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Abstract

Vision-Language Models (VLMs) have demonstrated impressive capabilities in general-
purpose multi-modal tasks, but their adaptation to specialized sports analysis remains
relatively unexplored. This paper bridges this gap by investigating VLM's effectiveness for
automated cricket scene classification, addressing critical bottlenecks in current workflows
that require 45-50 minutes of human intervention. We explore three distinct approaches—
zero-shot prompting, few-shot prompting, and Parameter Efficient Fine-Tuning (PEFT) with
LoRA—across three fundamental cricket tasks: event marker detection, start of delivery
identification, and scoreboard parsing. Our comprehensive experimentation utilizes datasets
comprising 30 thousand labeled high-resolution frames spanning 25 matches with balanced
distributions across diverse conditions and production styles. Fine-tuned models using PEFT
with LoRA achieve 90% accuracy in event marker detection, 98% accuracy in scoreboard
parsing, and 95% precision in delivery detection, while requiring significantly less labeled
data than traditional approaches. Notably, few-shot prompting approaches achieve
competitive performance (84-93% accuracy across tasks) without any training data. Our
findings establish a new benchmark for efficiency and accuracy in cricket scene analysis
while providing a scalable solution for real-time analysis.
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1. Introduction

The evolution of cricket broadcasting and analytics has created an urgent need for efficient,
automated video analysis solutions. Current cricket scene understanding systems [1, 2, 3, 14]
rely heavily on traditional computer vision approaches combined with substantial manual
intervention, typically requiring 45-50 minutes of human processing per game. While these
CV-based methods have achieved 75-90% accuracy in prior work, their architectural
limitations present fundamental challenges for scaling and generalization. These methods
have three key limitations: they rely on fixed feature extractors that cannot leverage semantic
reasoning, require extensive task-specific feature engineering, and demand large volumes of
labeled data for each new broadcast format or venue condition. Trained analysts must review
exceptions and edge cases that arise when models fail to generalize across different match
settings, venues, lighting conditions, camera angles, and production styles. This inability to
adapt across diverse conditions without retraining has perpetuated the need for manual
intervention, creating significant bottlenecks in data extraction and analysis while limiting the
feasibility of fully automated systems at scale.

Vision-Language Models (VLMs) [15] offer a promising alternative through their ability to
leverage semantic reasoning and contextual understanding. Recent advances in VLMs,
particularly models like Claude [16], LLaVA [17], and GPT [18], have shown impressive
results in complex visual understanding tasks that require both fine-grained visual analysis
and high-level semantic interpretation. Through their transformer-based architectures and



large-scale pre-training on diverse image-text pairs, these models demonstrate significant
advantages in few-shot learning scenarios and can adapt to specialized domains with minimal
labeled data. We investigate Vision-Language Models as an alternative to traditional CV
approaches for cricket scene classification. Our work systematically evaluates VLM
adaptation strategies from zero-shot to fine-tuning. We establish performance benchmarks
and identify the most effective methods for cricket scene classification. Our results
demonstrate how VLMs' semantic understanding capabilities address the generalization
challenges that have limited prior methods.

Our paper makes the following key contributions:

* We demonstrate the effectiveness of VLMs for domain adaptation across different
adaptation strategies: zero-shot prompting achieves 84.5% accuracy without training data,
few-shot prompting reaches 84-93% with minimal examples, and fine-tuning achieves up to
98% accuracy. This progression establishes that VLMs can deliver strong performance with
significantly reduced labeled data requirements while generalizing robustly across diverse
broadcast conditions.

» We show that effective domain adaptation, rather than model scale, is key to achieving
state-of-the-art results in specialized tasks. Through systematic analysis of PEFT with LoORA
strategies, even smaller models achieve up to 98% accuracy when properly adapted,
providing crucial insights for resource-constrained deployment scenarios.

* We present an automated end-to-end solution for cricket scene classification that reduces
manual intervention from 45-50 minutes to near-zero per game, addressing the scalability and
efficiency limitations of current hybrid systems. Our modular task framework demonstrates
clear pathways for extension to related tasks including player tracking, tactical analysis, and
action recognition.

2. Literature Survey

Traditional Computer Vision in Cricket Analysis: Cricket scene analysis presents
significant computational challenges that distinguish it from conventional sports
understanding tasks. The sport's complex multi-actor scenarios, dynamic camera
perspectives, and diverse broadcast production standards create substantial barriers for
automated analysis systems. Traditional computer vision methodologies have consistently
demonstrated limited performance when confronted with these complexities, as evidenced by
Kumar et al. [1] who achieved only 50% precision in detecting bowling and batting actions
despite using thousands of annotated video frames. The transition toward deep learning
architectures has yielded incremental performance gains while simultaneously exposing
persistent scalability and cross-domain generalization deficiencies. Contemporary CNN-
based systems employing RetinaNet [2] and AlexNet [3] architectures have demonstrated
promising capabilities for automated cricket analysis. However, they revealed fundamental
architectural limitations. These approaches necessitated extensive dataset preprocessing,
exhibited poor cross-domain generalization performance, and required substantial feature



engineering to accommodate cricket-specific visual characteristics. The systems remained
constrained to fixed camera perspectives and demonstrated an inability to adapt across
diverse broadcast formats or venue-specific conditions. Furthermore, Bhat et al. [4] employed
exclusively OCR-based information extraction from YOLO models, which proved
inadequate for capturing the contextual ordering and spatial relationships of scorecard
elements. Similarly, Foysal et al. [5] utilized shallow CNN architectures with grayscale
image processing and handcrafted feature extraction, representing a regression to earlier
methodological approaches that inherently limit representational capacity and generalization
potential.

Domain Adaptation of Vision-Language Models: Adapting VLMs to specialized domains
has emerged as a significant research direction. In the medical domain, models such as Med-
Flamingo [6] and LLaVA-Med [7] have shown effective adaptation through fine-tuning
general-purpose VLMs on biomedical datasets. Similar adaptation strategies have been
successfully applied across diverse fields including robotics [8], scientific literature [9], and
remote sensing [10]. RT-2 [8] exemplifies this approach by adapting vision-language models
for robotic control through training on web-scale multimodal data combined with robotic
demonstrations, enabling translation of visual understanding into executable robotic actions.
The limited availability of high-quality labeled datasets presents a significant challenge for
domain adaptation.

Vision-Language Models in Sports Analysis: Recent developments in Vision-Language
Models have shown promising results in sports scene analysis. These models leverage
transformer architectures and contrastive learning objectives to align visual and textual
representations. Nonaka et al [11]'s work in rugby scene classification showed significant
improvements when incorporating VLM outputs compared to pure computer vision
approaches, highlighting VLMs' ability to capture complex sports scenarios with minimal
labeled data. While [12] proposed combining YOLOvS8 with BERT for cricket highlight
generation, their architecture was limited to using commentary data for key moment
identification. In soccer, domain-adapted VLMSs [13] showed a 37.5% boost in video
question-answering and markedly better action classification after curriculum-based fine-
tuning on sports-specific data.

Despite progress in sports video analysis, critical gaps remain in understanding VLM
effectiveness for specialized tasks. No prior work has systematically compared VLM
adaptation strategies for cricket scene classification, investigated how model size interacts
with adaptation approaches, or demonstrated automated solutions eliminate manual
intervention required by current systems. This work addresses these gaps by comprehensively
evaluating VLM adaptation strategies across three fundamental cricket tasks, establishing
performance benchmarks, and demonstrating robust generalization across diverse broadcast
conditions without extensive retraining.



3. Methodology
3.1 Dataset Construction and Annotation

We constructed a comprehensive dataset of 30,000 high-resolution frames (1920x1080
pixels) extracted from 25 cricket matches spanning diverse lighting conditions, camera
angles, scorecard and production styles. The dataset exhibits balanced distributions across
key variables: lighting conditions include day matches (18,000 frames, 60%) and night
matches (12,000 frames, 40%); scorecard opacity varies between high opacity >75% (18,000
frames, 60%) and low opacity <75% (12,000 frames, 40%); scorecard layouts follow runs-
first format displaying "Runs-Wickets" (21,000 frames, 70%) and wickets-first format
displaying "Wickets/Runs" (9,000 frames, 30%). Frames were strategically sampled at
intervals throughout matches to capture different match phases and game situations while
avoiding temporal clustering to ensure visual diversity.

Each frame was annotated for all three tasks by experienced cricket analysts, with binary
labels provided for event markers and delivery detection, and numerical values (runs,
wickets, overs) extracted for scorecard parsing and verified against match footage. Multi-
annotator review on a subset of frames achieved inter-annotator agreement of k > 0.85 across
all tasks, with disagreements resolved through consensus. The dataset was split into 5,000
training frames, 5,000 validation frames, and 20,000 test frames for robust evaluation.

3.2 Task Definitions

Event Marker Detection: This task identifies visual markers and graphical overlays that
segment event highlights from live gameplay footage. Positive samples consist of frames
containing distinctive event markers such as animated graphics, transition effects, or stylized
overlays that precede replay sequences for significant events like wickets, boundaries, or
milestones as seen in Figure 1,2. Negative samples include live gameplay footage, replays
without markers, crowd shots, advertisements, and field setup sequences. The dataset
maintains a balanced class distribution with 51.4% positive and 48.6% negative samples. The
negative class deliberately includes "hard negatives" such as replays, crowd shots, and
advertisements. These hard negatives share visual similarities with marked events but must
be correctly rejected. This ensures models learn discriminative features rather than exploiting
spurious correlations.

Start of Delivery Detection: This task identifies the precise moment when a bowler begins
their approach to the crease before releasing the ball. Positive samples are defined as frames
where the bowler is entering the delivery stride with forward momentum toward the crease,
captured from camera angles showing the bowler's run-up (Figure 3). Negative samples
strategically include challenging cases such as pre-delivery rituals (field adjustments, bowler
walking back to their mark), post-delivery follow-through, and fielder movements to enforce
temporal precision and prevent models from triggering on visually similar but temporally
incorrect sequences. The dataset maintains a natural class imbalance with approximately 20%
positive and 80% negative samples, reflecting realistic match conditions where delivery



sequences are interspersed with longer periods of field setup, player discussions, and other
match activities.

Scorecard Parsing: This task extracts structured numerical information (runs, wickets,
overs) from graphical overlays displaying real-time match statistics. Frames contain visible
scorecard overlays with varying opacity levels, diverse backgrounds ranging from static
stadium views to moving crowds behind transparent scoreboards and overlapping graphics
such as sponsor logos and player name displays. Unlike pure OCR, this task requires
understanding spatial relationships to determine which number represents runs versus wickets
versus overs based on position and separator characters. The model must adapt to variable
layouts where different productions use different ordering conventions ("runs/wickets" in
Figure 4 versus "wickets/runs" in Figure 3). It must disambiguate multiple numerical values
(runs, wickets, overs, run rate, target score) based on visual context and typical cricket
scoring patterns. Additionally, it must segment relevant information from overlapping
graphics and visual clutter while maintaining accuracy across dynamic value ranges that
change throughout the match.

Sponsored by XYZ

Figure 1: Event Marker for wicket Figure 2 : Event marker for powerplay
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Figure 3 : Start of delivery and scorecard with Figure 4: Score card with runs/wickets
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3.3 Experimental Approaches

We investigate three distinct paradigms for adapting Vision-Language Models to cricket
scene classification, each representing different points on the data-efficiency and
performance spectrum.

Zero-Shot Prompting: Zero-shot prompting leverages pre-trained VLMs' visual reasoning
capabilities without any task-specific training. We utilize Claude 3 models (Haiku and Sonnet
variants) through Amazon Bedrock, designing carefully crafted prompts that provide task
context, describe visual characteristics to identify, and specify output format requirements.
For event marker and delivery detection, prompts include detailed descriptions of target
visual patterns and request binary classification outputs (see Figure 5). For scorecard parsing,
prompts specify the numerical fields to extract and their expected formats (see Figure 6). This
approach establishes baseline performance achievable with general-purpose VLMs and
demonstrates their out-of-the-box capabilities for specialized sports analysis tasks.

Few-Shot Prompting: Few-shot prompting extends zero-shot approaches by incorporating a
small number of labeled examples directly in the prompt context. For each task, we provide
three carefully selected example pairs (six total examples) that showcase diverse scenarios
including different production styles, lighting conditions, and visual variations. Examples are
embedded as image-text pairs within the prompt, demonstrating both positive and negative
cases to enhance discrimination of subtle visual patterns (Figures 5 and 6). This approach
evaluates VLMs' ability to rapidly adapt to domain-specific patterns through in-context
learning with minimal labeled data.
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Figure S : Prompting workflow for start of delivery and event detection
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Image Splitter

Parameter Efficient Fine-Tuning with LoRA: Fine-tuning with Low-Rank Adaptation
(LoRA) enables domain-specific model adaptation while maintaining computational
efficiency by introducing trainable low-rank decomposition matrices into model layers. We
fine-tune two open-source VLMs: Qwen2-VL-7B-Instruct (7 billion parameters) and
SmolVLM-Instruct (smaller, resource-efficient model) on AWS g5.12xlarge instances with
NVIDIA A10G GPUs (see Figure 7 for workflow). All experiments use batch size 16,
learning rate 2x10~* with cosine annealing scheduler, 2 training epochs with early stopping
based on validation loss, and LoRA rank r=8.

All experiments use 5,000 training frames with 5,000 validation frames and 20,000 test
frames, batch size 16, learning rate 2x10~* with cosine annealing scheduler, 2 training epochs
with early stopping based on validation loss, and LoRA rank r=8. To systematically evaluate
the impact of different training strategies, we conduct an ablation study exploring three
LoRA adaptation approaches:

e attention-only, applying LoRA exclusively to attention layers,

e comprehensive, applying LoRA to attention layers, fully connected layers, and
language model head,

e all-linear, applying LoRA to all linear layers in the model.

This ablation design allows us to isolate the effects of layer adaptation scope on model
performance across different cricket scene classification tasks.
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Figure 7 : Finetuning workflow

4. Results and Discussion

We evaluated Vision-Language Models across three cricket scene classification tasks using
zero-shot prompting, few-shot prompting, and parameter-efficient fine-tuning approaches.
Our experiments demonstrated that VLMs achieved strong performance across all tasks, with
fine-tuned models reaching up to 98% accuracy while prompting-based approaches provided
competitive results without requiring training data. The following subsections present
detailed results for each task, followed by failure case analysis

4.1 Event Marker Detection

Event marker detection experiments utilized a balanced dataset comprising 51.4% marker-
present and 48.6% marker-absent frames, with results summarized in Table 1. Zero-shot
prompting established strong baselines, with Claude Haiku achieving 84.5% accuracy,
demonstrating that pre-trained VLMs possess substantial visual reasoning capabilities for this
task without any domain-specific training. Interestingly, Claude Sonnet underperformed at
78% accuracy despite being a larger model, suggesting that additional model capacity does
not automatically translate to better performance on straightforward visual discrimination
tasks. Few-shot prompting provided minimal gains, with Claude Haiku improving only to
84.6% accuracy, indicating that the task's visual patterns are sufficiently captured by pre-
training and additional examples offer limited value.

Fine-tuning revealed a critical insight: model size and adaptation strategy interact in complex
ways that determine performance outcomes. Qwen2-7B demonstrated robustness across all
three LoRA strategies, with performance ranging narrowly from 88% to 90% accuracy. This
consistency suggested that larger models can effectively leverage different adaptation
approaches, with attention layers capturing most discriminative features (88% accuracy) and



broader adaptation providing modest incremental gains (90% accuracy with all-linear). The
slight improvements indicated diminishing returns from more extensive layer adaptation for
this relatively straightforward classification task.

SmolVLM's results revealed a different story, revealing that smaller models require careful
adaptation strategy selection. All-linear adaptation achieved 88% accuracy, matching Qwen2-
7B's attention-only performance and demonstrating that smaller models can compete with
larger ones when properly configured. However, comprehensive layer training
catastrophically failed at 72% accuracy with 46% recall, representing a 34% recall collapse
compared to the 80% recall achieved by other strategies. The failure mode showed extremely
high precision (98%) coupled with severely degraded recall indicating that the model learned
to minimize loss by defaulting to negative predictions rather than learning discriminative
features. This suggested that adapting intermediate layers in smaller models can destabilize
training, particularly when the model lacks sufficient capacity to effectively utilize the
additional trainable parameters. These findings established that effective VLM deployment
requires matching adaptation scope to model capacity, with smaller models benefiting from
either focused (attention-only) or comprehensive (all-linear) adaptation while avoiding
intermediate strategies that may induce training instability.

Table 1 : Experimental Results for event marker detection

Technique Model Accuracy | Precision | Recall
Zero-shot Claude Haiku 84.5 84 86.9
Zero-shot Claude Sonnet 78 86 70
Few-shot Claude Haiku 84.6 85 85
Few-shot Claude Sonnet 80 82 78
Fine tune (5k) * | Qwen2-7B 90 95 85
Fine tune (5k) ¥ | Qwen2-7B 89 92 86
Fine tune (5k) * | Qwen2-7B 88 92 86
Fine tune (5k) * | SmolVLM 88 95 80
Fine tune (5k) ¥ | SmolVLM 72 98 46
Fine tune (5k) * | SmolVLM 84 90 80

* adapters for all linear layers
1 adapters for attention layers, fc layers and LM head

~ adapters for only attention layers

4.2 Scorecard Parsing

Scorecard parsing experiments focused on extracting structured numerical information (runs,
wickets, overs) from graphical overlays, with results presented in Table 2. We processed only
the bottom-left quarter of each frame where scorecard overlays are consistently positioned,
reducing computational overhead by 75% while maintaining access to relevant information.
Zero-shot prompting achieved modest performance, with Claude models reaching 55-71%
accuracy across the three fields, demonstrating limited capability to interpret structured
numerical information without examples. The relatively poor performance, particularly for
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wickets at 55-61% accuracy, highlighted that understanding spatial relationships and
semantic meaning of numerical values requires task-specific context that pre-training alone
does not provide.

Few-shot prompting transformed performance dramatically, with accuracy improvements of
27-54% across all fields. Claude Haiku achieved 88.5% for runs, 84.5% for wickets, and
92.6% for overs, while Claude Sonnet reached comparable levels at 88-93%. The particularly
large improvements for wickets and overs compared to runs revealed an important pattern:
fields requiring more complex spatial reasoning benefit disproportionately from contextual
examples. Runs, being typically the first and most prominent number, are easier to identify
even without examples, while wickets and overs require understanding positional context and
separator conventions that few-shot examples effectively demonstrate. These results
substantially exceeded traditional OCR-based approaches, which struggle with variable
layouts and overlapping graphics, validating that scorecard parsing requires semantic
understanding beyond character recognition.

Fine-tuning experiments revealed that task complexity determines optimal adaptation
strategy. Attention-only training achieved strong performance for runs (94%) and wickets
(96%) but failed dramatically on overs extraction at only 76% accuracy, representing an 18%
gap. This disparity indicated that overs extraction requires understanding more complex
spatial relationships and contextual patterns that attention mechanisms alone cannot capture.
Comprehensive layer training addressed this limitation, improving overs accuracy to 91%,
while all-linear adaptation achieved the best overall results at 93% for overs. The critical
insight here is that unlike event marker detection where visual discrimination happens
primarily in attention layers, scorecard parsing requires the fully connected and output layers
to learn structured extraction patterns, spatial relationship encoding, and disambiguation logic
for multiple numerical fields. The 17% improvement in overs accuracy when moving from
attention-only to all-linear adaptation demonstrated that task characteristics not just dataset
size determine whether comprehensive layer adaptation justifies its additional computational
cost.

Table 2: Experimental Results for scorecard parsing

Technique Model Runs Wickets Overs
Zero-shot Claude Haiku 70 55 60
Zero-shot Claude Sonnet 68 61 71
Few-shot Claude Haiku 88.5 84.5 92.6
Few-shot Claude Sonnet 88 86 93
Fine tune (5k) * | Qwen2-7B 96 98 93
Fine tune (5k) ¥ | Qwen2-7B 97 98 91
Fine tune (5k) * | Qwen2-7B 94 96 76

* adapters for all linear layers

1 adapters for attention layers, fc layers and LM head

~ adapters for only attention layers
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4.3 Start of Delivery Detection

Start of delivery detection experiments utilized an imbalanced dataset where positive
sequences comprised approximately 20% of total frames, necessitating precision and recall as
primary evaluation metrics, with results presented in Table 3. Zero-shot prompting revealed
the fundamental challenge of temporal action recognition in imbalanced settings. Claude
Haiku achieved high recall at 95% but poor precision at only 54%, indicating that the model
over-identified positive sequences and generated substantial false positives by triggering on
visually similar movements such as fielders running or bowlers walking back. Claude Sonnet
offered more balanced performance at 64% precision and 61% recall, but both models
demonstrated that general-purpose VLMs struggle with the fine-grained temporal
discrimination required to distinguish delivery strides from other bowling-related movements
without domain-specific training.

Few-shot prompting produced an unexpected precision-recall tradeoff that actually degraded
overall performance. Claude Haiku improved precision to 78% but recall collapsed to 56%,
while Claude Sonnet achieved 80% precision but recall plummeted to only 31%. This pattern
suggested that providing examples of challenging negative cases made models overly
conservative, causing them to miss genuine delivery sequences to avoid false positives. The
dramatic recall reduction in Claude Sonnet from 61% to 31% indicated that few-shot learning
can be counterproductive for highly imbalanced temporal detection tasks, where the model
learns to err on the side of caution rather than developing robust discriminative capabilities.
This finding highlighted a critical limitation of prompting-based approaches for complex
temporal tasks with severe class imbalance.

Fine-tuning demonstrated substantial and progressive improvements that validated the value
of domain-specific adaptation for this challenging task. Attention-only training achieved
balanced performance at 86% precision and 85% recall, representing significant gains over
prompting approaches and establishing that learned temporal features substantially
outperform in-context learning for this task. Comprehensive layer training improved results
to 89% precision and 90% recall, while all-linear adaptation achieved near-optimal
performance at 95% precision and 98% recall. The progressive improvement from attention-
only to comprehensive to all-linear revealed that start of delivery detection benefits
substantially from extensive layer adaptation, likely because the task requires complex
temporal reasoning to distinguish subtle differences in bowler movements and fine-grained
visual discrimination to identify the precise moment of delivery stride initiation. Unlike event
marker detection where attention layers sufficed, this temporal detection task required the
model to learn sophisticated motion patterns and temporal dependencies that only emerge
when fully connected and output layers are adapted.

Table 3 : Experimental Results Start of Delivery Detection

Technique Model Precision | Recall
Zero-shot Claude Haiku 54 95
Zero-shot Claude Sonnet 64 61
Few-shot Claude Haiku 78 56
Few-shot Claude Sonnet 80 31
Fine tune (5k) * | Qwen2-7B 95 98
Fine tune (5k) ¥ | Qwen2-7B 89 90
Fine tune (5k) * | Qwen2-7B 96 85
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* adapters for all linear layers
+ adapters for attention layers, fc layers and LM head

~ adapters for only attention layers

4.4 Failure Case Analysis

For event marker detection, zero-shot and few-shot models occasionally misclassified replays
without markers as positive samples when they contained slow-motion effects or dramatic
camera angles, indicating reliance on stylistic cues rather than explicit marker presence. Fine-
tuned models reduced these errors but failed on edge cases with unusual transparency levels
or partial occlusion. The SmolVLM comprehensive adaptation failure manifested as
systematic rejection of positive samples, with the model defaulting to negative predictions to
achieve high precision (98%) while missing nearly half of true positives (46% recall).

For scorecard parsing, all models struggled with low-opacity overlays against complex
moving backgrounds, with zero-shot approaches achieving only 55-60% accuracy on such
frames compared to 88-93% on clear overlays. The attention-only fine-tuning weakness in
overs extraction (76% accuracy) occurred when layouts deviated from common patterns,
revealing that attention mechanisms could identify individual numbers but failed to
understand structural relationships determining which number represents overs versus runs or
wickets.

For start of delivery detection, zero-shot/few models triggered false positives on fielders
running, umpires signaling, or bowlers walking back. Fine-tuned models substantially
reduced both error types but occasionally failed on unusual camera angles or when bowler
approaches were partially occluded by on-screen graphics.

5. Conclusion

This work investigated Vision-Language Models for automated cricket scene classification
across three fundamental tasks: event marker detection, start of delivery identification, and
scorecard parsing. Our systematic evaluation of zero-shot prompting, few-shot prompting,
and parameter-efficient fine-tuning with LoRA demonstrated that VLMs achieved strong
performance across all tasks, with fine-tuned models reaching 90% accuracy for event
markers, 98% for scorecard parsing, and 95% precision for delivery detection. Notably, few-
shot prompting achieved competitive performance (85-93% accuracy) without any training
data, establishing VLMs as viable solutions for scenarios where extensive labeled datasets are
unavailable or cost-prohibitive.

Our experiments revealed that task complexity and model capacity interact in critical ways
that determine optimal adaptation strategies. Event marker detection, being primarily visual
discrimination, achieved strong results with attention-only adaptation, while scorecard
parsing and start of delivery detection required comprehensive layer adaptation due to their
demands for spatial reasoning and temporal understanding. The catastrophic failure of
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SmolVLM with comprehensive adaptation (72% accuracy, 46% recall) contrasted with its
success using all-linear adaptation (88% accuracy) demonstrated that smaller models require
careful strategy selection, with intermediate adaptation approaches potentially inducing
training instability.

These findings address the critical bottleneck in current cricket analysis systems that require
45-50 minutes of manual intervention per game. Our automated pipeline reduces this to near-
zero while maintaining high accuracy across diverse broadcast conditions, lighting scenarios,
and production styles. The modular three-task framework provides a foundation for
comprehensive cricket analytics, with clear pathways for extension to related tasks including
player tracking, tactical analysis, and action recognition. Future work should explore
temporal modeling through video transformers to capture sequential patterns, multi-modal
integration combining visual analysis with audio commentary, and expansion to additional
cricket analysis tasks to create comprehensive automated systems for sports video
understanding.
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6. Appendix
6.1 Prompt templates

Event Marker Detection

You are a helpful AI assistant, help as much as you can.

Please analyze the attached image of a livestream of a cricket match.

Your job is to determine if the image consists of a replay graphic or not. It may be
represented by a logo of a cricket league, a keyword four or a keyword six.

Please provide your findings in the following structured JSON format:

{

'graphic' : 1 if a graphic is present, 0 if the image represent a cricket game, blurred view of
a game or

anything else on a cricket ground.

'explanation' : "State the reason" }

Return only the JSON and nothing else.

Start of delivery

1. You are an expert image analyst for cricket matches. Given an image from a cricket match,
your task is to identify if the image contains any of the following scenes given in the <scenes>
tag

<scenes> A. Image shows the wicket and Bowler standing with the ball B. Image shows the wicket
and Bowler running or walking towards the wicket C. Image shows the wicket and Bowler performing
the delivery action on the wicket to deliver the ball to the batsman D. Image shows the wicket
and Bowler delivered the ball to the batsman and doing a follow-through run E. Image shows the
wicket and Batsman looking front towards the baller, and swinging the bat to hit the ball F.
Image shows the wicket and Batsman looking front towards the baller and hits the ball with the
bat and does a follow-through </scenes>

Your answer should be Runup:1 if the image satisfies all the criteria in <scenes> tag otherwise
Runup:0 if none of the criteria in <scenes> tag is fulfilled

Please provide your findings in the following structured JSON format:

{‘Runup’ : 1 , If the image contains any of the scenes given in <scenes> tag, © if image does
not contains any of the scenes given in <scenes> tag 'explanation' : "explain your reasoning for
identifying the specific scene or concluding that none of the given scenes are present. Your
response should be concise and focused on the task at hand.”

}

Return only the JSON and nothing else.
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Scorecard

1. You are an expert in extracting relevant information from a scorecard content of a cricket
match

Given below inside <scorecard_text> tags is the scorecard content in text from a cricket match.
Follow the instructions given inside <instructions> tag to do your job <scorecard_text>

{text}

<scorecard_text>

The runs scored at the moment, wickets gone and total overs bowled at the moment can be present
in different formats as given inside <runs_wicket_ format> tags <runs_wicket_ format> Formatl:
Runs-Wickets, example : 130-2, it means 130 runs have been scored at the moment with the fall of
2 wickets Format2: Wickets/Runs, example: 1/3, it means 1 wicket is lost and 3 runs are scored
at the moment </runs_wicket_format>

Total overs bowled can be present in formats as given inside <overs_format> tag

<overs_format>

Each over is represented by a number. For example, the first over of the innings is referred to
as "1st over," the second over is "2nd over," and so on.

Overs can be represented using a decimal notation. Each full over is denoted by a whole number,
while the additional deliveries (if any) are represented as a fraction after the decimal point.
For example, "6.3" means six full overs plus three additional deliveries have been bowled
</overs_format>

<examples> <examplel> scorecard - ['3/93','11.3"', 'RENSHAW 29 (22)','BILLINGS 23

(19) ', 'SUTHERLAND ©/15(2.3)"']

analysis - The format of the runs and wickets is in the format "Wickets/Runs". Hence runs scored
at the moment is 93 and wickets gone is 3. Overs bowled is in decimal format which is 11.3
Hence, runs - 93, wickets - 3, overs - 11.3 </examplel> <example2>

scorecard - ['MAYERS','9 3','31-0','CG', '2.1', '|','UNITED','THIS OVER','1']

analysis - The format of the runs and wickets is in the format "Runs-Wickets". Hence runs scored
at the moment is 31 and wickets gone is ©. Total Overs bowled is in decimal format which is 2.1
Hence runs - 31, wickets - @, overs - 2.1

</example2> <example3> scorecard - ['HURRICANES','P','TO WIN: 85 RUNS OFF 34 BALLS AT 15.00
RPO','STR 3/164 (20)','9/80','14.2 ISMAIL 3 (8)', 'GIBSON 3 (7)','ADAMS 0/6 (2.2)']

analysis - The format of the runs and wickets is in the format "Wickets/Runs". Hence runs scored
at the moment is 80 and wickets gone is 9. Total Overs bowled is in decimal format which is 14.2
Hence, runs - 80, wickets - 9, overs - 14.2 </examples>

<instructions>

1.You have to extract the runs scored at the moment by the batting team in the current innings,
wickets gone in the current innings and total overs bowled in the current innings from the
content in <scorecard_text> tags

2.Follow the guidelines given inside <runs_wicket_format> tag to understand how to interpret
runs and wickets from the content. Also follow the guidelines given inside <overs_format> tag to
understand how to interpret overs bowled from the content

3.Learn from the examples given inside <examples> tag to understand how the runs, wickets and
overs are extracted from the scorecard

4.Think step by step in <analysis> tag before generating the answer. Focus on the innings of the
current batting team to extract the required information

5.Return your findings in the following format:

<summary>

"runs": [number, "confidence_level"],

"wickets": [number, "confidence_level"],

"over": [number, "confidence_level"],

</summary> <analysis> "analysis": "Detailed analysis - findings, and summary" </analysis>
</instructions>
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