
Howdy Y’all: An Alexa TaskBot

Majid Alfifi, Xiangjue Dong, Timo Feldman, Allen Lin, Karthic Madanagopal, Aditya Pethe,
Maria Teleki, Zhuoer Wang, Ziwei Zhu, James Caverlee

Texas A&M University College Station, TX, USA

{majid, xj.dong, feldman.timo, al001, karthic11, apethe100}@tamu.edu
{mariateleki, wang, zhuziwei, caverlee}@tamu.edu

Abstract

In this paper, we present Howdy Y’all, a multi-modal task-oriented dialogue
agent developed for the 2021-2022 Alexa Prize TaskBot competition. Our design
principles guiding Howdy Y’all aim for high user satisfaction through friendly
and trustworthy encounters, minimization of negative conversation edge cases,
and wide coverage over many tasks. Hence, Howdy Y’all is built upon a rapid
prototyping platform to enable fast experimentation and powered by four key
innovations to enable this vision: (i) First, it combines a rules, phonetic matching,
and a transformer-based approach for robust intent understanding. (ii) Second, to
accurately elicit user preferences and guide users to the right task, Howdy Y’all
is powered by a contrastive learning search framework over sentence embeddings
and a conversational recommender for eliciting preferences. (iii) Third, to support
a variety of user question types, it introduces a new data augmentation method for
question generation and a self-supervised answer selection approach for improving
question answering. (iv) Finally, to help motivate our users and keep them engaged,
we design an emotional conversation tracker that provides empathetic responses to
keep users engaged and a monitor of conversation quality.

1 Introduction

Conversational AI is advancing rapidly, with considerable efforts targeted at improving social chatbots
(Adiwardana et al., 2020), intelligent assistants like Alexa and Siri, and conversational search and
recommendation (Zhang et al., 2018; Jannach et al., 2021), among others. In this paper, we describe
the design of Howdy Y’all, a task-oriented conversational system that helps users complete tasks
as part of the 2021-2022 Alexa TaskBot Challenge. Compared to open-domain dialogue systems –
which aim to chat with users about a variety of topics to maximize user engagement – task-oriented
systems aim to help users find the right task, guide the user through the steps of completing the
task, and help the user if they face (unexpected) difficulties. Hence, key challenges include correctly
understanding the user need, finding the right task from a collection of candidate tasks, assisting
the user in accomplishing the task, and monitoring the flow of the conversation as it evolves. In the
following, we first describe the overall system architecture of Howdy Y’all before moving on to the
key research innovations.

1.1 System Overview

Howdy Y’all is implemented using the Cobot framework provided by the Alexa Prize team on AWS
services. A user invokes our Alexa skill which sends a multimodal request to our AWS Lambda
function which in turn performs the following operations: (i) It performs global intent handling using
the multimodal input; (ii) It dispatches parallel requests passing the text input to evaluate multiple
NLP components remotely, including Coreference Resolution, Noun Phrase Extraction, and Named
Entity Recognition; (iii) It dispatches parallel requests to run the following components remotely:

1st Proceedings of Alexa Prize TaskBot (Alexa Prize 2021).

• Domain Classifier. This component classifies the text input into one of the following cate-
gories: DIY, RECIPE, MEDICAL, PROFESSIONAL, FINANCIAL, LEGAL, DANGER,
OTHERS.

• Intent Classifier. This is a transformer-based model that classifies user utterances into several
intents, as discussed in Section 2.

• Task Search. For DIY tasks, we rely on a BERT-based model finetuned on a large WikiHow
dataset that is served using FAISS, a library for efficient similarity search and clustering
of dense vectors Johnson et al. (2019). For recipe tasks, we follow a similar approach
(finetuning instead on a WholeFood dataset), plus an additional sentence embedding based
on contrastive learning Gao et al. (2021) over a large recipe dataset Majumder et al. (2019).

• Question Answering. To answer questions, we have a suite of question answering modules,
as detailed in Section 4

and (iv) it passes the values to response generators (RGs) for Recipes, DIY, Recommendation, Chit-
chat, Empathy, Functional capabilities (like set a timer), and Utilities. The Utility RGs are Fallback,
Help, and Transition RGs. When all other non-utility RGs fail to produce a suitable response, the
system first checks the Help RG to see whether there are help messages based on user state. For
example, if the user has difficulty in navigating the steps, the Help RG will respond with “You can
navigate the steps by saying: next, previous, repeat or go to step number”. If there are no help
messages for that state, we resort to the Fallback RG with a generic fallback (e.g. “Say: help, and I’ll
read you the available options!”).

Howdy Y'all
Dashboard Conversations

Store

Howdy Y'all
Taskbot

Finetune
models

Monitor convos
Track Issues
Annotate utterances
Integration Testing

user: Hi
bot: Hi this is..
user: How to..
bot: Here is..

scenario.txt

generate test case

run test case

events.json
validation.py

Figure 1: Howdy Y’all Rapid Prototyping Platform. The dashboard is used to monitor the conversa-
tions in real time and to provide annotations on user utterances. This labeled dataset is later used
to fine-tune models (like for intent classification and question answering). In addition, the platform
makes it easy to generate integration test cases whenever a change is made to the code base.

1.2 Rapid Prototyping Platform

The overall system architecture is part of a custom rapid prototyping platform we have developed to
enable fast experimentation and automated integration testing as illustrated in Figure 1.

Howdy Y’all dashboard. The dashboard stores all of the conversations along with their details
(e.g., the user utterance, bot response, which response generator was selected, the intent label, and so
on). Further, the dashboard supports annotation so that our team can generate labeled training data
for our core components (e.g., labeling the correct intent for each utterance). This supports rapid
experimentation, where we can train new models that are then tested over this labeled data. The
dashboard also supports conversation labeling, so we can identify conversations that faced difficulties.

Automated integration testing framework. We also designed a complementary testing framework
that enables automated integration tests to ensure bug fixes and new features do not break the
functionality of the system. The framework extends the Cobot SDK by (i) providing a script
generate_test.sh that takes a directory (e.g. testcase_select_by_title) which has a required file called
scenario.txt that contains pairs of user utterances and bot responses. The framework will automatically
generate two more files in this directory namely events.json and validation.py. The whole directory
becomes a single test case and the only thing required by the developer is to design and maintain the

2

scenario. These test cases are then run every time a change is made to the code base and the results of
these test cases inform the decision to deploy to production.

2 Intent Understanding

Given a user utterance, what is the user’s underlying intent? This intent understanding is a critical
component of a TaskBot; should we search for a recipe? start a timer? or go back a step? Our
approach combines rules, Soundex, and a transformer-based intent classifier trained over thousands
of examples from our rapid prototyping platform.

Rule-Based Intent Classification. In our initial design, we relied upon regex-matching techniques
combined with the state manager and previous system responses to classify a user’s utterance. There
are two types of intents: the basic ones (YesIntent, NoIntent, etc.) and high-level ones (newSearch,
Recommendation, etc.). The same user utterances under different dialogue state are classified as
different intents. For example, “ok” is classified as "YesIntent" when the user is answering the
confirmation question asked by our bot and as "NextIntent" when the user is navigating inside the
task.

Soundex-Based Intent Classification. After deploying Howdy Y’all, we found many cases where
the utterance text provided by the Automatic Speech Recognition (ASR) module is often noisy and
has errors, in that it is often phonetically similar to contextually expected utterances as shown in
Table 1. Hence, we adopted the well-known Soundex approach for identifying phonetically similar
words as part of our rule-based intent classifier.1

Contextually Expected User Utterance Output Examples from ASR Module
start cooking star cooking

next best, let’s, list
ingredient a gradient
start task start cast, fart task, start disk

Table 1: Examples of ASR Errors

Transformer-Based Intent Classification. Naturally, these rule-based approaches provide a baseline
foundation for intent classification but face difficulty in handling complex paraphrases and context
information as illustrated in Figure 2.

Figure 2: Different expressions of the same intent and the same expression of different intents
Traditionally, intent classifiers of chatbots and dialogue systems map the user utterance to a specific
task (such as PlayMusic, GetWeather, BookRestaurant, etc.) of the system [Coucke et al. (2018);
Hemphill et al. (1990)]. We investigated the transcripts of our user-bot conversations and observed
that the user may not always have a clear intent. Hence, we extend our intent classifier to a reaction-
based intent classification model capable of choosing the best responder of our system when the user
utterance does not yield a clear intent. For instance, 1) the intent classifier may detect that the user
does not have a clear DIY or cooking task in mind, so the TaskBot can invoke the conversational
recommender to make a Recommendation; 2) the intent classifier may also label the user utterance

1For example: b, f, p, v are all mapped to the number 1, because they are all pronounced from the front of the
mouth.

3

as Ambiguous when the semantic meaning is not clear so that the TaskBot can ask a clarification
question.

Based on our rapid prototyping platform, we identified 27 intent classes as listed in Table 2 for our
TaskBot. The 27 intent classes can be further categorized into 14 categories associated with the
General, PreTask, or InTask stage of the conversation. After a training and trial annotation session, six
team members inspected 4,819 turns of conversation. We carefully selected 3,169 labeled utterances
as our training data based on the quality of the conversations. To ensure a golden test set, three
additional team members further reviewed the labels of 634 user utterances.

Stage Level-1 Intent Level-2 Intent Expected TaskBot Reaction
WikiHow Searching WikiHow articles

WholeFood Searching Whole Food recipesSearch
MoreResults Providing more search results

SearchResultsQA - Answering questions regarding the search results
Recommendation - Performing conversational task recommendation

Default Starting a task with default selection

PreTask

Select n/x Starting task with the n-th option or name x
Next Reading the next content

Previous Reading the previous content
N Reading step nNavigation

Deails/ListAll Reading details of current step or list all ingredients
SwtichMode Switching of ingredient/step mode
Subsitutes Prompting subsitutes or shopping list management

InTask

Question QA Answering task-related questions
Pause Pause the TaskBot and waits for instructions
Cancel Cancel the current search or taskFunctional
Stop Terminate the conversation

SeekingHelp - Providing help message based on the context
Repeat - Repeating what the TaskBot just said

Shopping List Managing the user’s shopping list
Timer Managing the timer

AdjustVolume Managing the volume of the deviceAlexaFunctionalities

Others Apologizing for unsupported Alexa functionalities
(making records for future support consideration)

Greetings/ChitChat - Making conversational response
Ambiguous - Asking clarification question based on the context

Dissatisfaction - Apologizing to and calming down the user

General

NotSupported - Responding to input that is sensitive, offensive, or out
of our domain

Table 2: List of Intents
Based on the annotated data, we fine-tuned a RoBERTa-BASE model transformer introduced by
Liu et al. (2019) with a linear sequence classification layer on top of the pooled output. Besides the
incoming user input, the model also considers the context of the conversation, which includes the
previous turns of user inputs, TaskBot responses, and classified intention labels (up to 5 turns). We
report the model’s performance under four different settings in Table 3.

Model Accuracy Macro Averaged
Precision Recall F-1

Fine-tuned RoBERTa-BASE 88.84 67.25 63.32 63.99
- reduced amount of context(up to 3 turns) 86.28 65.18 59.78 60.94
- w/o classified intention labels 85.33 62.88 55.94 56.57
- w/o context 81.72 61.29 53.83 55.13
Popularity Baseline 36.57 2.61 7.14 3.83
Stratified Random Baseline 20.83 7.04 7.12 7.04

Table 3: Evaluation Results of the Intent Classification Model

The evaluation results suggest that utilizing context information significantly boosts the model’s
performance. Our qualitative analysis also suggests the model’s superior performance in capturing
the meaning of unseen language expressions that typically would overwhelm a rule-based system.
However, our analysis of the best-performing model also reveals that inconsistent training labels
and the lack of training data limit its performance on tail classes. Hence, we are refining our intent

4

annotation guidelines, cross-validating with existing annotations, actively labeling new data, exploring
data augmentation methods, and experimenting with more powerful pre-trained language models.

3 Improving Search and User Preference Elicitation

Guiding the user to the right task is a critical challenge. Here, we introduce our approach for both
search, when the user has a clear task in mind (like “Help me make a chocolate cake”) and elicitation,
when we must uncover user preferences to find the right task (like “I’m interested in dessert.”).

3.1 Improving Search

In our initial deployment of Howdy Y’all we discovered that the existing search APIs work reasonably
well with simple keyword-based searches, but sometimes returns irrelevant results when the exact
combination of words used in the user’s query does not appear in the indexed content. As a first step
we experimented with improving search results by query expansion – by rewriting the user query
with other lexical variants and synonymous words. This method worked well but is not robust to new
terms and requires considerable manual effort to maintain. Hence, we turned to a dense retrieval
approach inspired by recent successes in using pre-trained language models for search, e.g., Reimers
and Gurevych (2019).

Figure 3: Howdy Y’all Search Framework
In our case, we not only wanted to encode text into a vector representation, but also need an efficient
mechanism to compute a similarity score between the user’s query and document title. Sentence-
BERT (SBERT) Reimers and Gurevych (2019) is a type of BERT model that uses a twin network to
generate semantically meaningful sentence embeddings and calculate a similarity score that shows
how two sentences are semantically related. We used existing pre-trained SBERT models and further
pre-trained using the WikiHow dataset. We converted title and description from each WikiHow
document into its vector form using SBERT once and used it to compute similarity against a user
query at runtime.

Since the WikiHow Koupaee and Wang (2018) and WholeFoods datasets have more than 100,000
documents, finding relevant documents by computing similarity scores at runtime is time-consuming.
Hence, we adopt an in-memory index called FAISS Johnson et al. (2019), which compresses and
stores vectors of large dimensions using a technique called product quantization. FAISS also allows
searching for multiple queries at a time which is ideal for our TaskBot.

Based on our logged conversations, we created a small evaluation dataset for DIY tasks and compared
the performance of our search against the default WikiHow search. We report the search performance
using three evaluation metrics (See Table 5) : (i) Normalized Discounted Cumulative Gain at 10
(NDCG@10); (ii) Mean Ranking Position (MR); and (iii) Hit Rate @ 10 (Hit@10).

Apart from finding relevant documents, this approach is also able to recommend articles when exact
results are not available. For recipe tasks, we follow a similar approach (finetuning instead on a
WholeFood dataset), plus an additional sentence embedding based on contrastive learning Gao et al.
(2021) over a large recipe dataset Majumder et al. (2019).

5

User Query: How to clean my restroom
Elasticsearch Ours
How to Overcome Public Restroom Embarrassment How to clean a bathroom
How to use a public restroom How to clean bathroom grout
How to avoid germs in public restrooms How to clean a bathroom sink
How to setup a restroom trailer How to clean a bathroom sink drain
How to clean bathroom tile How to clean a jetted tub

User Query: How to color my wall
Elasticsearch Ours
How to pick a color for an accent wall How to paint a wall
How to choose paint color for an bedroom How to paint an interior wall
How to paint a concrete wall How to paint walls near a ceiling
How to change your eye color How to change your eye color
How to change your eye color How to paint textured walls

Table 4: Comparison of search results for a set of sample queries
Evaluation Metric Elasticsearch Ours
NDCG@10 0.285 0.618
MR 7.614 4.552
Hit@10 0.441 0.824
Table 5: Preliminary Evaluation Results.

3.2 User Preference Elicitation

In many cases, a user may not have a specific DIY task or recipe in mind. For example, a user asking
for a cake recipe may simply say “Alexa, help me find a cake recipe.” Searching for cake recipes
will yield 100s of potential matches, overwhelming the user. Hence, we pair our search component
with user preference elicitation in cases like this to help guide the user to a recipe (or DIY task) best
matching the user’s underlying needs and preferences.

Approach. Our approach views the TaskBot as an instance of a Conversational Recommender
System (CRS). Unlike a traditional recommender system, a CRS utilizes natural language to directly
converse with the user to explicitly elicit the user’s preferences towards a certain item (either a recipe
or a WikiHow article). On one hand, the elicited preferences can help Howdy Y’all quickly narrow
down the candidate item space thus recommending only the most relevant items; on the other hand,
the elicited preferences can be used as human interpretable justifications on why certain items are
recommended (or not recommended). For the aforementioned ‘cake recipe example,’ an example
conversation is shown in Figure 4.

CRS Challenges and Approach. While a CRS can achieve accurate recommendations by directly
conversing with the user, it faces two major challenges – user impatience and exploitation vs.
exploration (deciding when/what to ask and when to recommend). Unlike a traditional recommender
system that gives one-shot recommendations to the user, a CRS interacts with the user to gradually
learn the user’s detailed preferences and eventually guide her to relevant recommendations. However,
this interaction process can be tedious and might cause the user to quit the system due to impatience.
Therefore, when designing a CRS, it is crucial to take user experience into consideration. On one
hand, we want the system to learn as many preferences as possible (exploitation) from the user, so the
recommendations could be highly personalized; on the other hand, we must make recommendations
(exploration) before the user leaves due to impatience.

At each turn we can either prompt the user for more preferences or recommend a small set of
items based on the user preferences that the system has learned so far. Therefore, it is crucial for a
CRS to develop or learn an action policy that: (1) decides when to recommend versus when to ask
more preferences; and (2) if the system decides to acquire more preferences from the user, which
attribute from the candidate attribute set should be asked (e.g., for a cake recipe, such candidate
attribute set might include cook time, servings, dietary constraints, and occasion). To address the
aforementioned two challenges, we adopt a simple yet effective heuristic-based attribute selection
approach. For deciding whether to prompt the user for more preferences or recommend items based
on the preferences learned so far, the system chooses to recommend with the probability of n

max(|V |,n)
where V is the current candidate set and n is a hyperparameter that can be tuned. The intuition
is that the confidence of recommendation grows when the candidate size is smaller. For choosing

6

Alexa, help me find a cake recipe.

Sure, is it for any specific occasion?

It’s for Valentine's Day!

Any dietary constraints such as
vegetarian, keto-friendly, or paleo?

Preferences = {‘dishName’: [‘cake’]}

Preferences = {‘dishName’: [‘cake’],
‘occasion’: [‘valentine's day’]}

A vegetarian one without any peanuts
in it would be great.

Is there a maximum cooking time that
you have in mind?

Umm, I only have about three hours
before wife gets home.

Great, here is what I find on
WholeFoods…

Preferences = {‘dishName’: [‘cake’],
‘occasion’: [‘valentine's day’], ‘dietaryFilters’:

[‘vegetarian’, ‘peanut free’] }

Preferences = {‘dishName’: [‘cake’],
‘occasion’: [‘valentine's day’], ‘dietaryFilters’:

[‘vegetarian’, ‘peanut free’],
‘maxCookingTime’: [‘180 min’]}

Figure 4: Example Conversation to Elicit User Preferences

which attribute to prompt to the user, we calculate the entropy for all the remaining attributes in the
candidate set and choose the attribute with the maximum entropy. More specifically, we calculate the
entropy of each candidate attribute as follows:

Entropy(p, Vcand) = −prob(p)log2(prob(p)), prob(p) =
|Vcand∩Vp|

|Vcand|

In practice, we have found that this elicitation component is quite challenging to effectively incorpo-
rate into the TaskBot for two reasons. First, it requires identifying a consistent set of attributes for
candidate tasks. Since DIY tasks vary so greatly, we are focusing on recipes where there are some
common attributes (like cook time and dietary restrictions). Second, many users do not have clearly
defined preferences, so repeated questioning can lead to poor engagement versus directly making
recommendations at the beginning of the conversation.

4 Improving Question Answering

Our users ask many questions, so Howdy Y’all relies on several question answering (QA) com-
ponents. As a baseline, we rely on the Amazon EVI QA API to answer factoid questions, with a
QA classification model that decides whether the response is relevant or irrelevant to the question.
Further, we have built a database of tasks and recipes where we record attributes like the quantity of
ingredients, oven temperature, cooking time. In this way, we can directly answer extractive questions
like “How much oil do I need?”. We augment this database with a common set of substitutes, so we
can answer user needs like “I don’t have any olive oil.”

Beyond factoid and extractive QA, Howdy Y’all also supports richer abstractive QA. As a baseline,
we used 20,202 question-answer pairs from the community Q&A section under each WikiHow article
to fine-tune a BART (Lewis et al., 2020) model as our base abstractive QA model. Example pairs can
be found in Table 6. While a vanilla BART model provides a good first step, we propose to learn a
better sentence representation to provide higher-quality answers.

Concretely, we propose a new question generation model which uses contrastive learning and answer
reconstruction. We use ROUGE scores as our automatic metrics and (1) fluency: whether the
questions are grammatically correct and fluent; (2) relevance: whether the question is related to the
answer; and (3) correctness: whether the question can actually be answered by the provided answer
as determined through human evaluation. This generation model achieves better results than the
vanilla BART-base model by 2.0% on ROUGE-L score. In addition, we randomly sample 100 QA
pairs and ask three annotators to rate the generated questions from the baseline model and our best
model shows 1.3% and 2.6% improvement on relevance and correctness in human evaluation.

7

Title: How to Prepare a Healthy Meal for Your Pet Dog.
Summary: To prepare a healthy meal for your dog, choose lean meat with the bones and fat removed, like
chicken or beef . . .
Q: What can I feed my dog if I have run out of dog food?
A: In the short term, any bland human food such as chicken or white fish with rice or pasta is just fine . . .
Q: How much homemade dog food do you feed your dog?
A: Great question because it highlights one of the problems of feeding home prepared foods . . .
Q: What should I not feed my dog?
A: There are many human foods that are toxic to dogs. Top of the list of foods NOT to give are . . .

Table 6: Question-answer pairs from WikiHow.

Choose an undamaged seed and …

QG Model
To plant a lemon seed, first cut

open a plump, juicy lemon and

extract the seeds from the pulp.

Choose an undamaged seed

and rinse it under cool water.

Then …

To plant a lemon seed, first cut … How do you plant a lemon seed?

How do you clean a seed?

Summary Answer Question

QA Model

Figure 5: An overview of synthetic data generation framework and generated question examples from
our QG model.

This question generation can then be used as part of a data augmentation approach to improve the
quality of answers we generate. Each sentence from the summary of a WikiHow article is regarded
as an answer, and then we use our proposed question generation to generate corresponding questions.
The generated 200K synthetic QA pairs can then be fed into our previous QA model to perform
pre-training. Experimentally, we find the new QA model achieves better results than the vanilla
BART-base model by 3.6% on ROUGE-L score.

User Utterance Vanilla BART-base Ours
How to find spring fashion
trends?

Spring is a great way to find spring
fashion trends online.

You can find spring fashion trends
by checking out fashion sites like
fashionweek and amazon.

What is mozzarella cheese? Mozzarella cheese is a type of
cheese that is made from fresh,
grated mozzarella. It can be made
from different types of cheeses,
such as cream cheese, cheese curds,
and cream cheese substitutes.

Mozzarella cheese is a type of
cheese that is made from fresh,
ground mozzarella. It is a great addi-
tion to pizza or other casual dishes.

What is Chinese strainer? Chinese strainer is a type of strainer
that is made of bamboo. It is used
to make a strainer from bamboo.

A chinese strainer is a type of
strainer that is used to remove food
from dishes in chinese cuisine. it
can be used for soups, stews, soups
and stews.

Can we work on the last
topic when I was here what
we were doing?

Yes, you can definitely work on the
last topic when you’re back in class.

Yes, you can work on the last topic
if you wish.

Table 7: Example questions and answers.

To illustrate, we show in Table 7 several example questions and the answers generated by a Vanilla
BART model and our approach.

5 Emotional Conversation Tracking

We believe that an important part of interfacing with the user in a conversational setting is understand-
ing and addressing their emotions, and we believe that connecting with the user can be an opportunity
to help move the user towards task completion. Hence, we have designed a empathic responder and a
negative conversation monitor.

8

Empathic Responder. There are two main approaches we take to create a conversational tone: a
proactive approach where we take the initiative to create a conversational tone can help encourage
the user to engage more with the TaskBot, and a reactive approach where we respond to the user’s
conversational utterances. To illustrate the proactive approach, we conversationalize existing steps in
a task (or recipe). For example, at the halfway step we prepend “We’re halfway there!” to the step,
as an encouragement to the user. Similarly, we congratulate the user upon completion of a task. To
illustrate the reactive approach, we have custom responders designed for (i) when the user wants
to chat, so we can engage in a some banter before returning to the task; (ii) when the user tells the
TaskBot their name or emotional state, so we can personalize our follow-on conversations; and (iii)
when the user thanks the TaskBot.

Identifying Negative Conversations. In many conversations, users become frustrated if the system
repeatedly misunderstands them. This type of situation is a negative user experience. Therefore,
we must find a way to recover and provide a better user experience. The first step to recovering
from a negative user experience is to detect this type of situation as it is occurring. To do this, we
predict the final rating of an in-progress conversation based on features such as length and the number
of times the Fallback Response Generator is called. We use these features to compare the current
conversations to previous conversations with similar features. We then use the final ratings of these
similar conversations to predict the rating of the current conversation. If this predicted rating is below
a threshold, we know that the current conversation is going poorly, and we can act to recover from
this situation. Once we detect that a conversation is going poorly, we apologize to the user in an
empathetic manner to deescalate the situation.

6 Future Work

In our ongoing work, we are continuing to refine and improve the core components introduced
above. And with considerable new conversations in the semi-final event, we have a much larger
set of annotated conversations to train our models. In one exciting direction, we are exploring the
potential of learning to conversationalize. Much of the core recipe and DIY-task specific instructions
are based on articles that were originally designed to be read (e.g., the many steps on WikiHow
for how to paint a room). These instructions are fundamentally a mismatch with a naturalistic
conversation. Hence, we aim to learn new methods to transform these instructions into conversations:
to conversationalize them. Our hypothesis is that this can be helpful in promoting user engagement by
improving our proactive approach to conversation. There are two main approaches we plan to explore
in conversationalizing instruction steps: a rule-based modifier and neural style transfer. To further
improve the question answering capability of our TaskBot, we are also working on a self-supervised
answer selection method for question generation. The method aims at building models that can knock
out backbone tokens while preserving candidate answer tokens of an input passage.

The rule-based modifier is similar to the approach taken by our Empathic Responder, but applied
to all instruction steps. By prepending transition text to our instruction steps, we hope to soften the
tone of our TaskBot and make it more conversational. For example, the speech output, “Take the
cake out of the oven,” can become “Nicely done! Next, take the cake out of the oven.” This aims
to make our TaskBot smoother in transition, while also acknowledging the work that the user has
done to this point. The neural style transfer approach builds on recent work in text style transfer
to control attributes in text like politeness, emotion, formality, and so on Jin et al. (2020). With a
parallel conversational version of our instruction steps, we could generate our desired text with our
target style using standard sequence to sequence models, but it is difficult to find a quality parallel
dataset for DIY and recipe instructions containing a conversational tone. Instead, we will investigate
prototype editing methods to transfer from source text x with attribute a to its counterpart x’ with
attribute a’. This method has the advantage of explicitly retaining content attributes of a sentence
while changing style attributes. This is particularly important in our TaskBot as editing the content
itself could result in deteriorated instruction quality for users. Using prototype editing, our target
style a’ could be also changed depending on what is most conducive to user engagement, resulting in
a “polite” or “funny” TaskBot.

9

References
Adiwardana, D., Luong, M.T., So, D.R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha,

A., Nemade, G., Lu, Y., et al., 2020. Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977 .

Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht,
T., Caltagirone, F., Lavril, T., et al., 2018. Snips voice platform: an embedded spoken language
understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190 .

Gao, T., Yao, X., Chen, D., 2021. Simcse: Simple contrastive learning of sentence embeddings. arXiv
preprint arXiv:2104.08821 .

Hemphill, C.T., Godfrey, J.J., Doddington, G.R., 1990. The atis spoken language systems pilot
corpus, in: Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Jannach, D., Manzoor, A., Cai, W., Chen, L., 2021. A survey on conversational recommender systems.
ACM Computing Surveys (CSUR) 54, 1–36.

Jin, Jin, Hu, V., Mihalcea, 2020. Deep learning for text style transfer: A survey. arXiv preprint
arXiv:2011.00416 .

Johnson, J., Douze, M., Jégou, H., 2019. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data 7, 535–547.

Koupaee, M., Wang, W.Y., 2018. Wikihow: A large scale text summarization dataset. arXiv preprint
arXiv:1810.09305 .

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer,
L., 2020. Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension, in: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871–7880.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
Stoyanov, V., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 .

Majumder, B.P., Li, S., Ni, J., McAuley, J., 2019. Generating personalized recipes from historical
user preferences. arXiv preprint arXiv:1909.00105 .

Reimers, N., Gurevych, I., 2019. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084 .

Zhang, Y., Chen, X., Ai, Q., Yang, L., Croft, W.B., 2018. Towards conversational search and recom-
mendation: System ask, user respond, in: Proceedings of the 27th acm international conference on
information and knowledge management, pp. 177–186.

10

	Introduction
	System Overview
	Rapid Prototyping Platform

	Intent Understanding
	Improving Search and User Preference Elicitation
	Improving Search
	User Preference Elicitation

	Improving Question Answering
	Emotional Conversation Tracking
	Future Work

