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Abstract

High-quality content is critical for driving cus-
tomer satisfaction and conversions across dig-
ital platforms and e-commerce. Ensuring that
essential information is complete, accurate, and
aligned with customer expectations presents
a significant challenge at scale. Existing ap-
proaches to content evaluation often treat all in-
formation uniformly, without prioritizing based
on customer relevance, and rely heavily on
manual prompt design to encode domain ex-
pertise into Large Language Models (LLMs).
We present ISEE, a unified framework that ad-
dresses these limitations through three core
innovations: (1) automated identification of
customer-impacting features by synthesizing
signals from search behavior, queries, and
feedback, enabling targeted content improve-
ments; (2) an instruction-tuned multimodal
LLM trained to reliably follow structured opera-
tional guidelines, reducing dependence on man-
ual prompt engineering; and (3) robust zero-
shot generalization to new product content, fea-
tures and SOPs via targeted instruction tuning.
Evaluated across 20 product categories and 150
product specific features, ISEE achieves 90%
precision at 78% recall in detecting product
content issues, outperforming much larger (>
200B parameters) models while using a com-
pact 12B architecture.

1 Introduction

High-quality product content is critical for cus-
tomer trust and conversions in e-commerce. Stud-
ies in e-commerce have shown that incomplete or
inaccurate information on product pages negatively
impacts customer trust and conversions (Amsl et al.,
2023)

These issues typically exists in different forms,
for example - a conflict between values in different
sections (e.g., "16GB RAM" in title vs. "32GB" in

* Equal contribution.

features), semantic inaccuracies or misleading de-
scription (e.g., labeling a GPU as "Intel Pentium")
and omission of important information (e.g., cabin
bag capacity).

Defect detection in product details requires ana-
lyzing multiple data sources, such as search query
logs and customer interaction data, customer feed-
back, product content etc. Today, this process is
largely ad-hoc, relying on domain expertise with-
out a systematic approach. Existing workflows
often attempt to detect defects across all features or
use static "relevant" lists, ignoring actual customer
importance. This one-size-fits-all strategy leads to
wasted effort on low-impact issues.

For example, fixing an issue such as the font
style on the keycaps of a keyboard may take pri-
ority over more critical problems like missing size
specifications (e.g., full-size vs. compact) or layout
information (e.g., US vs. UK) for the keyboard, or
incorrect RAM information in a gaming laptop -
issues with real impact on conversions.

While LLMs are increasingly used for prod-
uct page evaluation, they still rely on manually
authored prompts created by domain experts for
each product-feature pair. Moreover, LLMs of-
ten struggle to follow detailed Standard Operating
Procedures (SOPs) (Hwang et al., 2025; Reddy
et al., 2023; Ouyang et al., 2022), defaulting to
pre-trained knowledge despite explicit instructions
(Figure 1). As a result, teams spend over 60 ex-
pert hours monthly on iterative prompt refinement,
complicating the detection of subtle defects.

To address these limitations, we propose ISEE
- an SOP-aligned Evaluator for online product de-
tails, with the following key innovations:

Customer-aware prioritization: ISEE identifies
high-impact features instead of treating all features
equally by analyzing search query logs, product
questions, and customer feedback, ensuring fix ef-
forts align with customer expectations and business



Figure 1: Defect detection comparison between ISEE and traditional LLMs. ISEE’s instruction-tuning adheres
to the SOP definition of item count as outer package count, correctly identifying the conflict between "36 items"
and the single box shown in the image. Foundation models default to their pre-trained understanding, incorrectly
validating item count by counting chocolates inside — missing business-specific defects despite explicit instructions.

value.
Instruction-aligned defect detection: An
instruction-tuned LLM that reliably follows SOPs,
overcoming the limitations of generic prompting.
Zero-shot generalization: ISEE generalizes to
new features and SOPs, enabling scalable defect
detection across diverse product categories.

The following sections describe the system de-
sign, customer signal integration, SOP tuning, and
evaluation across 20 categories and 150 features,
where ISEE shows strong gains in precision and fix
relevance over existing methods.

2 System Overview

As shown in Figure 2a, the ISEE framework starts
with a Product Category during a defined customer
engagement window. Within this category, we fo-
cus on queries that underperform in terms of con-
version relative to typical category levels. For these,
the Feature Discovery module surfaces customer-
critical features. ISEE then operates in two modes:

A production workflow (Fig 2b blue) that contin-
uously evaluates defects, routes them to content re-
mediation teams, and improves recall through feed-
back. Here, ISEE-LLM evaluates low-converting
products using base or SOP-injected prompts. A
guardrail-LLM directs outputs into three paths (de-
fective, non-defective, and subjective), from which

a sample is passed through a Multi-Agent Adjudi-
cator. The Adjudicator validates the classifications
and its results feed into a closed-loop feedback pro-
cess that gradually improves both the SOPs and the
prompts used in evaluation.
A self-service workflow (Fig 2b yellow) allows do-
main experts to improve model performance for cat-
egories with weak zero-shot accuracy. Experts can
define their SOPs and evaluate them using ISEE-
LLM, with prompts auto-tuned (max 3 iterations)
until precision-recall thresholds are met, before
being pushed to production.

ISEE supports new categories in production while
enabling a hands-off-the-wheels improvement
paths for under-performing ones via self-service.
This paper focuses on the critical feature discov-
ery and production workflows, omitting details on
AutoPrompter and Guardrail-LLM.

3 Dynamic Feature Selection
Methodology

To focus evaluation on high-impact product page
features, ISEE prioritizes customer-critical features
using four complementary signals: customer be-
havior (search and questions), vendor emphasis,
customer feedback, and LLM-driven bootstrapping.
This ensures that upstream efforts focus on visible,
value-driving features.

Search and Customer Intent Analysis: For
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a product category, we shortlist low converting
search queries and use an LLM to extract struc-
tured feature-value pairs (we call this shopping
intent).

For example:

32GB gaming laptop under 70K → { "ram":
"32GB", "use_case": "gaming", "price": "<70000"
}

Is the RAM upgradeable? → { "ram": "upgrade-
ability"}

We focus on vertical features (product specific e.g.,
RAM, display type), ignoring horizontal ones (com-
mon across product categories e.g., price, delivery
speed). Each feature’s (a) importance score is com-
puted as:

Scoresearch(a) =

∑
i∈P f(a, i) · v(i) · c(i)∑

i∈I v(i)
if a ∈ Vpt

where f(a, i) is the frequency of feature a in in-
tent i, v(i) is its search volume, c(i) is the search
to click conversion rate, P is the product category
and VP is the set of vertical features for the prod-
uct category. This formulation captures not just
frequently searched features, but also those corre-
lated with customer engagement. Features found in
both searches and customer questions are weighted
1.2x, as questions indicate unresolved customer
concerns. This approach combines implicit search
behavior with explicit queries to generate a ranked
list (SA) of high-importance features.

Vendor Information Analysis: To complement
customer signals, we analyze features in success-
ful listings from low converting shopping intents.
We select products that received direct clicks or
had high ESCI (relevance to query) scores (>
0.7)((Reddy et al., 2022)). For each feature, we
compute:

Scorevendor(a) =
f(a) in top results

Total analyzed results

This yields a ranked list (V enA) of vendor-
prioritized features. Comparing V enA with search-
driven (SA) highlights potential gaps between cus-
tomer interests and vendor emphasis, identifying
opportunities to improve content quality.

Customer Feedback Analysis: Post-sale feedback
offers valuable signals on feature importance. Us-
ing InsightNet (Mukku et al., 2023), we analyze
reviews and return comments for clicked prod-
ucts by identify granular topics. We focus on ac-
tionable vertical feature issues (e.g., "screen res-
olution lower than advertised"), filtering out hor-
izontal or non-addressable concerns. A topic-to-
feature model standardizes varied expressions (e.g.,
"too silky and sticks to the body" → material).
Frequently cited negative features are ranked in
FeedA, complementing pre-purchase signals by
highlighting features that drive customer dissatis-
faction and returns.

LLM-Assisted feature Generation: For new or
niche product categories with sparse customer in-
teraction signals, ISEE uses a pre-trained LLM



to identify key purchase-decision features. The
resulting list (e.g., ["gpu_specs", "ram_capacity",
"refresh_rate"] for GAMING_LAPTOP), denoted
as LLMA, provides essential initial context for
quality assessment for emerging product categories
before sufficient customer data becomes available.

3.1 Feature Ranking and Integration
We now synthesize insights from customer intent
(SA), vendor emphasis (V enA), and post-sale feed-
back (FeedA) into a final prioritized feature set
(FA) using a tiered integration strategy. (Ref-A.2
for a detailed example). Tier 1 (PreA) includes
features with strong pre-purchase relevance, found
in both customer searches and successful ven-
dor listings whereas Tier 2 (PostA) includes fea-
tures driving significant post-sale feedback above a
threshold (τ ).

PreA = {a | a ∈ (SA ∩ V enA)}
PostA = {a | a ∈ FeedA and

Scorefeedback(a) > τ}

The final guiding set is the union of these tiers,

FA = PreA ∪ PostA

This approach prioritizes features critical during
selection or impacting post-sale satisfaction, while
LLM-generated lists (LLMA) serve as validation
or initial features for new product categories lack-
ing empirical data.

4 I-SEE

4.1 Problem Formulation
Identifying customer - relevant features is only the
first step in scalable product data quality assess-
ment. The next challenge is accurately detecting
product page defects - Conflicts, Inaccuracies, and
Omissions - across diverse product types, while
adhering to business-specific SOPs.

Given a product page P with content sources
S = {s1, ..., sn} (e.g., images, title, bullet
points), a ranked set of important features FA =
{a1, ..., ak}, and optional SOPs O = {o1, ..., om}
providing evaluation rules for each ai, the task is to
detect a set of defects D, where each defect d ∈ D
is defined as:

d =

{
eval(a, S, oi) if SOP oi exists for a
eval(a, S) otherwise

(1)

Here, eval(·) is a learned function that flags
whether a feature is defective, optionally guided
by SOPs. This unified formulation supports gener-
alization across both SOP-defined and undefined
cases.

4.2 SOP Representation and Instruction
Tuning

To ensure ISEE follows business-specific evalua-
tion rules at scale, we instruction-tune the model
using structured SOPs in its input context. This
domain-primes the model (Ling et al., 2024) to
align its defect detection logic with feature-specific
guidelines. Since SOPs typically exist only for
high-impact features, we adopt a hybrid strategy
- using real SOPs where available and generating
synthetic ones inspired by BA-authored examples.
This exposes the model to diverse instructions dur-
ing training, enabling generalization to arbitrary
SOPs at inference time.

Structured SOP Format: To reduce ambigu-
ity, improve alignment, and limit token length
in production, we convert SOPs (real or syn-
thetic) into a structured schema with fields
like: evaluation_scope (e.g., title, tech specs),
ignore (e.g., marketing claims), valid_format
(e.g., Size for Packaged Food items - “XX UoM
(Pack of YY)”), and constraints (e.g., 1kg
weight variance is critical for rice but not TVs)
Instruction-Tuning Framework: We use a tem-
plated prmopting strategy where each example in-
cludes: 1) a base prompt (B): Defect definitions
and product content context; 2) an optional SOP
block (S): structured evaluation rule; 3) a gold out-
put (O): defect label, defect type, and explanation
of the defect. By varying SOPs while keeping B
constant (e.g., B1 → O, B1+S1 → O1, B1+S2 →
O2), the model learns to treat SOPs as authoritative
and adapt outputs accordingly. This helps it follow
SOPs when present, fall back to base logic when
not, and generalize to unseen features in zero-shot
settings.

4.3 Dataset

Need for Synthetic Data: While several e-
commerce datasets exist in the literature, none
specifically evaluate product defects, primarily be-
cause real-world product data is typically high qual-
ity. This presents two challenges: (1) limited de-
fective examples lead to model underfitting - espe-
cially for high-priority features, and (2) evaluation



becomes incomplete, as we can audit defective set
for precision but lack ground truth to measure re-
call. To address this gap, we generate synthetic
defects across representative products, creating a
balanced dataset covering all defect types. This
enables recall calculation and SOP-specific varia-
tion for instruction-sensitive learning. Our dataset
spans 20 diverse categories (e.g., electronics, ap-
parel, home), selecting top-15 features from FA for
1000 products and their product information.

Synthetic Defect Generation - To enable ro-
bust training and evaluation, we generate synthetic
defects for both base and SOP-guided cases. In
the base setting, we inject product page defects -
Conflicts, Inaccuracies, and Omissions - by mod-
ifying source values to simulate typical product
data errors. For SOP-guided examples, we gener-
ate labels based on specific instructions, including
cases where the same input yields different out-
comes under different SOPs (e.g., a GPU model
valid under base rules but invalid under a format-
specific SOP). These examples are crucial, as such
fine-grained violations rarely occur naturally. See
Appendix A.3 for examples. Synthetic defects were
generated using LLMs based on patterns observed
in actual production audits (e.g., “16GB RAM in
title vs. 32GB in features,” “package count vs.
item count,” “ambiguous color descriptors”). These
were not arbitrary perturbations but systematic re-
productions of common catalog errors. Our de-
fect generation process covers both organic errors
(e.g., typos, omissions) and adversarial errors (e.g.,
inflated chocolate counts). Both errors degrade
customer experience, but adversarial errors are par-
ticularly critical since they mislead customers into
buying the wrong product, leading to customer re-
turning it eventually.

While many defects can be clearly classified us-
ing standard rules or SOPs, some conflicts are in-
herently subjective and context-dependent. For in-
stance, an "olive green" vs. "dark green" mismatch
may be critical for NAIL PAINT but negligible for
CURTAIN. Similarly, “nylon” vs. “polyester blend”
might matter for CLOTHES but not LUGGAGE. Such
variations don’t impact all categories equally, and
rigid labeling may introduce bias in model train-
ing and evaluation. To handle this, we explicitly
flag such cases as ambiguous or subjective, using a
Multi-Agent Adjudicator to improve dataset relia-
bility.

Multi-Agent Adjudicator - Each defect candi-
date is reviewed by three diverse LLMs (Claude

3.7 Sonnet, DeepSeek-R1-Distill-Qwen-32B and
Pixtral-12B) and labeled as Yes (defect), No (not
a defect), Not Applicable (NA), or Unsure (am-
biguous). Final labels are assigned via majority
consensus: two Yes = Confirmed Defect, two No =
Confirmed Not Defect, two NA = Not Applicable.
Cases without agreement are marked Ambiguous/-
Subjective. This process filters noise and flags
subjectivity, enabled naunced-free evaluation.

The final dataset, refined through majority vot-
ing, contains 180,000 examples, with each PT-
feature pair including a balanced mix of clean and
defective cases, across both SOP-guided and base
settings.

4.4 Training & Evaluation Details
Training: We instruction-tune Pixtral-12B (Team,
2024) for ISEE due to its strong multi-modal capa-
bilities. Product images are embedded via a vision
encoder and concatenated with tokenized text for
unified input. We apply LoRA (Hu et al., 2021)
for parameter-efficient fine-tuning, adapting only
a small subset of weights to internalize SOP logic
while preserving pre-trained knowledge. Training
occurs in two stages: first on general defect pat-
terns, then on SOP-guided variations where identi-
cal inputs yield different outputs based on instruc-
tions. We use 8-bit quantization, a learning rate
of 2e-4, batch size 32, sequence length 2048, and
train on 8× A100 GPUs for 24 hours.

Evaluation: We evaluate using vLLM (Kwon
et al., 2023) with 2 dockers, leveraging majority-
voting labels for subjectivity awareness. Precision
and recall are computed over Confirmed Defect and
Not Defect cases. For ambiguous cases, we adopt a
soft-label approach - treating predictions as correct
if they match any one auditor LLM, allowing for
valid variations without excessive penalization.

5 Experiments and Results

We evaluate ISEE and baselines across three key
axes: (1) core defect detection in the base setting,
(2) gains from SOP-based guidance, and (3) im-
provements via auto-prompting (Do et al., 2024).
Unless specified otherwise, precision and recall are
reported jointly across all defect tasks based on
binary defect presence.

Base Model Performance: We evaluate 3 models -
Claude-3.7 Sonnet (Anthropic, 2024), Pixtral-12B,
and ISEE without any SOPs or prompt tuning on all
defect tasks. As shown in Table 2, Claude achieves



SOP Injection Auto Prompting
Zero Shot Performance on

Adhoc categories

Model Precision Recall F1 Final F1 Category Coverage % F1

Claude-3.7 Sonnet + SOP 0.83 0.73 0.77 0.85 75 0.68
Pixtral-12B + SOP 0.61 0.72 0.66 0.75 70 0.58

ISEE 0.87 0.78 0.83 0.87 92 0.78

Table 1: Performance of SOP injected models

Model Precision Recall F1

Claude-3.7 Sonnet 0.75 0.70 0.72
Pixtral 0.72 0.65 0.68
ISEE 0.76 0.63 0.69

Table 2: Base Model Performance

the highest F1 (0.72), while ISEE performs com-
petitively at 0.70 despite being optimized for SOP-
driven alignment. These results serve as a baseline
for assessing the impact of structured guidance and
auto-prompting.

SOP-Injected Performance Gains: To evaluate
how models respond to SOPs, we inject SOP con-
straints into prompts (manually prompted) for all
models. It’s important to note that this uses a dis-
tinct dataset from the base setting, as expected out-
puts differ due to explicit SOP instructions - mak-
ing results non-comparable to the base scenario.

As shown in Table 1, ISEE outperforms all mod-
els under SOP-driven conditions, achieving an F1
of 0.84 at a fixed cost of $40K per 10M products
(same as Pixtral-12B). In contrast, Claude’s charge
per token, incurs a higher cost of -$270K (Fig-
ure 3). While Claude and Pixtral benefit from in-
jected SOPs to varying degrees (F1: 0.66–0.75),
only ISEE is instruction-tuned for structured SOPs,
giving it a significant edge. ISEE shows notable
advantage, particularly detecting inaccuracies (Ta-
ble 3) as it requires inherent understanding of SOPs
and business rules. For example (Figure 1), in pack-
aged food items, the item count should reflect num-
ber of outer packages, and not contents inside the
package. ISEE flags such issues correctly, whereas
other models mistakenly validate “36 chocolates”
as 36 items instead of recognizing it as one package.
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Figure 3: SOP-Injection - Cost v/s Precision

Task Type Claude-3.7 ISEE +/-

Conflicts 0.85 0.87 +0.02
Inaccuracies 0.83 0.89 +0.06
Omissions 0.86 0.85 -0.01

Table 3: Task specific - SOP F1 comparison

Auto-Prompting Performance: Using the SOP-
injected prompts as base, iterative refinement by
leveraging false positives/negatives boosts Claude’s
F1 to 0.82. ISEE, despite being smaller, begins
at 0.83 and improves to 0.87 (Table 1), with it-
erations primarily fine-tune edge cases, reflecting
ISEE’s strong baseline understanding of SOPs and
defect patterns - an advantage in production, where
prompt tuning is costly.

Zero Shot Generalization: ISEE also generalizes
well to unseen categories, with 92% coverage (i.e.,
detecting ≥ 5% defects in 1000 products per cate-
gory) and a zero-shot F1 of 0.78. This highlights
the effectiveness of SOP-based fine-tuning in im-
proving both model alignment and transferability
to new products. Qualitative examples are shown
in Appendix A.4.



6 Conclusion

We present ISEE-Defects, a unified framework for
automated defect identification through customer-
aware feature prioritization and SOP-enhanced
evaluation. Using a 12B parameter instruction-
tuned model, ISEE achieves 90% precision at 78%
recall across 350 Product Category and features,
while reducing operational costs by 80% compared
to larger models. The framework demonstrates ro-
bust zero-shot generalization (0.78 F1) to unseen
categories and requires minimal prompt engineer-
ing, making it highly effective for production de-
ployment.

7 Limitations

While ISEE shows strong performance across a
wide range of product categories, it has several lim-
itations. First, it relies heavily on synthetic data
for training, since real-world labeled defects are
rare. Although useful, this synthetic data may not
fully reflect the complexity of actual defects seen in
production, which could impact real-world perfor-
mance. Second, ISEE’s feature selection method
depends on customer signals like search queries,
reviews, and feedback. In new or low-traffic cate-
gories where such data is limited, the system may
struggle to identify the most important features.
Third, the use of majority voting on the Multi-
Agent Adjudicator output and soft labels to handle
subjective cases helps reduce noise but also brings
some uncertainty to the training and evaluation pro-
cess. The 12B parameter model strikes a good
balance between cost and accuracy, but may still
fall short in detecting subtle issues in highly techni-
cal domains that require deeper product knowledge
or complex reasoning. Additionally, while ISEE
can tell whether a defect exists, it does not yet tell
what’s the impact of the defect to customer conver-
sion. The impact of the correction of that defect is
still understood after doing web-lab experiments
post correction.
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A Appendix

A.1 Taxonomy Layer

The separation between horizontal and vertical fea-
tures is based on established e-commerce taxo-
nomic frameworks. Horizontal features are char-
acteristics that transcend product categories (e.g.,
price, delivery, brand), while vertical features are
category specific (e.g., RAM for laptops, heel
height for shoes). The classification undergoes
continuous validation through domain expert re-
views and customer interaction analysis, ensur-
ing it remains current with evolving e-commerce
patterns and customer needs.This comprehensive
framework ensures consistent feature classification
while remaining adaptable to evolving e-commerce
patterns and customer needs.

Type Category Example features

Horizontal Transaction Price, Delivery Time, Warranty
Trust Brand, Vendor Rating, Reviews
Availability Stock Status, Delivery Options

Vertical Electronics RAM, Processor, Screen Size
Apparel Material, Size, Fit Type
Beauty Ingredients, Skin Type
Home Dimensions, Weight Capacity
Automotive Engine Type, Fuel Efficiency

Table 4: Product feature Classification Framework

A.2 Feature Importance Analysis : A Gaming
Laptop Example

We present a detailed breakdown of feature im-
portance analysis for gaming laptops in Table 5.
The analysis combines signals from four primary
sources: search queries (SA), vendor listings
(V enA), customer feedback (FeedA), and LLM-
generated insights (LLMA) to determine the final
feature ranking (FA). Search patterns show users
primarily focus on technical specifications, with
RAM, GPU, and processor being the top queries
(e.g., "32GB gaming", "RTX laptop"). Vendor list-
ings emphasize similar technical aspects but priori-
tize GPU and display specifications, suggesting a
focus on gaming performance marketing. Interest-
ingly, customer feedback reveals different priori-
ties, highlighting thermal management and battery
life as crucial concerns, aspects less prominent in
search and vendor data. The final ranking (FA)
synthesizes these signals, categorizing features into
two tiers: Tier 1 features (RAM, GPU, Display)
represent the overlap between search and vendor
priorities, while Tier 2 features (Thermal, Battery

Life) emerge from significant customer feedback
signals, indicating potential gaps between market-
ing focus and user experience.

A.3 Evaluation Datasets
Table 6 illustrates our evaluation dataset structure
through representative examples across different
product categories. Each entry is identified by a
unique ID and product category, with paired source
comparisons to detect content defects. The dataset
captures three primary defect types: (1) Conflicting
values across sources, such as entry A1 showing
conflicting RAM specifications (16GB vs 32GB)
between title and product features, (2) Inaccurate
values like A3’s implausible 2MB RAM specifi-
cation for a phone, and (3) Omitted information
as seen in A4 where size information is missing.
Sources include product titles, product features
(PF), and bullet points (BP). The label field indi-
cates whether the comparison pair contains a defect
(1) or not (0). Non-defect cases include matching
values across sources (A3’s 256GB SSD) and ac-
ceptable variations in representation (A2’s "1TB"
vs "1000GB"). This structured comparison enables
systematic evaluation of content quality across dif-
ferent product features and content locations.

A.4 Qualitative Analysis of ISEE Outputs
Table 7 showcases ISEE’s ability to detect and ex-
plain various content quality issues across diverse
product categories. The model demonstrates rea-
soning capabilities in identifying conflicts and inac-
curacies in product page. For inaccuracy detection,
ISEE successfully flags implausible feature values,
such as a "Cream" form factor for a physical cup-
ping massage set, an impossible "999" size specifi-
cation for a chair, and an inaccurate "4.2" surround
sound value for a portable Bluetooth speaker. The
model’s explanations show understanding of prod-
uct context - for eg - recognizing that surround
sound values are specific to home theater systems,
not portable speakers. In terms of conflict check-
ing, the model identifies cross-field discrepancies,
as demonstrated in the television example where
it catches the mismatch between the listed 65-inch
specification and the 83-inch size mentioned in
both title and images. These examples highlight
ISEE’s ability to combine domain knowledge with
logical reasoning to provide clear explanations de-
tected issues.



Rank Search (SA) Vendor
(V enA)

Feedback
(FeedA)

LLM
(LLMA)

Final (FA)

Signal (Top
Queries)

(Listing Ex-
tract)

(Customer
Feedback)

(Generated) (Tier)

1 RAM GPU Thermal GPU RAM
"32GB gam-
ing"

"RTX 4060" "gets too hot" (Tier 1: S&S)

2 GPU Display Battery Life RAM GPU
"RTX lap-
top"

"165Hz
FHD"

"dies quickly" (Tier 1: S&S)

3 Processor RAM Performance Refresh
Rate

Display

"i7 gaming" "32GB
DDR5"

"lags in
games"

(Tier 1: S&S)

4 Display Storage Build Quality Processor Thermal
"144hz
screen"

"1TB SSD" "feels cheap" (Tier 2:
Feed)

5 Storage Processor Display Storage Battery Life
"1TB gam-
ing"

"i9 13th
Gen"

"screen bleed" (Tier 2:
Feed)

Table 5: Feature Importance Analysis: A Gaming Laptop Example
Note: Final ranking (FA) shows Tier 1 features (common in Search and Vendor data) followed by Tier 2 features
(significant customer feedback signals). S&V = Search & Vendor overlap, Feed = Customer Feedback from Returns
and Reviews

ID Category Feature Source
1

Value
2

Source
2

Value
2

Defect
type

Label

A1 LAPTOP RAM Title 16GB PF 32GB Conflict 1
A1 LAPTOP GPU PF Graphics Inaccuracy 1
A2 LAPTOP SSD PF 1TB BP 1000GB None 0
A3 PHONE SSD Title 256GB PF 256GB None 0
A3 PHONE RAM PF 2MB Inaccuracy 1
A4 MONITOR Refresh

Rate
Title 144Hz PF 60Hz Conflict 1

A4 MONITOR Size None None None None Omission 1
A5 BED Color Title Brown Omission 0

Table 6: Sample Entries from Evaluation Dataset (Pair-wise Source Comparison) PF = Product Features, BP =
Bullet Points



Issue Type Product Category Model Explanation

Inaccuracy Massager The item form is listed as ’Cream’, which seems anomalous for
a cupping massage set that consists of glass cups and silicone
bulbs as shown in the images. Typically, cupping sets do not
come in a cream form

Conflict Television The product information states the display size is 65.0 inches,
but the images clearly show a much larger television, with 83
inches dimension. Also, the product title mentions the size
as "83 Inch". This is a significant conflict in the display size
specification.

Inaccuracy Chair The size value listed as 999 seems anomalous and inaccurate
for a chair product.

Inaccuracy Speaker The surround sound channel configuration of 4.2 listed for this
portable Bluetooth speaker seems anomalous and inaccurate.
Surround sound configurations are typically used for multi-
speaker home theater setups, not single portable speakers like
this one.

Inaccuracy Chair The special feature listed as \"Toy\" seems anomalous for an
outdoor chair intended for adults and children up to 250 lbs.

Table 7: ISEE output examples : These examples showcase the model’s generalization with the explanation across
various issue types
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