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Abstract 

Vision-Language Models (VLMs) have demonstrated impressive capabilities in general-
purpose multi-modal tasks, but their adaptation to specialized sports analysis remains 
relatively unexplored. This paper bridges this gap by investigating VLM's effectiveness for 
automated cricket scene classification, addressing critical bottlenecks in current workflows 
that require 45-50 minutes of human intervention. We explore three distinct approaches—
zero-shot prompting, few-shot prompting, and Parameter Efficient Fine-Tuning (PEFT) with 
LoRA—across three fundamental cricket tasks: event marker detection, start of delivery 
identification, and scoreboard parsing. Our comprehensive experimentation utilizes datasets 
comprising 30 thousand labeled high-resolution frames spanning 25 matches with balanced 
distributions across diverse conditions and production styles. Fine-tuned models using PEFT 
with LoRA achieve 90% accuracy in event marker detection, 98% accuracy in scoreboard 
parsing, and 95% precision in delivery detection, while requiring significantly less labeled 
data than traditional approaches. Notably, few-shot prompting approaches achieve 
competitive performance (84-93% accuracy across tasks) without any training data. Our 
findings establish a new benchmark for efficiency and accuracy in cricket scene analysis 
while providing a scalable solution for real-time analysis. 
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1. Introduction 

The evolution of cricket broadcasting and analytics has created an urgent need for efficient, 
automated video analysis solutions. Current cricket scene understanding systems [1, 2, 3, 14] 
rely heavily on traditional computer vision approaches combined with substantial manual 
intervention, typically requiring 45-50 minutes of human processing per game. While these 
CV-based methods have achieved 75-90% accuracy in prior work, their architectural 
limitations present fundamental challenges for scaling and generalization. These methods 
have three key limitations: they rely on fixed feature extractors that cannot leverage semantic 
reasoning, require extensive task-specific feature engineering, and demand large volumes of 
labeled data for each new broadcast format or venue condition. Trained analysts must review 
exceptions and edge cases that arise when models fail to generalize across different match 
settings, venues, lighting conditions, camera angles, and production styles. This inability to 
adapt across diverse conditions without retraining has perpetuated the need for manual 
intervention, creating significant bottlenecks in data extraction and analysis while limiting the 
feasibility of fully automated systems at scale. 

Vision-Language Models (VLMs) [15] offer a promising alternative through their ability to 
leverage semantic reasoning and contextual understanding. Recent advances in VLMs, 
particularly models like Claude [16], LLaVA [17], and GPT [18], have shown impressive 
results in complex visual understanding tasks that require both fine-grained visual analysis 
and high-level semantic interpretation. Through their transformer-based architectures and 
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large-scale pre-training on diverse image-text pairs, these models demonstrate significant 
advantages in few-shot learning scenarios and can adapt to specialized domains with minimal 
labeled data. We investigate Vision-Language Models as an alternative to traditional CV 
approaches for cricket scene classification. Our work systematically evaluates VLM 
adaptation strategies from zero-shot to fine-tuning. We establish performance benchmarks 
and identify the most effective methods for cricket scene classification. Our results 
demonstrate how VLMs' semantic understanding capabilities address the generalization 
challenges that have limited prior methods. 

Our paper makes the following key contributions: 

• We demonstrate the effectiveness of VLMs for domain adaptation across different 
adaptation strategies: zero-shot prompting achieves 84.5% accuracy without training data, 
few-shot prompting reaches 84-93% with minimal examples, and fine-tuning achieves up to 
98% accuracy. This progression establishes that VLMs can deliver strong performance with 
significantly reduced labeled data requirements while generalizing robustly across diverse 
broadcast conditions. 

• We show that effective domain adaptation, rather than model scale, is key to achieving 
state-of-the-art results in specialized tasks. Through systematic analysis of PEFT with LoRA 
strategies, even smaller models achieve up to 98% accuracy when properly adapted, 
providing crucial insights for resource-constrained deployment scenarios. 
 
• We present an automated end-to-end solution for cricket scene classification that reduces 
manual intervention from 45-50 minutes to near-zero per game, addressing the scalability and 
efficiency limitations of current hybrid systems. Our modular task framework demonstrates 
clear pathways for extension to related tasks including player tracking, tactical analysis, and 
action recognition. 

 

2. Literature Survey 

Traditional Computer Vision in Cricket Analysis: Cricket scene analysis presents 
significant computational challenges that distinguish it from conventional sports 
understanding tasks. The sport's complex multi-actor scenarios, dynamic camera 
perspectives, and diverse broadcast production standards create substantial barriers for 
automated analysis systems. Traditional computer vision methodologies have consistently 
demonstrated limited performance when confronted with these complexities, as evidenced by 
Kumar et al. [1] who achieved only 50% precision in detecting bowling and batting actions 
despite using thousands of annotated video frames. The transition toward deep learning 
architectures has yielded incremental performance gains while simultaneously exposing 
persistent scalability and cross-domain generalization deficiencies. Contemporary CNN-
based systems employing RetinaNet [2] and AlexNet [3] architectures have demonstrated 
promising capabilities for automated cricket analysis. However, they revealed fundamental 
architectural limitations. These approaches necessitated extensive dataset preprocessing, 
exhibited poor cross-domain generalization performance, and required substantial feature 
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engineering to accommodate cricket-specific visual characteristics. The systems remained 
constrained to fixed camera perspectives and demonstrated an inability to adapt across 
diverse broadcast formats or venue-specific conditions. Furthermore, Bhat et al. [4] employed 
exclusively OCR-based information extraction from YOLO models, which proved 
inadequate for capturing the contextual ordering and spatial relationships of scorecard 
elements. Similarly, Foysal et al. [5] utilized shallow CNN architectures with grayscale 
image processing and handcrafted feature extraction, representing a regression to earlier 
methodological approaches that inherently limit representational capacity and generalization 
potential. 

Domain Adaptation of Vision-Language Models: Adapting VLMs to specialized domains 
has emerged as a significant research direction. In the medical domain, models such as Med-
Flamingo [6] and LLaVA-Med [7] have shown effective adaptation through fine-tuning 
general-purpose VLMs on biomedical datasets. Similar adaptation strategies have been 
successfully applied across diverse fields including robotics [8], scientific literature [9], and 
remote sensing [10]. RT-2 [8] exemplifies this approach by adapting vision-language models 
for robotic control through training on web-scale multimodal data combined with robotic 
demonstrations, enabling translation of visual understanding into executable robotic actions. 
The limited availability of high-quality labeled datasets presents a significant challenge for 
domain adaptation. 

Vision-Language Models in Sports Analysis: Recent developments in Vision-Language 
Models have shown promising results in sports scene analysis. These models leverage 
transformer architectures and contrastive learning objectives to align visual and textual 
representations. Nonaka et al [11]'s work in rugby scene classification showed significant 
improvements when incorporating VLM outputs compared to pure computer vision 
approaches, highlighting VLMs' ability to capture complex sports scenarios with minimal 
labeled data. While [12] proposed combining YOLOv8 with BERT for cricket highlight 
generation, their architecture was limited to using commentary data for key moment 
identification. In soccer, domain-adapted VLMs [13] showed a 37.5% boost in video 
question-answering and markedly better action classification after curriculum-based fine-
tuning on sports-specific data. 

Despite progress in sports video analysis, critical gaps remain in understanding VLM 
effectiveness for specialized tasks. No prior work has systematically compared VLM 
adaptation strategies for cricket scene classification, investigated how model size interacts 
with adaptation approaches, or demonstrated automated solutions eliminate manual 
intervention required by current systems. This work addresses these gaps by comprehensively 
evaluating VLM adaptation strategies across three fundamental cricket tasks, establishing 
performance benchmarks, and demonstrating robust generalization across diverse broadcast 
conditions without extensive retraining. 
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3. Methodology 

3.1 Dataset Construction and Annotation 

We constructed a comprehensive dataset of 30,000 high-resolution frames (1920×1080 
pixels) extracted from 25 cricket matches spanning diverse lighting conditions, camera 
angles, scorecard and production styles. The dataset exhibits balanced distributions across 
key variables: lighting conditions include day matches (18,000 frames, 60%) and night 
matches (12,000 frames, 40%); scorecard opacity varies between high opacity >75% (18,000 
frames, 60%) and low opacity <75% (12,000 frames, 40%); scorecard layouts follow runs-
first format displaying "Runs-Wickets" (21,000 frames, 70%) and wickets-first format 
displaying "Wickets/Runs" (9,000 frames, 30%). Frames were strategically sampled at 
intervals throughout matches to capture different match phases and game situations while 
avoiding temporal clustering to ensure visual diversity.  

Each frame was annotated for all three tasks by experienced cricket analysts, with binary 
labels provided for event markers and delivery detection, and numerical values (runs, 
wickets, overs) extracted for scorecard parsing and verified against match footage. Multi-
annotator review on a subset of frames achieved inter-annotator agreement of κ > 0.85 across 
all tasks, with disagreements resolved through consensus. The dataset was split into 5,000 
training frames, 5,000 validation frames, and 20,000 test frames for robust evaluation. 

3.2 Task Definitions 

Event Marker Detection: This task identifies visual markers and graphical overlays that 
segment event highlights from live gameplay footage. Positive samples consist of frames 
containing distinctive event markers such as animated graphics, transition effects, or stylized 
overlays that precede replay sequences for significant events like wickets, boundaries, or 
milestones as seen in Figure 1,2. Negative samples include live gameplay footage, replays 
without markers, crowd shots, advertisements, and field setup sequences. The dataset 
maintains a balanced class distribution with 51.4% positive and 48.6% negative samples. The 
negative class deliberately includes "hard negatives" such as replays, crowd shots, and 
advertisements. These hard negatives share visual similarities with marked events but must 
be correctly rejected. This ensures models learn discriminative features rather than exploiting 
spurious correlations. 

Start of Delivery Detection: This task identifies the precise moment when a bowler begins 
their approach to the crease before releasing the ball. Positive samples are defined as frames 
where the bowler is entering the delivery stride with forward momentum toward the crease, 
captured from camera angles showing the bowler's run-up (Figure 3). Negative samples 
strategically include challenging cases such as pre-delivery rituals (field adjustments, bowler 
walking back to their mark), post-delivery follow-through, and fielder movements to enforce 
temporal precision and prevent models from triggering on visually similar but temporally 
incorrect sequences. The dataset maintains a natural class imbalance with approximately 20% 
positive and 80% negative samples, reflecting realistic match conditions where delivery 
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sequences are interspersed with longer periods of field setup, player discussions, and other 
match activities. 

Scorecard Parsing: This task extracts structured numerical information (runs, wickets, 
overs) from graphical overlays displaying real-time match statistics. Frames contain visible 
scorecard overlays with varying opacity levels, diverse backgrounds ranging from static 
stadium views to moving crowds behind transparent scoreboards and overlapping graphics 
such as sponsor logos and player name displays. Unlike pure OCR, this task requires 
understanding spatial relationships to determine which number represents runs versus wickets 
versus overs based on position and separator characters. The model must adapt to variable 
layouts where different productions use different ordering conventions ("runs/wickets" in 
Figure 4 versus "wickets/runs" in Figure 3). It must disambiguate multiple numerical values 
(runs, wickets, overs, run rate, target score) based on visual context and typical cricket 
scoring patterns. Additionally, it must segment relevant information from overlapping 
graphics and visual clutter while maintaining accuracy across dynamic value ranges that 
change throughout the match. 

 
Figure 1: Event Marker for wicket  

Figure 2 : Event marker for powerplay 
 
 

 
Figure 3 : Start of delivery and scorecard with 
wickets/runs 

 
Figure 4: Score card with runs/wickets 
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3.3 Experimental Approaches 

We investigate three distinct paradigms for adapting Vision-Language Models to cricket 
scene classification, each representing different points on the data-efficiency and 
performance spectrum. 

Zero-Shot Prompting: Zero-shot prompting leverages pre-trained VLMs' visual reasoning 
capabilities without any task-specific training. We utilize Claude 3 models (Haiku and Sonnet 
variants) through Amazon Bedrock, designing carefully crafted prompts that provide task 
context, describe visual characteristics to identify, and specify output format requirements. 
For event marker and delivery detection, prompts include detailed descriptions of target 
visual patterns and request binary classification outputs (see Figure 5). For scorecard parsing, 
prompts specify the numerical fields to extract and their expected formats (see Figure 6). This 
approach establishes baseline performance achievable with general-purpose VLMs and 
demonstrates their out-of-the-box capabilities for specialized sports analysis tasks. 

Few-Shot Prompting: Few-shot prompting extends zero-shot approaches by incorporating a 
small number of labeled examples directly in the prompt context. For each task, we provide 
three carefully selected example pairs (six total examples) that showcase diverse scenarios 
including different production styles, lighting conditions, and visual variations. Examples are 
embedded as image-text pairs within the prompt, demonstrating both positive and negative 
cases to enhance discrimination of subtle visual patterns (Figures 5 and 6). This approach 
evaluates VLMs' ability to rapidly adapt to domain-specific patterns through in-context 
learning with minimal labeled data. 

 

 

Figure 5 : Prompting workflow for start of delivery and event detection 
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Figure 6:  Prompting workflow for Scorecard parsing 

 

Parameter Efficient Fine-Tuning with LoRA: Fine-tuning with Low-Rank Adaptation 
(LoRA) enables domain-specific model adaptation while maintaining computational 
efficiency by introducing trainable low-rank decomposition matrices into model layers. We 
fine-tune two open-source VLMs: Qwen2-VL-7B-Instruct (7 billion parameters) and 
SmolVLM-Instruct (smaller, resource-efficient model) on AWS g5.12xlarge instances with 
NVIDIA A10G GPUs (see Figure 7 for workflow). All experiments use batch size 16, 
learning rate 2×10⁻⁴ with cosine annealing scheduler, 2 training epochs with early stopping 
based on validation loss, and LoRA rank r=8.  

All experiments use 5,000 training frames with 5,000 validation frames and 20,000 test 
frames, batch size 16, learning rate 2×10⁻⁴ with cosine annealing scheduler, 2 training epochs 
with early stopping based on validation loss, and LoRA rank r=8. To systematically evaluate 
the impact of different training strategies, we conduct an ablation study exploring three 
LoRA adaptation approaches:  

• attention-only, applying LoRA exclusively to attention layers,  
• comprehensive, applying LoRA to attention layers, fully connected layers, and 

language model head, 
• all-linear, applying LoRA to all linear layers in the model. 

This ablation design allows us to isolate the effects of layer adaptation scope on model 
performance across different cricket scene classification tasks. 

 



 9 

 

Figure 7 : Finetuning workflow 

 

4. Results and Discussion 

We evaluated Vision-Language Models across three cricket scene classification tasks using 
zero-shot prompting, few-shot prompting, and parameter-efficient fine-tuning approaches. 
Our experiments demonstrated that VLMs achieved strong performance across all tasks, with 
fine-tuned models reaching up to 98% accuracy while prompting-based approaches provided 
competitive results without requiring training data. The following subsections present 
detailed results for each task, followed by failure case analysis 

4.1 Event Marker Detection 

Event marker detection experiments utilized a balanced dataset comprising 51.4% marker-
present and 48.6% marker-absent frames, with results summarized in Table 1. Zero-shot 
prompting established strong baselines, with Claude Haiku achieving 84.5% accuracy, 
demonstrating that pre-trained VLMs possess substantial visual reasoning capabilities for this 
task without any domain-specific training. Interestingly, Claude Sonnet underperformed at 
78% accuracy despite being a larger model, suggesting that additional model capacity does 
not automatically translate to better performance on straightforward visual discrimination 
tasks. Few-shot prompting provided minimal gains, with Claude Haiku improving only to 
84.6% accuracy, indicating that the task's visual patterns are sufficiently captured by pre-
training and additional examples offer limited value. 

Fine-tuning revealed a critical insight: model size and adaptation strategy interact in complex 
ways that determine performance outcomes. Qwen2-7B demonstrated robustness across all 
three LoRA strategies, with performance ranging narrowly from 88% to 90% accuracy. This 
consistency suggested that larger models can effectively leverage different adaptation 
approaches, with attention layers capturing most discriminative features (88% accuracy) and 
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broader adaptation providing modest incremental gains (90% accuracy with all-linear). The 
slight improvements indicated diminishing returns from more extensive layer adaptation for 
this relatively straightforward classification task. 

SmolVLM's results revealed a different story, revealing that smaller models require careful 
adaptation strategy selection. All-linear adaptation achieved 88% accuracy, matching Qwen2-
7B's attention-only performance and demonstrating that smaller models can compete with 
larger ones when properly configured. However, comprehensive layer training 
catastrophically failed at 72% accuracy with 46% recall, representing a 34% recall collapse 
compared to the 80% recall achieved by other strategies. The failure mode showed extremely 
high precision (98%) coupled with severely degraded recall indicating that the model learned 
to minimize loss by defaulting to negative predictions rather than learning discriminative 
features. This suggested that adapting intermediate layers in smaller models can destabilize 
training, particularly when the model lacks sufficient capacity to effectively utilize the 
additional trainable parameters. These findings established that effective VLM deployment 
requires matching adaptation scope to model capacity, with smaller models benefiting from 
either focused (attention-only) or comprehensive (all-linear) adaptation while avoiding 
intermediate strategies that may induce training instability. 

Table 1 : Experimental Results for event marker detection 

Technique Model Accuracy  Precision Recall 
Zero-shot Claude Haiku 84.5 84 86.9 
Zero-shot Claude Sonnet 78 86 70 
Few-shot Claude Haiku 84.6 85 85 
Few-shot Claude Sonnet 80 82 78 
Fine tune (5k) * Qwen2-7B 90 95 85 
Fine tune (5k) † Qwen2-7B 89 92 86 
Fine tune (5k) ^ Qwen2-7B 88 92 86 
Fine tune (5k) * SmolVLM 88 95 80 
Fine tune (5k) † SmolVLM 72 98 46 
Fine tune (5k) ^ SmolVLM 84 90 80 

*  adapters for all linear layers 

† adapters for attention layers, fc layers and LM head  

^ adapters for only attention layers 

 

4.2 Scorecard Parsing 

Scorecard parsing experiments focused on extracting structured numerical information (runs, 
wickets, overs) from graphical overlays, with results presented in Table 2. We processed only 
the bottom-left quarter of each frame where scorecard overlays are consistently positioned, 
reducing computational overhead by 75% while maintaining access to relevant information. 
Zero-shot prompting achieved modest performance, with Claude models reaching 55-71% 
accuracy across the three fields, demonstrating limited capability to interpret structured 
numerical information without examples. The relatively poor performance, particularly for 
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wickets at 55-61% accuracy, highlighted that understanding spatial relationships and 
semantic meaning of numerical values requires task-specific context that pre-training alone 
does not provide. 

Few-shot prompting transformed performance dramatically, with accuracy improvements of 
27-54% across all fields. Claude Haiku achieved 88.5% for runs, 84.5% for wickets, and 
92.6% for overs, while Claude Sonnet reached comparable levels at 88-93%. The particularly 
large improvements for wickets and overs compared to runs revealed an important pattern: 
fields requiring more complex spatial reasoning benefit disproportionately from contextual 
examples. Runs, being typically the first and most prominent number, are easier to identify 
even without examples, while wickets and overs require understanding positional context and 
separator conventions that few-shot examples effectively demonstrate. These results 
substantially exceeded traditional OCR-based approaches, which struggle with variable 
layouts and overlapping graphics, validating that scorecard parsing requires semantic 
understanding beyond character recognition. 

Fine-tuning experiments revealed that task complexity determines optimal adaptation 
strategy. Attention-only training achieved strong performance for runs (94%) and wickets 
(96%) but failed dramatically on overs extraction at only 76% accuracy, representing an 18% 
gap. This disparity indicated that overs extraction requires understanding more complex 
spatial relationships and contextual patterns that attention mechanisms alone cannot capture. 
Comprehensive layer training addressed this limitation, improving overs accuracy to 91%, 
while all-linear adaptation achieved the best overall results at 93% for overs. The critical 
insight here is that unlike event marker detection where visual discrimination happens 
primarily in attention layers, scorecard parsing requires the fully connected and output layers 
to learn structured extraction patterns, spatial relationship encoding, and disambiguation logic 
for multiple numerical fields. The 17% improvement in overs accuracy when moving from 
attention-only to all-linear adaptation demonstrated that task characteristics not just dataset 
size determine whether comprehensive layer adaptation justifies its additional computational 
cost. 

Table 2: Experimental Results for scorecard parsing 

Technique Model Runs  Wickets Overs 
Zero-shot Claude Haiku 70 55 60 
Zero-shot Claude Sonnet 68 61 71 
Few-shot Claude Haiku 88.5 84.5 92.6 
Few-shot Claude Sonnet 88 86 93 
Fine tune (5k) * Qwen2-7B 96 98 93 
Fine tune (5k) † Qwen2-7B 97 98 91 
Fine tune (5k) ^ Qwen2-7B 94 96 76 

*  adapters for all linear layers 

† adapters for attention layers, fc layers and LM head  

^ adapters for only attention layers 
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4.3 Start of Delivery Detection 

Start of delivery detection experiments utilized an imbalanced dataset where positive 
sequences comprised approximately 20% of total frames, necessitating precision and recall as 
primary evaluation metrics, with results presented in Table 3. Zero-shot prompting revealed 
the fundamental challenge of temporal action recognition in imbalanced settings. Claude 
Haiku achieved high recall at 95% but poor precision at only 54%, indicating that the model 
over-identified positive sequences and generated substantial false positives by triggering on 
visually similar movements such as fielders running or bowlers walking back. Claude Sonnet 
offered more balanced performance at 64% precision and 61% recall, but both models 
demonstrated that general-purpose VLMs struggle with the fine-grained temporal 
discrimination required to distinguish delivery strides from other bowling-related movements 
without domain-specific training. 

Few-shot prompting produced an unexpected precision-recall tradeoff that actually degraded 
overall performance. Claude Haiku improved precision to 78% but recall collapsed to 56%, 
while Claude Sonnet achieved 80% precision but recall plummeted to only 31%. This pattern 
suggested that providing examples of challenging negative cases made models overly 
conservative, causing them to miss genuine delivery sequences to avoid false positives. The 
dramatic recall reduction in Claude Sonnet from 61% to 31% indicated that few-shot learning 
can be counterproductive for highly imbalanced temporal detection tasks, where the model 
learns to err on the side of caution rather than developing robust discriminative capabilities. 
This finding highlighted a critical limitation of prompting-based approaches for complex 
temporal tasks with severe class imbalance. 

Fine-tuning demonstrated substantial and progressive improvements that validated the value 
of domain-specific adaptation for this challenging task. Attention-only training achieved 
balanced performance at 86% precision and 85% recall, representing significant gains over 
prompting approaches and establishing that learned temporal features substantially 
outperform in-context learning for this task. Comprehensive layer training improved results 
to 89% precision and 90% recall, while all-linear adaptation achieved near-optimal 
performance at 95% precision and 98% recall. The progressive improvement from attention-
only to comprehensive to all-linear revealed that start of delivery detection benefits 
substantially from extensive layer adaptation, likely because the task requires complex 
temporal reasoning to distinguish subtle differences in bowler movements and fine-grained 
visual discrimination to identify the precise moment of delivery stride initiation. Unlike event 
marker detection where attention layers sufficed, this temporal detection task required the 
model to learn sophisticated motion patterns and temporal dependencies that only emerge 
when fully connected and output layers are adapted.  

 

Table 3 : Experimental Results Start of Delivery Detection 

Technique Model Precision Recall 
Zero-shot Claude Haiku 54 95 
Zero-shot Claude Sonnet 64 61 
Few-shot Claude Haiku 78 56 
Few-shot Claude Sonnet 80 31 
Fine tune (5k) * Qwen2-7B 95 98 
Fine tune (5k) † Qwen2-7B 89 90 
Fine tune (5k) ^ Qwen2-7B 96 85 
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*  adapters for all linear layers 

† adapters for attention layers, fc layers and LM head  

^ adapters for only attention layers 

 

4.4 Failure Case Analysis 

For event marker detection, zero-shot and few-shot models occasionally misclassified replays 
without markers as positive samples when they contained slow-motion effects or dramatic 
camera angles, indicating reliance on stylistic cues rather than explicit marker presence. Fine-
tuned models reduced these errors but failed on edge cases with unusual transparency levels 
or partial occlusion. The SmolVLM comprehensive adaptation failure manifested as 
systematic rejection of positive samples, with the model defaulting to negative predictions to 
achieve high precision (98%) while missing nearly half of true positives (46% recall). 

For scorecard parsing, all models struggled with low-opacity overlays against complex 
moving backgrounds, with zero-shot approaches achieving only 55-60% accuracy on such 
frames compared to 88-93% on clear overlays. The attention-only fine-tuning weakness in 
overs extraction (76% accuracy) occurred when layouts deviated from common patterns, 
revealing that attention mechanisms could identify individual numbers but failed to 
understand structural relationships determining which number represents overs versus runs or 
wickets. 

For start of delivery detection, zero-shot/few models triggered false positives on fielders 
running, umpires signaling, or bowlers walking back. Fine-tuned models substantially 
reduced both error types but occasionally failed on unusual camera angles or when bowler 
approaches were partially occluded by on-screen graphics. 

5. Conclusion 

This work investigated Vision-Language Models for automated cricket scene classification 
across three fundamental tasks: event marker detection, start of delivery identification, and 
scorecard parsing. Our systematic evaluation of zero-shot prompting, few-shot prompting, 
and parameter-efficient fine-tuning with LoRA demonstrated that VLMs achieved strong 
performance across all tasks, with fine-tuned models reaching 90% accuracy for event 
markers, 98% for scorecard parsing, and 95% precision for delivery detection. Notably, few-
shot prompting achieved competitive performance (85-93% accuracy) without any training 
data, establishing VLMs as viable solutions for scenarios where extensive labeled datasets are 
unavailable or cost-prohibitive. 

Our experiments revealed that task complexity and model capacity interact in critical ways 
that determine optimal adaptation strategies. Event marker detection, being primarily visual 
discrimination, achieved strong results with attention-only adaptation, while scorecard 
parsing and start of delivery detection required comprehensive layer adaptation due to their 
demands for spatial reasoning and temporal understanding. The catastrophic failure of 
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SmolVLM with comprehensive adaptation (72% accuracy, 46% recall) contrasted with its 
success using all-linear adaptation (88% accuracy) demonstrated that smaller models require 
careful strategy selection, with intermediate adaptation approaches potentially inducing 
training instability. 

These findings address the critical bottleneck in current cricket analysis systems that require 
45-50 minutes of manual intervention per game. Our automated pipeline reduces this to near-
zero while maintaining high accuracy across diverse broadcast conditions, lighting scenarios, 
and production styles. The modular three-task framework provides a foundation for 
comprehensive cricket analytics, with clear pathways for extension to related tasks including 
player tracking, tactical analysis, and action recognition. Future work should explore 
temporal modeling through video transformers to capture sequential patterns, multi-modal 
integration combining visual analysis with audio commentary, and expansion to additional 
cricket analysis tasks to create comprehensive automated systems for sports video 
understanding.  
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6. Appendix 

6.1 Prompt templates 

Event Marker Detection 

 

You are a helpful AI assistant, help as much as you can.  
 
Please analyze the attached image of a livestream of a cricket match. 
Your job is to determine if the image consists of a replay graphic or not.  It may be 
represented by a logo of a cricket league, a keyword four or a keyword six. 
 
Please provide your findings in the following structured JSON format: 
{ 
'graphic' : 1 if a graphic is present, 0 if the image represent a cricket game, blurred view of 
a game or  
anything else on a cricket ground. 
'explanation' : "State the reason"  } 
 
Return only the JSON and nothing else. 

 

Start of delivery 

 

1. You are an expert image analyst for cricket matches. Given an image from a cricket match, 
your task is to identify if the image contains any of the following scenes given in the <scenes> 
tag 
 
<scenes> A. Image shows the wicket and Bowler standing with the ball B. Image shows the wicket 
and Bowler running or walking towards the wicket C. Image shows the wicket and Bowler performing 
the delivery action on the wicket to deliver the ball to the batsman D. Image shows the wicket 
and Bowler delivered the ball to the batsman and doing a follow-through run E. Image shows the 
wicket and Batsman looking front towards the baller, and swinging the bat to hit the ball F. 
Image shows the wicket and Batsman looking front towards the baller and hits the ball with the 
bat and does a follow-through </scenes> 
 
Your answer should be Runup:1 if the image satisfies all the criteria in <scenes> tag otherwise 
Runup:0 if none of the criteria in <scenes> tag is fulfilled 
 
Please provide your findings in the following structured JSON format: 
{‘Runup’ : 1 , If the image contains any of the scenes given in <scenes> tag, 0 if image does 
not contains any of the scenes given in <scenes> tag 'explanation' : "explain your reasoning for 
identifying the specific scene or concluding that none of the given scenes are present. Your 
response should be concise and focused on the task at hand.”  
} 
 
Return only the JSON and nothing else. 
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Scorecard 

1. You are an expert in extracting relevant information from a scorecard content of a cricket 
match 
Given below inside <scorecard_text> tags is the scorecard content in text from a cricket match. 
Follow the instructions given inside <instructions> tag to do your job <scorecard_text> 
{text} 
<scorecard_text> 
 
The runs scored at the moment, wickets gone and total overs bowled at the moment can be present 
in different formats as given inside <runs_wicket_format> tags <runs_wicket_format> Format1: 
Runs-Wickets, example : 130-2, it means 130 runs have been scored at the moment with the fall of 
2 wickets  Format2: Wickets/Runs, example: 1/3, it means 1 wicket is lost and 3 runs are scored 
at the moment </runs_wicket_format> 
 
Total overs bowled can be present in formats as given inside <overs_format> tag 
<overs_format> 
Each over is represented by a number. For example, the first over of the innings is referred to 
as "1st over," the second over is "2nd over," and so on. 
Overs can be represented using a decimal notation. Each full over is denoted by a whole number, 
while the additional deliveries (if any) are represented as a fraction after the decimal point. 
For example, "6.3" means six full overs plus three additional deliveries have been bowled 
</overs_format> 
 
<examples> <example1> scorecard - ['3/93','11.3', 'RENSHAW 29 (22)','BILLINGS 23 
(19)','SUTHERLAND 0/15(2.3)'] 
analysis - The format of the runs and wickets is in the format "Wickets/Runs". Hence runs scored 
at the moment is 93 and wickets gone is 3. Overs bowled is in decimal format which is 11.3 
Hence, runs - 93, wickets - 3, overs - 11.3 </example1> <example2> 
scorecard - ['MAYERS','9 3','31-0','CG', '2.1', '|','UNITED','THIS OVER','1'] 
analysis - The format of the runs and wickets is in the format "Runs-Wickets". Hence runs scored 
at the moment is 31 and wickets gone is 0. Total Overs bowled is in decimal format which is 2.1 
Hence runs - 31, wickets - 0, overs - 2.1 
</example2> <example3> scorecard - ['HURRICANES','P','TO WIN: 85 RUNS OFF 34 BALLS AT 15.00 
RPO','STR 3/164 (20)','9/80','14.2 ISMAIL 3 (8)','GIBSON 3 (7)','ADAMS 0/6 (2.2)'] 
analysis - The format of the runs and wickets is in the format "Wickets/Runs". Hence runs scored 
at the moment is 80 and wickets gone is 9. Total Overs bowled is in decimal format which is 14.2 
Hence, runs - 80, wickets - 9, overs - 14.2 </examples> 
 
<instructions> 
1.You have to extract the runs scored at the moment by the batting team in the current innings, 
wickets gone in the current innings and total overs bowled in the current innings from the 
content in <scorecard_text> tags 
2.Follow the guidelines given inside <runs_wicket_format> tag to understand how to interpret 
runs and wickets from the content. Also follow the guidelines given inside <overs_format> tag to 
understand how to interpret overs bowled from the content 
3.Learn from the examples given inside <examples> tag to understand how the runs, wickets and 
overs are extracted from the scorecard 
4.Think step by step in <analysis> tag before generating the answer. Focus on the innings of the 
current batting team to extract the required information 
5.Return your findings in the following format: 
<summary> 
"runs": [number, "confidence_level"], 
"wickets": [number, "confidence_level"], 
"over": [number, "confidence_level"], 
</summary> <analysis> "analysis": "Detailed analysis - findings, and summary" </analysis> 
</instructions> 

 


