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ABSTRACT

The user cold-start problem remains a fundamental challenge for
sequential recommender systems, particularly in large-scale video
streaming services where a substantial portion of users have lim-
ited or no historical interaction data. In this work, we formulate an
attempt at solving this issue by proposing a framework that lever-
ages Large Language Models (LLMs) to enrich interaction histories
using user metadata. Our approach generates a set of imaginary
video items relevant to a given user’s demographic, represented
through structured item key-value attributes. The generated items
are inserted into users’ interaction sequences using early or late
fusion strategies. We find that the generated user histories enable
better initial user profiling for absolute cold users and enhanced
preference modeling for nearly cold users. Experimental results on
the public ML-1M dataset and an internal dataset from an Amazon
streaming service demonstrate the effectiveness of our LLM-based
augmentation method in mitigating cold-start challenges.
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1 INTRODUCTION

Recommender systems are essential for delivering personalized
content on video streaming services, enhancing user experience,
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and driving revenue. On the Amazon streaming service, for which
we are researching and developing recommender systems, users
with no watch history (absolute cold users) and those with only
1-5 watched videos (nearly cold users) account for a significant
percentage of the user base. Due to these limited or non-existent
historical data, traditional modeling systems struggle to represent
these users accurately, resulting in suboptimal recommendations
for a large majority of the user base.

With the rapid advancement of large language models (LLMs), re-
cent work has explored their potential to address recommendation
challenges by leveraging their language understanding capabilities
[1,6,12,15,16]. For video recommendation, most recommender sys-
tems [5, 9, 11, 17] utilize item feature attributes (i.e., item metadata)
to describe historical interactions. Users’ demographic-related at-
tributes (i.e., user metadata) are rarely exploited in the literature for
inferring user preferences, due to the low availability of such data
and to the low-level context it provides, which makes it challenging
to deduce user preferences. Although these demographic attributes
cannot identify individuals, they can reveal group-level preference
trends valuable for recommendation, particularly in user cold-start
scenarios where interaction data is sparse. Large Language Mod-
els (LLMs), trained on vast text corpora, implicitly encode exten-
sive world knowledge, including correlations between described
characteristics and associated interests or behaviors. Building on
demonstrations of LLM capabilities for text-based sequential rec-
ommendation [2, 9] and zero-shot item cold-start [7], we propose to
leverage the LLM embedded knowledge to tackle the user cold-start
problem. Specifically, we investigate whether LLMs can interpret
user metadata to predict relevant video items for new or near-new
users, thereby enriching their initial interaction profiles and im-
proving the accuracy of personalized recommendations.

This paper proposes an LLM-based imaginary item generator
to mitigate the user cold-start problem in video recommendation.
Given user metadata, the model generates a set of relevant imag-
inary video items, each described by standardized key-value at-
tributes. We introduce three sampling strategies to guide the LLM
using examples of first-user interactions. The generated items are
inserted into the historical sequences of absolute and nearly cold
users, effectively converting metadata into interaction signals. This
enables initial user profiling for absolute cold users and enhances
representation for nearly cold users. Two simple insertion strategies
are discussed to integrate these items into sequential recommender
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systems. We demonstrate the effectiveness of our approach on both
the public ML-1M dataset! and an internal dataset from an Amazon
streaming service.

2 METHOD
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Figure 1: The proposed framework. We first design a compre-
hensive prompt, including selected in-context examples and
target user metadata. The LLM then produces k user-specific
imaginary video items that we insert into the user history.
The augmented interaction sequence is then given to sequen-
tial recommenders to predict the next interaction.

This section presents our 4-step recommendation framework,
illustrated in Fig 1. The framework receives as input a target user-
metadata m with optional historical interactions X = {x1, ..., X }.
It then forms the in-context prompt q to query the LLM to gather
imaginary interactions LLM : ¢ — X = {#1, ... % }. X and X are
then jointly fed into a backbone sequential recommender for the
recommended item y.

1. Prompt building. We aim to build an in-context prompt that
guides the LLM to generate possible relevant items given the target
user’s metadata. The Prompt commences with the description of
the required key-value JSON format for user metadata and item
features. It also provides a list of generic requirements of the task,
including the length limit of the generated textual features and
options for categorical features (such as genre).

The Prompt then continues with the Context section, which
consists of ¢ pairs of user metadata-relevant item examples C =
{(m}, x% ), (m?, xf), «.(m€,x{)}. In forming the Context, we employ
three strategies to select example (m?, xi) pairs: a. Random: The ¢
pairs are simply randomly drawn from the training data, aiming at
providing diverse examples to the Context; b. Metadata matching;:

Ihttps://grouplens.org/datasets/movielens/1m/
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Before random sampling, we filter the user pool to include only
the ones who have one or more attribute fields that are identical to
those of the target user. This strategy aims to give LLM the examples
that are more relevant to the target. c. Top-c Nearest Neighbors:
The strategy takes a step further into relevant context by selecting
the closest examples to the target. The distance is measured on
natural sentences formed by their item features through textual
embeddings such as [3, 4, 10].

The Prompt concludes with the Query, which contains the meta-
data of target user m. It is then served to the LLM generation step,
which is detailed in the next section.

2. LLM generation. We feed the formulated prompt into the
LLM and receives k recommended imaginary items X = {%1, ..., % }.
These items are represented by their generated textual, categorical
attributes and timestamps, which do not necessarily match those
of actual items in the dataset. This representation is well-suited
for content-based recommendation backbones [9, 11, 13], which
are used in our experiments. Potentially, they can also be mapped
into actual items by embedding matching for ID-based sequential
recommender systems [8, 14].

3. Imaginary-historical input fusion. In this stage, the LLM-
generated imaginary items X are joined with available historical
interaction sequence X to form the enhanced input sequence X to
the recommender. We design two fusion strategies:

a. Early Fusion: The imaginary items are first sorted by their
generated timestamps to form a proper temporal sequence. Then we
concatenate that imaginary sequence with the historical interaction
sequence to form the input for the backbone recommender: X =
[X, X]. In the absolute cold-start case, the historical sequence is
empty and the input is solely made of the imaginative interactions.
This technique takes on the intuition that the static user intention
inferred from metadata precedes any actual interactions.

b. Late Fusion: Different from early fusion, in this strategy we
separate k variants of imagined LLM suggestions X and concate-
nate each of them with the historical sequence X independently.
The variants are joined later at the latent embeddings of the rec-
ommender: X = {£; := [%i, X1}i=1, k- This strategy is aimed at
exploring the stochastic property of generated items, where the
variants represent the distribution of possible interacted items given
the metadata.

4. Sequential recommendation. The combined imaginary-
historical interaction sequence is passed as input to the sequential
recommender backbone, which generates the output recommended
item y given the input sequence X. The sequential recommenders
commonly can be dissected into an encoder & which processes the
input sequence into a hidden latent vector h = &(X), and decoder
D which generate output y from h: y = D(h).

In early fusion, a single pass of the encoder and decoder is done
as in a regular inference case. In late fusion, we call the encoder of
the recommenders k times on each member of X: h; = &(&;), then
join the encoded embeddings up by average pooling into a single
embedding: h = % Z{le h;. This joint embedding is then used to
decode the output y = D (h).
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Table 1: Recformer [9] performance with and without our framework. The chunk with 0 historical interaction denotes the group
of absolute cold users. We compare "no generator”: no imaginary items inserted, "random": random in-context examples are
given to the LLM, "match attr": in-context examples have one user attribute match with the target, and "c-NN": the c in-context

examples are drawn from nearest neighbors of the target user. Best results are bolded, second best underlined.

ML-1M

#historical interaction 1-5 6-10 11-15 16-20 21-30 31-100 100+
setting fusion | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20
no generator — 0.145 0.382 | 0.159  0.300 | 0.202 0.500 | 0.329 0.550 | 0.427 0.737 | 0.427 0.766 | 0.317 0.753 | 0.368  0.690
random early | 0.220 0.505 | 0.219 0.600 | 0.166 0.500 | 0.311 0.600 | 0.445 0.842 | 0.393 0.735 | 0.288 0.614 | 0.374 0.704
late 0.136  0.326 | 0.169 0.344 | 0.220 0.469 | 0.190 0.469 | 0.429 0.813 | 0.385 0.745 | 0.315 0.738 | 0.318  0.662
match attr early 0.210 0.463 0.143 0.450 | 0.213 0.600 | 0.237 0.400 0.403 0.737 | 0.434 0.786 | 0.309 0.718 0.345 0.663
late 0.136  0.326 | 0.168  0.400 | 0.210  0.550 | 0.232  0.450 | 0.377 0.684 | 0.406 0.755 | 0.251  0.530 | 0.306  0.629
NN early | 0.228 0.516 | 0.167 0.550 | 0.165 0.450 | 0.326 0.600 | 0.396 0.737 0.390 0.735 0.283 0.596 0.350  0.700
late 0.142  0.343 | 0.102 0.250 | 0.121  0.350 | 0.155  0.550 | 0.364 0.632 | 0.320 0.621 | 0.200 0.488 | 0.261  0.573

Amazon Proprietary dataset

#historical interaction 1 2 3 6-10 11+
setting fusion | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20 | N@20 R@20
no generator — 0.452  0.730 | 0.356  0.646 | 0.479  0.800 | 0.414 0.758 | 0.409 0.795 | 0.396 0.727 | 0.447 0.853 | 0.449 0.762
random early 0.452 0.718 0.412 0.693 0.488 0.810 | 0.480 0.832 | 0.429 0.811 | 0.358 0.727 | 0.460 0.836 0.434  0.857
late 0481  0.759 | 0.448 0.745 | 0.526 0.839 | 0.443 0777 | 0.416 0.795 | 0352  0.727 | 0.429 0.818 | 0.408 0.714
match attr early 0.301 0.606 0.310 0.630 0.352 0.727 0.405 0.811 0.374 0.764 | 0.344  0.682 0.405 0.853 | 0.434 0.810
late | 0477 0765 | 0.436  0.729 | 0.519 0.846 | 0.447 0.814 | 0.438 0.819 | 0.384 0.773 | 0.445 0.836 | 0.412  0.762
NN early 0.433 0.736 0.395 0.682 0.463 0.792 0.462 0.780 0.409 0.780 | 0.384 0.773 | 0454 0.836 | 0.484 0.810
late | 0.487 0.777 | 0.427 0.745 | 0481 0815 | 0467 0.814 | 0.401 0780 | 0.358 0.727 | 0.445 0.851 | 0.426  0.810

3 RESULTS AND DISCUSSION

Settings. We experiment with our framework on two datasets: a.
the MovieLens 1M (ML-1M) public dataset and b. the Amazon Propri-
etary (AP) dataset. The AP dataset naturally consists of a significant
proportion of cold and near-cold users. For ML-1M, we randomly
select a set of users’ historical interactions and trim them down to
simulate those targeted scenarios. For the imaginary item gener-
ator LLM, here we report results for the Llama-3.3-70B-Instruct?,
which is not fine-tuned to focus on building high-quality in-context
prompts. For the sequential recommender backbone, here we em-
ploy Recformer [9] for its high performance, good efficiency and
reliable implementation.

Hyperparameter settings include in-context size ¢ = 10, imagi-
nary video items k = 5. For evaluation, we use the common leave-
one-out strategy [8] and rank the ground truth item among the
other 100 sampled negative items.

We conduct experiments on the three strategies of context build-
ing and the two methods for interaction fusion. We also compare
to a baseline method called no generator, which simply samples a
movie from the dataset to be the interaction input for absolute cold
users, and leaves the other users’ interactions as is.

Results. We report the NDCG@20 and Recall@20 values evalu-
ated under each setting for sampled test users grouped into different
historical interaction chunks in Tab 1. The performance clearly in-
dicates that imaginary item augmentation with LLM by our method
consistently boosts recommendation accuracy. This improvement
is generally stronger in cold (0 historical interaction) or very nearly
cold (1-10 in ML-1M; 1-4 in AP) users. As the number of historical
interactions increases, the effect of imaginary items wanes and
eventually approaches the “no generator” baseline.

Insights. We observe that random example sampling for in-
context learning achieves strong performance for users with at

Zhttps://huggingface.co/meta-1llama/Llama-3.3-70B-Instruct. This model is used in the
context of this paper only and not for our production system.

least one historical interaction, while ¢c-NN sampling is preferable
for cold users (0 interactions).

We suggest that these findings are the result of the differing
movie exploration behaviors within the movie search space: conser-
vative for c-NN versus exploratory for random sampling. Notably,
increased exploration appears less risky and thus beneficial given
at least one user interaction, whereas it degrades performance for
cold users, for whom more conservative in-context examples are
more effective.

Finally, we report that for ML-1M, the early fusion injection
yields better performance, whereas for the Amazon internal dataset,
late fusion is more informative. This is most likely a consequence
of the lower content diversity of AP, which renders interpolated
movie representations more meaningful as the representation space
is more compact.

4 PRACTICAL CONSIDERATIONS

Our proposed framework was shown to be effective in generating
personalized recommendations for absolute and nearly cold users.
However, it requires an average imaginary video item inference
time per user of 72s and 175s for the ML-1M and AP datasets,
respectively. For this reason, the LLM generation process needs
to be implemented offline, which is possible due to the limited set
of available user metadata. The imaginary examples can be stored
with user metadata attributes as keys, and looked up in real-time.
In this way, the strict latency constraints of the service are met.

Another technical consideration is that sometimes the LLM failed
to correctly select the categorical value from a pre-defined attribute
value set, which is solved by re-prompting to generate a valid set of
imaginary video items for a test user. We also note that the absence
of a fine-tuning stage may limit the achieved performance on the
video semantic generation task under consideration, and we will
address this in future work.
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