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Abstract

Mapping addresses to geolocations accurately is a challenging and
important problem, with many real-world applications such as deliv-
ery logistics, map building and path finding. High quality embedding
of geospatial data (e.g., addresses, geocodes) which is grounded
in real world play an important role in success of modeling tasks
such as geocoding and address resolution/matching. Existing state-
of-the-art (SOTA) approaches [9] have proposed to transform the
address embedding space to mimic real world proximity via a triplet
loss, but requires triplet engineering which is error prone and dif-
ficult to scale. In this work, we propose to embed addresses and
geocodes data in the same embedding space to enable late fusion
of cross-modal semantics and remove dependency on triplet cre-
ation. Our proposed model outperforms SOTA baselines (including
Multilingual-E5-Large-Instruct [32], a top model on MTEB leader-
board) by improving geolocation accuracy and geocode outliers
across geographies with diverse writing standards. We also observe
significant gains in address embeddings quality intrinsically and the
approach supports to jointly align more geospatial modalities.

CCS Concepts

* Computing methodologies — Natural language processing; * In-
formation systems — Document representation; Multimedia and
multimodal retrieval; Location based services; Geographic in-
formation systems; Language models; Nearest-neighbor search.
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1 Introduction and Motivation

Learning accurate geolocation of addresses is important for vari-
ous business-to-consumer services such as logistics, ride-hailing,
and emergency response operations. The process of determining
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Figure 1: Jointly aligning geocodes and address texts

the geocode (i.e., latitude and longitude) of addresses is commonly
known as geocoding and usually accomplished by matching the
query address text to a known addresses reference set. Therefore, it
is of utmost importance to build a comprehensive understanding of
the address text in order to accurately match it to a known reference
set. Address text in regions where a standard structure is followed
(such as North America and Europe) is largely driven by street num-
ber and street name but can be non-trivial to understand by machine
learning (ML) models due to the presence of ambiguous numbers
and instructions such as X 3 Lakes Rd, Three lakes rd XXXX left
side of street, 60010, Barrington, IL, US ! On the other hand, many
geographies have loosely structured addresses or a variety of local
standards which lead to spelling variations, use of local languages,
synonyms, abbreviations, etc. For example, the address Sonai nadi
ka pul, Sonai Baidpura Etawah, 206002, Etawah, UP, IN uses ro-
manized Hindi and does not contain any fine-grained details beyond
the locality and landmark (i.e., river bridge in Sonai village). Popu-
lar commercial map services encounter challenges when processing
addresses with these characteristics [27] and fail to correctly locate
the above discussed addresses. Understanding addresses accurately
is not just a technical challenge but has significant real-world impli-
cations. Inaccuracy in geocodes could lead to egregious planning
errors, such as not being able to respond to emergencies promptly
or creating poor experiences when directed to incorrect locations.
Furthermore, high-quality address and geocode embeddings enable
critical applications beyond geocoding and vector based candidates
retrieval for address matching systems. Embedding-based clustering
of co-located addresses provides analytical insights that can enable
data-driven urban planning decisions. Also, cross-modal matching
can help identify potentially erroneous address-geocode pairs that
could affect aforementioned delivery services.

We observe that the standard sentence embedding approaches
in natural language processing (NLP) literature, which are trained
with language modeling objective [17] and/or a contrastive objec-
tive on sentence level [6, 25], fail to provide quality embeddings
for addresses. We also note that SOTA instruction-tunable embed-
ding models such as Multilingual-E5-Large-Instruct [32] which is
in top-5 high performant models on MTEB leaderboard [1, 5], also
struggle to provide quality embeddings for addresses (cf. Section

!Finer address details/numbers are masked (X) to preserve privacy.
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4.1). The key reason is that address data is not organized as para-
graphs/documents and thus, lacks context by nature. Instead, ad-
dresses derive their semantics primarily from the spatial relation-
ships. One of the recent work on address representation learning [9]
(referred as RoBERTa-Triplet-H3 hereafter) tries to bridge this gap
by transforming the embedding space to mimic real world proxim-
ity among addresses with the help of triplet loss. Here, the triplets
are engineered using the H3 spatial index” and subjected to the
constraint that the anchor address should be closer to the positive
address in real world than to the negative address. This approach
requires triplets engineering with some geography specific domain
knowledge and can be difficult to scale.

In this paper, we propose AddressBind to bind address and geocode
modalities by jointly embedding them in the same high dimensional
space allowing richer transfer of proximity semantics to address em-
beddings. It eliminates the need of triplet engineering and leverages
cross-modal learning to align representations via a self-supervised
matching objective as illustrated in Figure 1. This enables the late
fusion of knowledge across the two modalities. As a result, address
representations will learn to associate to geocodes based on the
various grounding tokens present in addresses. At the same time,
geocode representations will learn to associate a given geocode with
local addresses’ characteristics in its vicinity. Throughout this paper
we use the terms ‘location’ and ‘geocode’ interchangeably, as well
as the terms ‘embedding’ and ‘representation’. In summary, the key
contributions of this paper are:

e To the best of our knowledge, we are the first to align the con-
tinuous encoding of addresses and geocodes in the same space
to learn SOTA representations. It facilitates fusion of geospatial
proximity into address embeddings and at the same time distills
knowledge of local addresses in geocode embeddings.

e QOur approach learns a continuous representation for addresses
and geocodes allowing the model to interpolate to locations hav-
ing no past deliveries. It eliminates the need for manual triplet
engineering and is naturally extensible to include more geospatial
modalities.

o We demonstrate the impact of our model on real-world appli-
cations across datasets that cover different writing styles and
standards. This work focuses on tasks of address geocoding and
anomalous geocode detection. However, learnt address and geocode
embeddings can cater to other applications in related domain such
as address correction, matching and entity recognition.

2 Related Work

Address Geocoding and Geospatial ML Address geocoding prob-
lem is recently gaining interest in both academic and industry re-
search communities. Some of the recent works include [18], where
Address geocoding is framed as pairwise matching problem us-
ing graph based active learning. Further, in [9], authors propose
a dynamic neighbourhood level geocoding solution for cold-start
hard-to-resolve addresses. In [21], a graph neural network based
place representation learning solution is proposed for warm-start
addresses. Qian et al. [22] experiment with a seq2seq geocoding
model to directly predict geohash string for Chinese addresses. In

2H3 Spatial Index https://h3geo.org/
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[16], authors introduce GeoAttn model, which focuses on geoloca-
tion signals in the text and attends to the relevant Point-of-Interests
(POIs) for location prediction. Srivastava et al. [28] propose to learn
geospatial spread of terms in address text from delivery history data
and predict geolocation based on their overlap. In computer vision
domain, there are multiple recent works on learning from geospatial
data such as geolocating wildlife images [19, 31] by embedding im-
ages with locations. In [12], authors propose to learn multi-purpose
generic embeddings of world wide satellite imagery using a con-
trastive objective. Clark et al. [4] propose a discrete grid based
classification approach to geolocate images. In [13], authors propose
GeoChat, a large vision-language model to perform interactive re-
mote sensing over satellite imagery. Learning robust embeddings via
an auto-regressive denoising language modelling objective is also
relevant for unstructured noisy address text [8]. In [26, 29], authors
propose efficient way to model high frequency functions in low
dimensional domains via random fourier features and sinusoidal rep-
resentation networks. It is important to note that our work targets the
fundamental problem of learning high-quality address embeddings,
which enables multiple downstream applications such as geocoding
and robust vector-based candidates retrieval for address matching
and validation. This distinguishes our approach from methods that
focus solely on specific tasks like building level address matching or
geocoding without learning reusable embeddings. Such task-specific
approaches, while effective for their intended purpose, can not be
directly compared to our method as they optimize directly for down-
stream tasks rather than creating versatile representations that can
support multiple geospatial applications.

Multi-modal Representation Learning In [23], authors introduce
the CLIP model, which jointly trains an image encoder and a text
encoder in a contrastive fashion to predict the correct pairings of
(image, text) in training examples and learns transferable knowledge
representations benefiting across multiple cross-modal tasks. Further
in [14, 15], a vision-language pretraining framework is proposed
based on multimodal mixture of encoder-decoder which employs
a captioner to generate synthetic captions for web images, and a
filter to remove noisy captions. GeoCLIP [31] take inspiration from
CLIP to align images and geolocations in the same embedding
space. Girdhar et al. [7] introduce ImageBind that aims to learn
a joint embedding across six different modalities - images, text,
audio, depth, thermal, and inertial measurement unit (IMU) data by
using InfoNCE loss and observe emergent capabilities on unseen
modalities pairs. Similarly, Zhu et al. [34] propose LanguageBind to
align different modalities by keep language as the central modality
to achieve cross-modal semantic alignment. In [8], authors propose
robust representation learning of noisy text via an auto-regressive
language denoising task. To the best of our knowledge, ours is the
first work that proposes to align the continuous encoding of geocodes
and addresses in the same representation space for efficient address
representation learning.

3 Proposed Model

With AddressBind, we aim to encode addresses and geocodes to a
continuous higher dimensional space that 1) preserves proximity and
hierarchical nature inherent to addresses, 2) fuses knowledge across
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modalities. We train AddressBind with a cross-modal matching
objective, the address encoder F4 is trained to associate an address
a with a geocode g based on the various grounding cues present
in addresses. At the same time, the location encoder Fg is trained
to associate a given location with local vicinity specific address
text characteristics.

3.1 Geocode Encoder

Neural models such as multi-layer perceptron (MLP) have been ob-
served to have spectral bias when learning high frequency function in
low dimensional domains such as coordinates data (e.g., geocodes,
viewpoint coordinates in 3D scene reconstruction) [29]. In other
words, what it means in reference to our work is that address text
can greatly vary with respect to a little change in geocode making it a
high frequency function to learn. Multiple recent works [20, 31, 33]
have reported experimentally that a sinusoidal mapping of input
coordinates enables MLP networks to learn higher frequency con-
tent, which is considered as a special case of Fourier features [24].
Figure 2 depicts the key components of the geocode encoder where
inductive biases control spatial smoothness and hierarchical nature,
allowing the model to interpolate to areas where no address-location
pairs are present in the training data and preserve hierarchical rela-
tionship.

Figure 2: Encode geocode via Random Fourier Features

Random Fourier Features Equation 1 formulates the random
fourier features (RFF) projection of a given geocode g from R?
into a higher dimensional space R; H > 2 via a projection matrix
J° sampled from the normal distribution N(0, 62). The transformed
geocode vector is fed to cosine and sine functions and concatenated.
The value of ¢ controls the sensitivity of RFF projection towards
fine or coarse-grained changes in geocodes (i.e., larger the value of
o, higher the sensitivity toward input changes). It should be noted
that J remains fixed throughout the training. Equal earth projection
(EEP) [2] is performed over geocodes before input to RFF module,
to reduce the impact of distortions in standard geographic coordi-
nate system. Section 5.3 provides illustrations on the influence of
o on RFF sensitivity (cf. Fig. 9) and impact of not using RFF in
encoder (cf. Fig. 8).

RFF(g,0) = [cos(27]%g), sin(27]%g)]" (1)

Hierarchical Amalgamation An address text is generally influenced
by multiple geographical entities of varying granularities. Therefore,
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it is a natural choice to have multiple RFFs (i.e. the hyperparameter
I') with varying frequencies to obtain representations spanning from
coarser to finer levels, which act as an useful inductive bias in the
architecture. The frequency value o; for each of the RFF module
is chosen using an exponential assignment strategy as suggested in
[29, 31]. Subsequently, each of the RFF modules’ projection are
passed though MLPs independently. Finally, outputs from MLPs are
aggregated via element-wise addition to produce the final geocode
embedding. Equation 2 formally defines the location encoder Fg for
a geocode g.

T
Fg(g) = ) MLP;(RFF(g, 07)) )

i=1

3.2 Address Encoder

As an address encoder F4, we utilize sentence-transformers [25]
all-MiniLM-L6-H3843, which is trained using contrastive learning
on a very large sentence level dataset of 1B sentence pairs. The
pretraining objective is: given a sentence from the pair, the model
should predict which out of a set of randomly sampled other sen-
tences, was actually paired with it in the dataset. We finetune the
complete model weights during our cross-modal alignment training.

3.3 Contrastive Training

We leverage historical delivery data to train the proposed model
using a self-supervised contrastive methodology (similar to CLIP
[23, 31]) without being limited by manual data curation efforts. We
aggregate historical delivery information to create (address, geocode)
training pairs. Given that the geocode encoder can encode an arbi-
trary geocode and contrastive learning approaches benefit from large
number of negatives in batch, we append P random geocode negative
examples to every batch of size B similar to a general practice in
literature [31]. Given a pair of address a; and geocode g;, the model
is trained with InfoNCE [30] loss Ly, 4; to align address and geocode
embeddings as formulated in Equation 3.

log exp(Fa(ai) Fg(g:)/7)

S5 exp(Fa(ai)TFG(g;)/7) + X5y exp(Fa(ai)TFo(g;)/7)
Here, 7 is a scalar temperature which controls smoothness of the soft-
max distribution (higher = smoother). We note in experiments that
adding extra geocode negative examples significantly improve the
embeddings quality (cf. Section 4.1). We randomly sample geocode
negatives on postal code group level and consider exploring further
hard negative mining techniques as a future work. The described
loss function can accommodate more geospatial modalities just by
simply adding the corresponding paired data.

4 Experimental Analysis

We evaluate the learnt embeddings intrinsically, and on address
geocoding and anomalous geocode detection tasks.

Datasets Details We experiment with addresses from structured
(STR) as well as unstructured (USTR) geographical regions, and
utilize historical delivery data for addresses to generate (address,
geocode) pairs at large scale. Our model training leverages a large-
scale dataset comprising tens of millions of unique addresses paired

3https://huggingface.co/semence-transformers/all—MiniLM—L6—v2
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Table 1: Confusion matrix showing 4 synthetic examples of (address, geocode) pairs for cross-modal alignment training. Using public
landmarks for illustration, the matrix shows two types of negatives: in-batch (first 4 geocodes, where each address has one positive and
three negatives) and extra negatives (last 2 geocodes) sample randomly from different locations

In-batch Geocodes B = 4

Extra Negatives P = 2

Address 40.689°N

74.045°W

40.690°N
74.045°W

27.175°N
78.042°E

27.163°N
78.036°E

40.783°N 27.158°N
73.966°W 78.021°E

Statue of Liberty, Liberty Island, New York, +
NY 10004, USA

Statue of Liberty Viewpoint, Jersey City, NJ -
07305, USA

Taj Mahal Monument, Agra, UP 282001, -
India

Taj Mahal Restaurant, Sadar Bazaar, Agra, -
UP 282001, India

with their corresponding geocodes, derived from historical deliv-
ery data. For evaluation, few weeks of out-of-time network wide
shipments (in hundreds of thousand) against addresses with no prior
delivery are considered, and model predicted locations are compared
against the observed delivery locations. As illustrated in Table 1, the
training data consist of (address, geocode) pairs along with their pos-
itive or negative labels. Positive pairs are constructed from observed
historical delivery locations, while negative pairs are constructed
via in-batch negatives strategy. We augment each training batch of
size B with extra P random geocode negatives to enhance the con-
trastive learning process. This approach enables the model to learn
robust address-location relationships without requiring any manual
data curation.

Model Configurations and Baselines For a thorough comparative
analysis, we setup multiple baselines for address representation
learning, models used in our experimentation can be grouped into
the following three categories.

Sentence Embedding SOTA Models: We utilize sentence transform-
ers [25] based ST-MiniLM-L6-H384, which is a general purpose
sentence embedding model pretrained on a very large dataset of
1B sentence pairs. We also baseline against Multilingual-E5-Large-
Instruct [32] model, which is a SOTA instruction-tuned sentence
embedding model with strong performance on MTEB embeddings
benchmark [5] and on par with other LLM based embedding models.
We systematically tuned the Multilingual-E5-Large-Instruct instruc-
tion prompt for optimal address embedding performance, selecting:

Instruction: Given a query address, retrieve relevant
addresses that are nearest to it in real world.
Query: {query_address_text}

ST-MiniLM-L6-H384 is 6 layers transformer based models with
384 embedding size, while Multilingual-E5-Large-Instruct is xlm-
roberta-large based model with 1024 embedding size.

Address Embedding SOTA Models: We setup RoBERTa-Address,
which is a RoBERTa [17] based model pretrained on addresses
dataset with MLM objective. Further, we have another SOTA base-
line RoBERTa-Triplet-H3 [9] specifically proposed for learning
address representation via H3 grids based triplets. To benchmark

the performance without RFF projections, we have MLP-Loc-Enc
model where the geocode input is directly passed to MLP module.
RoBERTa-Address and RoBERTa-Triplet-H3 are 6 layers ROBERTa
based models with embedding size 768, while MLP-Loc-Enc is
initialized from ST-MiniLM-L6-H384.

AddressBind Models: We have four variants of our AddressBind
model. AddressBind-4RFF and AddressBind-6RFF are trained with
the proposed geocode encoder having I' values 4 and 6 respectively.
Further, AddressBind-6RFF-Noise and AddressBind-6RFF-4xNoise
models are trained with additionally supplied random geocode nega-
tives of the size of batch and 4 times the size of batch respectively, as
discussed in Section 3.3. AddressBind variants are 6 layers models
with 384 embedding size initialized from ST-MiniLM-L6-H384.

Training and Implementation Details We use Adam optimizer
[11] with learning rate of 5 * 1075 and betas (0.9, 0.999). We employ
a linear learning rate schedular with step size of 1 epoch, start
factor of 1.0 and end factor of 0.75. AddressBind models are trained
with a batch size of 1024 until validation loss convergence or a
maximum of 50 epochs. The batches are sampled from postal code
group stratas to draw relevant in-batch negatives. The large batch
size is particularly beneficial for contrastive learning as it provides
more negative examples within each batch, improving the model’s
ability to distinguish between similar and dissimilar address-geocode
pairs. In the following subsections, we report relative performance
numbers w.r.t. the baseline wherever applicable in favor of business
confidentiality without compromising on the experimentation rigor.

4.1 Embeddings Quality

We intrinsically evaluate the quality of embeddings learnt by dif-
ferent models w.r.t. the encoded real world proximity. We generate
the proximity test sets for each geography by sampling SOK address
pairs where both the addresses lie within a maximum of 50 m from
each other. To avoid any data leakage or unfair advantage to any
model, we only consider out of training addresses to generate these
pairs. Given one of the address in pair, the task is to retrieve the other
address by doing a K-Nearest Neighbour look up on embeddings.
We facilitate this by using an approximate nearest neighbour tool
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Table 2: Performance on address retrieval task to measure proximity semantics captured in embeddings. Results are shown for both
structured (STR) and unstructured (USTR) geographical regions. Metrics with T indicate higher is better.

Model hitrate@5 7 hitrate@10 7T hitrate@20 7 MRR@5 7 MRR@10 7 MRR@20 T
STR USTR STR USTR STR USTR STR USTR STR USTR STR USTR
" ST-MiniLM-L6-v2 X X X X X X X X X X X X
."‘:’ Multilingual-E5-large-Instruct 1.109x  0.984x | 1.151x 1.012x | 1.202x 1.014x 1.08x  0.935x | 1.093x 0.943x | 1.104x 0.952x
§ RoBERTa-Address 0.941x 1.098x | 0.963x 1.205x | 0.986x 1.320x 0.923x  1.032x | 0.929x 1.059x | 0.931x 1.114x
& | RoBERTa-Triplet-H3 1.550x  3.000x | 1.743x 3.247x | 1.922x 3.454x || 1.423x 2.581x | 1.486x 2.676x | 1.517x  2.800x
MLP-Loc-Enc 0.986x 1.294x | 1.098x 1.521x | 1.233x  1.835x 0.923x  1.129x | 0.957x 1.206x | 0.979x  1.286x
Final:AddressBind-6RFF-4xNoise | 1.878x 3.686x | 2.122x 4.205x | 2.222x 4.536x || 1.631x 3.097x | 1.721x 3.265x | 1.745x 3.429x
; Base: w/ 4RFF 1.635x  3.137x | 1.872x 3.575x | 2.044x 3.979x 1.454x  2.677x | 1.529x 2.853x | 1.566x  3.000x
O | w/ 6RFF 1.761x  3.314x | 2.007x 3.781x | 2.150x 4.196x 1.562x  2.774x | 1.643x 2.941x | 1.676x 3.114x
w/ 6RFF, Noise 1.820x  3.451x | 2.061x 3.932x | 2.175x  4.340x || 1.592x 2.871x | 1.679x 3.059x | 1.703x  3.229x
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Figure 3: Clustering of addresses using embeddings from various models and visualization in geocode domain with colors depicting the
discovered clusters. Silhouette scores are -0.32, -0.05 and 0.14 respectively for the depicted three models. (Note: Background maps are

intentionally morphed to preserve privacy)

Annoy*. We utilize hit rate (hitrate@K) and mean reciprocal rank
(MRR @K) as standard metrics [3] to measure the retrieval quality.
The hit rate metric measures if we are able to retrieve a close proxim-
ity address for the query address in top-K list, whereas MRR further
measures how high is the rank when there is a hit in top-K.

Table 2 reports relative values of hitrate@K and MRR@K w.r.t.
the baseline for different K. We observe that AddressBind based mod-
els have superior performance than baselines, where AddressBind-
6RFF-4xNoise performs the best among AddressBind variants, im-
proving hitrate@5 over RoBERTa-Triplet-H3 by >15% for both
geographies. We observe a similar pattern in MRR metrics which
implies that AddressBind models are not just capable of retrieving
close proximity addresses successfully but also rank them better in
the order. It is also worth noting that MLP-Loc-Enc model performs
poorer than any of the RFF based models. Further, Multilingual-E5-
large-Instruct performs poorer than AddressBind and RoBERTa-
Triplet-H3 models despite being a much larger model with SOTA
performance on general purpose sentence embedding benchmarks,
which highlights the need for special treatment for address domain.
These empirical findings validate our hypothesis that AddressBind
captures the real-world proximity better among addresses without
relying on any triplet engineering.

Clustering Analysis We also perform a qualitative analysis by clus-

tering (using K-means with K=100) addresses based on their embed-
dings and visualizing them through their geocodes (refer to Figure 3,

4Annoy Approximate Nearest Neighbours https://github.com/spotify/annoy

a sample of 20K addresses). Here, the models which capture geospa-
tial proximity more precisely, will result in smoother clusters by
enabling the grouping of addresses together that are geographically
closer. We observe that embeddings generated using ST-MiniLM-
L6-v2 produce clusters, which are only driven by street names in
addresses. RoBERTa-Triplet-H3 produces improved clusters due to
slightly better encoding of proximity, but is still heavily driven by
street names. AddressBind-6RFF-4xNoise produced clusters can be
seen influenced by a good mix of real world proximity and address
text, improving over the previous models. This is also visible in the
Silhouette scores, which are -0.32, -0.05, and 0.14 for these mod-
els, respectively. The observed geospatial proximity semantics are
beneficial for multiple geospatial tasks.

4.2 Address Geocode Learning

As an extrinsic evaluation, we compare models on the task of address
geocoding. The geocode for a query address is predicted as an ag-
gregated point over geocodes of retrieved matching addresses from
the reference set, similar to a common practice in related literature
such as image/address geolocation learning [9, 10], which allows for
direct assessment of embedding quality without introducing addi-
tional model complexity. We utilize approximate nearest neighbour
similarity search in our experimental analysis. Table 3 presents exper-
imental results via various geocoding metrics on shipments for the
test period. Acc@Y denotes accuracy of predicted geocodes falling
within Y meters of actual geocodes. DR@Z (Defect Rate) mea-
sures geocoding outliers when the prediction falls beyond a certain
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Table 3: Address geocoding performance comparison on structured (STR) and unstructured (USTR) geographical regions’. Metrics

with T indicate higher is better, while | indicate lower is better.

Model Acc@Y T DR@Z | p25 | p50 | p9s |

STR USTR STR USTR STR USTR STR USTR STR USTR

" ST-MiniLM-L6-v2 X X X X X X X X X X
2 | Multilingual-E5-large-Instruct 1.01x 1.014x | 0.853x 0.889x | 0.921x  0.99x | 0.983x 0.938x | 0.369x 0.473x
'TE RoBERTa-Address 0.904x 1.015x | 0.801x 0.630x | 1.214x 1.095x | 1.282x 0.838x | 0.220x  0.204x
& | RoBERTa-Triplet-H3 1.184x 1.634x | 0.373x  0.427x | 0.857x 0.476x | 0.769x 0.283x | 0.085x 0.153x
MLP-Loc-Enc 0.969x 1.084x | 0.625x 0.539x | 1.286x 1.048x | 1.128x 0.717x | 0.140x  0.147x
Final: AddressBind-6RFF-4xNoise | 1.276x 1.704x | 0.313x 0.371x | 0.857x 0.476x | 0.667x 0.253x | 0.058x 0.107x

E Base: w/ 4RFF 1.221x  1.628x | 0.329x 0.384x | 0.929x 0.524x | 0.744x 0.283x | 0.062x 0.115x
O | w/ 6RFF 1.255x  1.660x | 0.302x 0.376x | 0.857x 0.524x | 0.692x 0.273x | 0.060x 0.108x
w/ 6RFF, Noise 1.261x  1.679x | 0.312x 0.373x | 0.857x 0.476x | 0.692x 0.263x | 0.058x 0.108x

threshold of Z meters. The percentile metrics (p25, pS0, p95) cap-
ture the distribution of error distances (actual vs predicted geocode
in meters) on the test set. Overall, all AddressBind based models
improve over baselines by a good margin for both geographies ex-
cept AddressBind-4RFF variant falls short by a little in comparison
to RoBERTa-Triplet-H3 in accuracy metrics for USTR, which can
be attributed to lower capacity of its location encoder module and
unique challenges posed by addresses in unstructured geographies as
highlighted in Section 1. However, AddressBind-6RFF-4xNoise out-
performs SOTA sentence embedding baseline Multilingual-E5-large-
Instruct as well as address embedding baseline RoBERTa-Triplet-H3.
Improvement in precision by 7.7% and reduction in DR by 16% in
the STR (4.3%, 13% for USTR) are observed over RoBERTa-Triplet-
H3. Further, superior performance of AddressBind-6RFF-4xNoise
over AddressBind-4RFF and AddressBind-6RFF validates the impor-
tance of having multiple RFFs with varying frequencies in geocode
encoder and utilizing extra negatives while training.

4.3 Anomalous Geocode Detection

In this section, we demonstrate the effectiveness of our cross-modal
approach on the task of anomalous geocode detection. This is a
generic task, which deals with detecting whether a geocode asso-
ciated with an address is valid or not. It manifests in multiple ap-
plications such as confirming if a delivery happened at the desired
location and predicting the correctness of a learnt geolocation. As we
embed geocodes and addresses in the same high dimensional space,
we show that a simple cosine similarity operation with a carefully
chosen threshold © can be highly effective in identifying anomalous
geocodes. We create a test set of 20K addresses unseen during Ad-
dressBind model training and sample 4 geocodes at varying error
distances (spanning up to several kms) from the actual distance of an
address. We perform stratified sampling to maintain a fair balance
of geocodes nearby and faraway to addresses’ actual locations (cf.
Figure 6). A validation set is used to determine the best individual
cosine similarity threshold © for anomalous geocodes detection at
different error distances. Table 4 reports the macro-averaged perfor-
mance metrics at various error distances where x denotes a small
distance deviation from actual location and further different multi-
pliers to x conveys larger error deviations>. It can be seen that the
model achieves up to F1 score of 0.94 (STR) and 0.92 (USTR) in

SMetrics thresholds are masked and error distances are reported relative due to business
confidentiality reason.

classifying if a geocode is within certain error distance of an address
or not. Refer to Section 5.2 for a qualitative analysis and precision-
recall curves at various error distances. We observe that our model
performance peaks at 10x and then go slightly down for higher er-
rors, which can be potentially due to the increasing search space at
higher error distances. Overall, the encouraging results demonstrate
effectiveness of AddressBind to cross-modal tasks.

Table 4: Performance metrics on detecting anomalous geocodes
at various error distances

Error Precision Recall F1 AUC
Dist | STR | USTR | STR | USTR | STR | USTR | STR | USTR
X 0.52 0.54 | 0.63 0.59 | 0.50 0.55 | 0.77 0.84
5x 0.84 0.81 | 0.86 0.85 | 0.83 0.82 | 0.90 0.91
10x | 0.94 092 | 0.94 0.92 | 0.94 0.92 | 0.98 0.96
100x | 0.92 0.84 | 091 0.80 | 0.91 0.82 | 0.98 0.94
200x | 0.90 0.84 | 0.90 0.78 | 0.90 0.81 | 0.97 0.93

4.4 Latency and Scaling Efficiency Analysis

We conduct extensive latency and throughput measurements across
different models to evaluate their practical applicability in real-world
production scenarios. Table 5 presents the inference performance
across various batch sizes (1, 64, and 1024) and Figure 4 visualizes
performance characteristics in log space at multiple batch sizes
varying from 1 to 1024, revealing substantial differences between
model architectures to inform deployment decisions. All benchmarks
were conducted using a single consumer-grade GPU to provide
realistic performance metrics for typical deployment scenarios.
The proposed AddressBind model, with only 22.7M parameters
and embedding dimension of 384, achieves the fastest inference
times at 5.1 £ 0.1 ms for single queries. This performance makes
it particularly suitable for latency-sensitive applications requiring
real-time responses. The model maintains high throughput scaling
to 8713.2 £ 481.5 samples/second at batch size 1024, demonstrat-
ing efficient utilization of GPU compute resources even under high
load conditions. The RoBERTa-based models, with moderate param-
eter counts (83.1M) and embedding dimension 768, demonstrate
comparable single-query latency (5.2 £ 0.1 ms) but exhibit less effi-
cient scaling at higher batch sizes. This plateauing effect becomes
particularly evident in batch scenarios beyond 64 samples.
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The Multilingual-E5-Large-Instruct model represents the rela-
tively heavyweight option in our evaluation, with 559.9M parameters
and embedding dimension 1024. It demonstrates substantially higher
latency even for single queries (16.7 = 0.1 ms), which increases to
1977.4 + 76.9 ms at batch size 1024, nearly 17 times slower than
AddressBind at equivalent batch size. Its throughput capacity is sim-
ilarly constrained, reaching a maximum of only 558 samples/second
before declining at the highest batch sizes, suggesting memory band-
width or other computational bottlenecks.

The top panel in Figure 4 illustrates approximately linear latency
growth in log-log space across all models with AddressBind being
the lowest curve. The throughput visualization in the bottom panel
demonstrates that all models initially benefit from increased batch
sizes, but with dramatically different saturation points. While Ad-
dressBind models continue scaling effectively to the largest tested
batch size, RoBERTa models plateau beyond batch size 64, and
the Multilingual-E5-Large-Instruct model saturates at under 600
samples/second with slight performance regression at the highest
batch sizes. This combination of low latency, high throughput and
better embedding quality (cf. Section 4.1, 4.2) positions Address-
Bind as an ideal candidate for production deployment across diverse
operating conditions.
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Figure 4: Latency (milliseconds) and throughput curves (samples
per second) with error bars in log space for different models at
various batch sizes
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5 Qualitative Analysis and Ablations

5.1 Anecdotes on Address Geocoding

Figure 5 illustrates the geocoding process for address X - block, XX,
Yatender nagar, Tigri Gautam Budh Nagar, up, Gazibad, 201009,
Ghaziabad, UP, IN using different models. This address poses an
interesting challenge because it lies on the jurisdiction boundary of
two cities, and ambiguity in usage of the two city names may arise.
Here, both Ghaziabad and Gautam Budh Nagar are mentioned in
address lines and latter is the correct choice as can be seen in map
visuals below. We observe that ST-MiniLM-L6-v2 model gets com-
pletely perplexed and produces very far away addresses as retrieved
neighbours. RoBERTa-Triplet-H3 improves over the previous model
but is still not able to disambiguate the address text. In contrast, we
can see that our proposed AddressBind-6RFF-4xNoise model demon-
strates superior understanding by fetching multiple addresses from
the true neighbourhood of the query address despite the subtlety.
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(a) ST-MiniLM-L6-v2
(7,500 m)

(b) RoBERTa-Triplet-H3
(800 m)

500 m
2000 ft
(c)

AddressBind-6RFF-4xNoise
(50 m)

Figure 5: Retrieved nearest neighbours (depicted via heap map)
with  predicted and actual locations, and error distances from
actual location by various models (Note: Background maps are
intentionally morphed to preserve privacy)
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Table 5: Models architecture specifications and scaling efficiency performance comparison

Latency (ms) + std Throughput (samples/s) + std

Model Group Params | Dims |~ 55¢ch=1 Batch=64 Batch=1024 | Batch=1 Batch=64 Batch=1024
AddressBind (ours)
ST-MiniLM-L6-v2 22.71IM 384 51+0.1 9.9 +0.7 117.5+6.9 194.6 +2.1 | 6494.8 +457.1 | 8713.2+481.5
MLP-Loc-Enc
RoBERTa-Address
RoBERTa-Triplet-H3 83.12M 768 52+0.1 148+1.5 220.2 +16.7 1924 +1.9 | 4328.4+3934 | 4650.3 +328.0
Multilingual-ES-Large-Instruct 559.9M 1024 16.7 £ 0.1 114.8 +13.1 1977.4 +76.9 59.9+04 557.6 £57.3 517.8+194

5.2 Anecdotes on Anomalous Geocode Detection

Figure 6 illustrates the spatial distribution of cosine similarity be-
tween an address and surrounding geocodes. The visualization re-
veals a clear gradient pattern where similarity decreases with increas-
ing distance from the actual location. This demonstrates the model’s
ability to effectively encode spatial proximity in the shared embed-
ding space. Notably, the similarity values exhibit a non-linear decay,
with steeper drops occurring within the first few hundred meters,
suggesting the model has learned to be particularly sensitive to small
displacements in dense urban environments. Further, a distinctive
"+" shaped light colored pattern emerges around the actual location
(indicated by dashed lines for visual guidance), which corresponds to
the intersection of crossing roads (faintly shown in the background).
This pattern is significant as it hints how the model may implicitly
learn to some extent the underlying road network structure with-
out explicit supervision. The higher similarity values along these
road axes reflect the model’s understanding that addresses are more
likely to be situated along transportation corridors rather than in
arbitrary locations.

Figures 7 presents precision-recall curves for anomalous geocode
detection across various error thresholds for structured geographies.
The performance progression follows a non-monotonic pattern, peak-
ing at 10x with an AUC of 0.98 before slightly declining at larger
distances. The 10x curve demonstrates near-perfect classification
capability with both precision and recall above 0.94, suggesting
an optimal detection threshold for practical applications. Curves
for smaller error distances exhibit significantly lower performance
with more pronounced trade-offs, indicating the challenge of dis-
tinguishing minor geocode deviations. The convergence at higher
error distances suggests diminishing returns beyond certain spatial
thresholds, possibly due to increasing sparsity of relevant contextual
information at larger scales.

5.3 Ablations on Random Fourier Features

Learning Curves with/without Random Fourier Features Fig-
ure 8 depicts train loss curve to demonstrates the critical role of
Random Fourier Features in model convergence. Without RFF pro-
jections, the MLP-Loc-Enc model exhibits pronounced oscillations
in both training and validation losses, failing to converge even after
50 epochs. This instability stems from the inherent difficulty neu-
ral networks face when mapping low-dimensional geocode inputs
directly to high-dimensional semantic spaces. In contrast, models
employing RFF projections display stable learning curves with faster

Figure 6: Cosine similarity between embeddings of nearby
geocodes and address XXXX S Bell Ave, 60643, Chicago, IL, US

Error Dist
—x
- = 25x
— 5x
- - 10x
50x
100x
200x

precision

recall

Figure 7: PR curves for anomalous geocode detection at different
error distances

convergence (i.e., curve on the bottom of Figure 8). This empiri-
cal evidence strongly supports the theoretical understanding that
RFF projections provide essential inductive bias for learning high-
frequency functions from low-dimensional spatial inputs.

Impact of o on RFF Sensitivity Figure 9 illustrates the impact of
o value on RFF projections for a pair of geocodes, which are 200
meters apart. The two rows in each of the sub-figures represent the
projected vectors for geocodes at certain value of hyperparameter o,
and intensity of the color depicts the magnitude of cell value. It can
be observed that larger values of ¢ result in higher sensitivity of an
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~— MLP-Loc-Enc
AddressBind-6RFF-Noise

Figure 8: Train loss curves of models with and without RFF
projections over the course of 50 epochs

RFF projection module towards fine-grained changes in geocodes
(i.e., lesser correlation in cell colors across the two rows).
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Figure 9: Illustration on impact of ¢ value on RFF projections
for a pair of geocodes, which are 200m away

6 Conclusion

In this paper, we have introduced a novel multi-modal approach to
learn proximity-aware quality address representations by embed-
ding both geocodes and customer addresses in the same space, and
eliminate dependency on triplets engineering. Our extensive exper-
imentation shows significant gains in learnt embeddings quality
intrinsically and on address geocode learning over the SOTA mod-
els for instruction-tuned sentence embeddings as well as address
focused embeddings. Further, the proposed model shows potential
for cross-modal applications such as detecting anomalous geocodes
w.r.t. addresses. Significant improvements shown in geocoding accu-
racy and reduced defects for addresses directly translate to improved
performance for systems in logistics and related domains.
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