~0, σI3×3), for any
αm, the probability density function of the Gaus-
sian distribution of the ~t is as follows:

f(~ti) = N (~ti; ~µi, σI3×3), (2)

where ~µi = ~r+αm× (~m−~r) (see Equation (1)).
Thus DC is trained to minimize the following

loss:

L =
1

n

n∑
i=1

(~ti − t̂i)>(~ti − t̂i) (3)

where ~ti is the target vector in each instance and t̂i
is the prediction.

General We note that vectors ~mi are not strictly
convergent. To overcome this problem, we pro-
pose a general model in RGB space:

~t =M~r + ~β (4)

Figure 2: a) the RGB color space. b) the HSV color
space. Images by Michael Horvath, available under
Creative Commons Attribution-Share Alike 3.0 Un-
ported license.

Where M is the transformation matrix and ~β is a
modifier vector which is designed to capture the
information of m. With a more general defini-
tion, we expect the general model to do better.
Note that, when setting M = σI3×3(1− αm) and
~β = αm ~m, this model is exactly the same as our
DC model. Moreover, WM18 is also a specific sit-
uation of general RGB model where M is a 3× 3
identity matrix and ~β is the same as ~m.

2.2 Modeling in HSV space
Compared with RGB space, when modeling modi-
fiers in HSV space, there are two main differences:
angular dimension and modifiers behaviors. As
shown in figure 2, HSV space can be represented
as a cylindrical geometry with hue as the angular
dimension. The hue value starts at the red primary
at 0, passes a circle and goes back to red at 2π.
As a result, the normal distribution model is not
suitable for hue values. For example, when mod-
eling the color ”red”, the point with hue value 2π
equals the point with hue value 0 which can not
be learned by the mean square error loss function
since the losses of them are totally different.

The other difference is modifier behavior in
HSV space. We note that, instead of converging
to a point in RGB space, for a certain modifier,
vectors from reference colors to target colors are
more likely to be parallel with each other.

Since modifiers in HSV space show parallel fea-
ture, a modifier m will be modelled as a vector
from ~r to ~t in HSV space:

~t = ~r + ~m (5)

Here ~m is a function of both m and ~r. In addition,
comparative modeling will be split into two parts:
modeling “hue” dimension as von Mises distribu-
tion and other dimensions together as a bivariate
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normal distribution. The probability density of the
von Mises distribution of the hue dimension is as
follows:

f(x) =
exp (k cos (x− µ))

2πI0(k)
. (6)

The mean value µ represents the center of hue
dimension, k is a measure of distribution shape
and I0(k) is the modified Bessel function of order
0.

When training the model, the parameter k is re-
garded as a fixed but unknown constant number,
thus the loss function that used for training this
model, as a result, is as follows:

L = 1− 1

n

n∑
i=1

cos (hi − ĥi) (7)

where hi is the hue value of the target color in
each instance and ĥi is the prediction. Because the
range of the cosine function is [−1, 1], the range
of this loss function is [0, 2] and the loss equals 0
if and only if (hi − ĥi) mod 2π = 0 for all i.

2.3 Ensemble model
Based on the different modifier behaviors, using
the above models, we define 2 ensemble models.
The main idea is some modifiers are easier to rep-
resent in RGB space while others are modeled bet-
ter in HSV space.

Hard Ensemble When treating the problem as
binary classification, we apply the above general
RGB model and HSV model (see Equation 4 and
Equation 5) to get the predictions and convert
HSV predictions into RGB space. Then the hard
ensemble is trained to predict which color space
should be used based on the modifier m and the
reference vector ~r. The probability of each model
that be chosen is:

~p = softmax(~m) (8)

where ~p is a 2-D vector which indicates the prob-
ability of each model being selected and m is the
modifier.

Soft Ensemble Alternatively, we can compute a
weighted sum over the 2 models. For this model,
the final prediction t̂i is as follows:

pj = softmax(~m) (9)

t̂ =
∑
j

pj t̂j (10)

where t̂j is the prediction of model j for j ∈
{1, 2}.

3 Experiments

3.1 Dataset

The dataset used to train the evaluate our model
includes 415 triples(reference color label(r), com-
parative adjective(m), and target color label(t))
in RGB space presented by Winn and Muresan
(2018). Munroe (2010) collected original dataset
XKCD consists of color description pairs col-
lected in an open online survey and dataset was
filtered by McMahan and McMahan and Stone
(2015). Winn and Muresan process color labels
and convert pairs to triples with 79 unique refer-
ence color labels and 81 unique comparatives.

Note that we train models in both RGB and
HSV color space but samples in WM18 are only
presented in RGB space. In addition, compara-
tives show the general information between r and
t so we use the same approach as Winn and Mure-
san did: using the mean value of a set of points for
a certain color to represent it.

3.2 Experiment Setup

Model configuration: All models in this pa-
per are initialized with Google’s pretrained 300-D
word2vec embeddings (Mikolov et al., 2013b,a).
Those are not updated during training. The single
models trained over 800 epochs with batch size
16 and 0.1 learning rate. The hyper-parameters
for the two ensemble models are as follows: 2000
epochs, 32 batch size, and 0.1 learning rate.

Architecture: Our models are all multilayer
perceptrons. An input modifier is represented
as a vector by word2vec pretrained embeddings
and followed by two fully connected layers(FC1

and FC2) with size 32 and 16 respectively. Let
h1 be the hidden state of FC2 then h1 =
FC2(FC1(~r, word2vec(m)), ~r). ~r is used as an
input for both FC1 and FC2. After FC2, all the
other layers are based on hidden state h1.

Besides the discussed loss functions(Equation 3
and Equation 7), we add one more metric: cosine
distances between (~t−~r) and t̂−~r which measure
the differences in direction.

Evaluation: Following Winn and Muresan
(2018), we evaluate the performance in 5 distinct
input conditions: (1) Seen Pairings. The triple
(r,m, t) has been seen when training models.
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Cosine Similarity ± SD
Test Condition General WM18 HSV Hard Reported
Seen Pairings 0.995±0.004 0.977±0.004 0.897±0.062 0.995±0.005 0.68

Unseen Pairings 0.810±0.006 0.779±0.005 0.711±0.072 0.819±0.004 0.68
Unseen Ref. Color 0.958±0.018 0.801±0.006 0.791±0.031 0.966±0.002 0.40

Unseen Comparative 0.453±0.013 0.408±0.018 0.341±0.027 0.450±0.001 0.41
Fully Unseen -0.464±0.199 -0.147±0.077 0.382±0.514 -0.606±0.423 -0.21

Overall 0.850±0.002 0.819±0.819 0.750±0.005 0.852±0.001 0.65
Delta-E ± SD

Overall 6.51±0.079 6.47±0.193 8.73±1.969 6.37±0.317 6.8

Table 1: Average cosine similarity score and average Delta-E distance. A smaller Delta-E distance means a less
significant difference between two colors. Bold: best performance. General: general RGB model. HSV: the model
trained in HSV space. Hard: the hard ensemble model. Reported: the original performance which is shown in
WM18 paper.

(2) Unseen Pairings. Both r and m have been
seen in training data, but not the triple (r,m, t).
(3) Unseen Ref. Color. r has not been seen in
training, while m has been seen. (4) Unseen
Comparative. m has not been seen in training,
while r has been seen. (5) Fully Unseen. Neither
r nor m have been seen in training.

Because of the small size of the dataset, we re-
port the average performance over 5 runs with dif-
ferent random seeds. Two scores, cosine similar-
ity and Delta-E are applied for evaluating the per-
formance. Cosine similarity measures the differ-
ence in terms of vector direction in color space and
Delta-E is a non-uniformity metric for measuring
color differences.

A small dataset, in addition, leads to another
problem: the splitting strategy for training and
testing dataset significantly influence the model
performance. To ensure a fair comparison to
WM18 we evaluate its performance on our own
dataset.

3.3 Results and Discussion

As shown in Table 1, our hard ensemble model
present clear improvements in terms of both Co-
sine similarity score and Delta-E distance.

Besides the above models, our DC model is a
very specific RGB model where the prediction of
~m does not rely on the reference vector ~r. As a
result, it gets 0.73 overall cosine similarity score
and 6.9 Delta-E. Although the DC model is not as
good as WM18, it is useful for explaining the rela-
tionship between predictions and convergence be-
haviour in RGB space. According to Equation 1,
αm does not depend on ~r, so by setting ~r as any
2 different vector, we could compute the conver-

gence point and distance scalar.
It is reasonable that the General model achieves

the best performance because of the general defini-
tion and a larger number of parameters. Compared
with WM18, the main improvement of the general
model comes from unseen reference color con-
dition which indicates that our model learns the
more general pattern of modifiers in RGB space.

On the other hand, modifiers show specific fea-
tures in different color spaces. Both the soft model
and hard ensemble model are designed based on
the same basic models but the different ideas leads
to significant performance differences: the hard
ensemble (0.852 cosine similarity) is much bet-
ter than soft ensemble one(0.813 cosine similar-
ity). The reason why hard ensemble works better
is color behavior. Behaviors are more likely to be
learned in a certain color space, in this case, the
classifier model selects one model based onm and
~r in an instance to make predictions works better
than soft ensemble which computes weighted sum
of predictions.

4 Conclusion and future work

In this paper, we introduce behaviors of color com-
parative adjectives, present RGB and HSV models
and show a hard ensemble model which achieves
state-of-the-art performance. Our model can also
learn the convergence points in color space and
can be used for making predictions.

One extension is the use of convergence point.
We plan to train a model based on XKCD dataset
which learns the convergence point for each mod-
ifier, and use it as a pre-trained model that can be
used as word2vec, given modifiers, our this model
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can provide convergence point as inputs for other
models.
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