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Abstract
Taxonomies organize knowledge into hierarchical structures that
support effective information seeking behaviors. However, develop-
ing taxonomies in fast-evolving domains like e-commerce remains a
labor-intensive process. In this paper, we present an interactive sys-
tem that assists users in expanding taxonomies through automated
knowledge discovery from large text corpora. On the back end, our
hybrid methods combine topic modeling and large language models
(LLMs) to uncover emerging concepts, generate concise summaries,
and suggest mappings to taxonomy nodes. On the front end, we
develop an interactive web-based interface that supports iterative,
human-in-the-loop taxonomy expansion. We demonstrate the sys-
tem’s versatility through two scenarios using publicly available
datasets: amplifying a preliminary taxonomy in the e-commerce
domain and refining a mature taxonomy in the medical domain.

CCS Concepts
• Human-centered computing → Interactive systems and
tools; Visualization systems and tools.
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1 Introduction
Taxonomies are hierarchical structures that organize knowledge
into meaningful categories, supporting a wide range of information
seeking tasks such as search, recommendation, and analytics [12].
They are fundamental to how people and systems navigate large
volumes of data and have been applied across domains. For instance,
e-commerce companies use taxonomies to organize product cat-
alogs [8]; researchers utilize taxonomies such as Medical Subject
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Headings (MeSH) [18], Gene Ontology [5], and the ACM Comput-
ing Classification System [4] to categorize scientific knowledge.

While these taxonomies are high-quality outcomes of domain
expertise, critical challenges remain: how can we ensure that a tax-
onomy reflects the latest knowledge structure? And when it does not,
how can we evolve it in step with emerging concepts and data? An out-
dated taxonomy can negatively affect downstream systems: users
encounter misplaced products in search results, business operations
rely on obsolete knowledge, and novel concepts goes untracked.
However, maintaining taxonomies is often time-consuming and
resource-intensive, especially when the hierarchy contains thou-
sands of nodes or the domain evolves rapidly with new data. Al-
though previous work has explored expanding taxonomies with
external knowledge bases [6, 23, 24], few has effectively captured
insights from large-scale data directly.

To address this challenge, we developed a human-in-the-loop
system. We began with a user-centered design process involving
two ontologists working on taxonomy-related applications (Sec-
tion 3.1). Through contextual inquiries, we examined how they
expand taxonomies from raw text corpora. The sessions revealed
two major pain points: (1) extensive manual effort required to iden-
tify emerging concepts, and (2) the absence of an interactive tool
to integrate new insights into existent taxonomies. These findings
have motivated us to develop approaches that facilitate taxonomy
expansion while preserving expert oversight over quality.

At a high level, our system comprises two key components (Fig-
ure 1). On the back end (Section 3.2), we employ hybrid methods—
combining topic modeling and LLMs—to uncover concepts from
large text corpora, generate concise summaries, and suggest map-
pings to taxonomy nodes. On the front end (Section 3.4), we develop
an interactive web-based interface that enables users to expand a
taxonomy with LLM-generated insights.

Figure 1: Overview of our system design. From left to right:
a taxonomy and raw documents (input), a back-end system
(Section 3.2), a front-end web-based interface (Section 3.4),
and the updated taxonomy with new nodes (output).

We demonstrate the system using two publicly available datasets
that represent distinct usage scenarios (Section 4): (1) amplifying a
preliminary taxonomy, where concepts are ambiguous and require

https://doi.org/10.1145/3786304.3787912
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786304.3787912


immediate clarification, and (2) refining a mature taxonomy, where
well-defined nodes can still be further expanded with nuanced
insights. Preliminary results show that our system generalizes ef-
fectively across domains and supports both early-stage taxonomy
construction and incremental refinement.

Our contributions are twofold. First, we propose a hybrid ap-
proach that integrates topic modeling and LLMs to automatically
reveal hidden-yet-meaningful patterns in large text corpora and
generate data-driven insights for taxonomy expansion. Second, we
develop an interactive, human-in-the-loop system that allows ex-
perts to scrutinize LLM-generated suggestions during taxonomy
expansion. Our system not only supports human–AI collaboration
in taxonomy development, but also provides design principles to
broader knowledge organization tasks as well.

2 Related Work
Taxonomy Development. Constructing taxonomies has tradi-
tionally relied on expert efforts [12]. While such approaches of-
ten produce high-quality hierarchies, they are time-consuming,
resource-intensive, and difficult to scale [14]. These limitations
have motivated the development of automated taxonomy induc-
tion methods. Early studies have explored pattern-based hypernym
extraction [11] and graph-based techniques leveraging term co-
occurrence [25]. Recent advances in natural language processing
have enabled automated methods that can identify and hierarchi-
cally organize concepts from large text corpora [19, 20].

In addition to constructing taxonomies from scratch, a com-
plementary line of research focuses on taxonomy expansion, i.e.,
enriching existing hierarchies with new concepts and relationships.
A common approach is to extract candidate concepts from external
knowledge bases first, and then employ techniques such as graph
propagation [23], embedding-based representations [24], or prompt-
ing LLMs [6] to predict optimal insertions. Our work is inspired by
prior studies that use topic modeling to discover relevant keywords
for a given taxonomy node [1]. However, we use topic modeling to
uncover emerging themes across the corpus, and leverage LLMs to
summarize them and suggest mappings to existing taxonomy nodes.
More importantly, we develop a front-end system following the
human-in-the-loop paradigm that integrates automated knowledge
discovery with expert validation in taxonomy development [14, 20].

Topic Modeling. Topic modeling seeks to uncover latent seman-
tic structures within document collections. Early topic modeling
approaches like Probabilistic Latent Semantic Analysis [13] and
Latent Dirichlet Allocation (LDA) [2] identify topics mainly based
on word co-occurrences. The key idea in such generative topic
models is to consider each document as a mixture of topics, where
each topic represents a probability distribution over words. Recent
advancements have used document embeddings to enhance the
coherence and semantic relationship between topics [7, 10, 27].
In this paper, we adopt Semantic Signal Separation (𝑆3) [15] for
topic modeling. Unlike traditional topic models using bag-of-words
representations, 𝑆3 conceptualizes topics as independent semantic
directions within a continuous embedding space and disentangles
latent dimensions using independent component analysis [17]. This
embedding-based topic model captures nuanced semantic themes
to generate diverse and coherent topics. For each topic, we passed
keywords and documents to an LLM for topic interpretation.

3 System Design
3.1 User-Centered Design Process
We followed a user-centered, iterative design process—consisting
of contextual inquiry, prototyping, and expert feedback—methods
commonly adopted in human–computer interaction research [9].
Two Amazon ontologists who were engaged in an internal taxon-
omy project voluntarily participated throughout the process.

The design process proceeded as follows. The first author con-
ducted initial contextual inquiries with each ontologist to under-
stand their workflows for expanding taxonomies with new insights
from large text corpora. The sessions revealed two key challenges:
(1) substantial manual effort to identify emerging concepts not
yet captured in the taxonomy, and (2) lack of appropriate tools
to support the taxonomy expansion workflow. Consequently, the
ontologists expressed a need for a system that could automatically
uncover new data patterns and visualize them through an inter-
active interface. Insights from these inquiries informed the early
system sketches. Two of the authors then conducted follow-up
interviews with the same ontologists to refine system design.

Guided by these design principles, we developed a system com-
prising two components: a back-end system that employs topic
modeling and LLMs to generate data-driven insights (Section 3.2),
and a web-based front-end interface that enables users to interac-
tively review LLM-generated recommendations (Section 3.4). We
describe these two components in detail below.

3.2 Back-end: Data-driven Insights Generation
The back-end system automates the discovery of emerging concepts
from large text corpora and mapping to taxonomy nodes. Hence, it
operates in three sequential stages: topic discovery, topic interpreta-
tion, and topic-to-taxonomy mapping. For all LLM-related compo-
nents, we use Claude 4 via the Amazon Bedrock API1 with default
hyper-parameters. We implement Chain-of-Thought prompts [26]
through the DSPy library [16].

Topic Discovery: We employ 𝑆3 for topic modeling. Since 𝑆3
identifies latent themes in the embedding space rather than word co-
occurrences, we use SBERT [21]—a transformer-based encoder—to
encode input documents into embeddings.

Topic Interpretation: For each discovered topic, we extract
the top 20 keywords and 5 representative documents with the
highest scores (computed by 𝑆3). These are passed to the LLM for
interpretation. Each time, the LLM is prompted to generate a short
phrase summarizing the topic and a concise explanation sentence
based on a list of keywords and documents.

Topic-to-Taxonomy Mapping:We provide the short phrase
for each topic, its explanation, and the full list of taxonomy nodes
to the LLM, and prompt it to identify up to three most possible
mappings with a confidence score (1–10) for each suggestion.

In practice, the system is semi-automated. Users first specify
the desired number of topics and execute the topic discovery and
interpretation stages via command-line scripts to generate candi-
date topics. If satisfied with the results, users can import them into
a web-based interface to review each topic and obtain mapping
suggestions from the LLM. We describe the interface below.

1https://aws.amazon.com/bedrock/



Table 1: Examples of data-driven insights for taxonomy expansion. We first prompted the LLM to summarize topics into concise
phrases based on 20 keywords and 5 representative documents. A second LLM then mapped each topic to taxonomy nodes.

Dataset Keywords (top 5) LLM-summarized Topic LLM-suggested Mapping (top 1)

ABCD
cotton, sponge, fabric, wool, polyester Product Material Information Single Item Query
premium, benefits, policies, secure, comfort Premium Membership Benefits Store-wide Query→ Membership
membership, levels, silver, bronze, platinum Membership Level Information Store-wide Query→ Membership

MeSH trachoma, trachomatis, africa, asia, arabia Trachoma Epidemiology Eye Infections, Bacterial
demodex, blepharitis, demodicosis, descemet, lashes Demodex Blepharitis Eye Infections, Parasitic

3.3 Datasets for Demonstration
While the system was originally developed to assist ontologists
in an internal taxonomy project, the data cannot be released due
to confidentiality restrictions. Nevertheless, the underlying ideas
are generalizable across domains. To demonstrate this, we show-
case our system using two publicly available datasets with similar
structures—each containing a hierarchical taxonomy associated
with document collections. We select these two datasets because
they represent two distinct usage scenarios: one involves a prelimi-
nary taxonomy with ambiguous concepts, and the other features a
well-maintained taxonomy that can be further refined.

First, we used theAction-Based ConversationDataset (ABCD) [3],
which contains 10K customer–agent dialogues in e-commerce and
a two-layer taxonomy summarizing major contact intents in cus-
tomer service (e.g., account or order issue). The taxonomy2 includes
10 top-level and 55 second-level nodes. For each dialogue, we con-
catenated all turns into a single transcript. The second dataset is
MeSH, which provides a comprehensive hierarchical vocabulary
for indexing biomedical literature. Because MeSH is extensive, we
focused on one representative branch: Diseases → Eye Diseases →
Eye Infections. This branch3 has 6 top-level and 14 second-level
nodes. Using the query “Eye Infections[MeSH]”, we retrieved 6k
articles (considering only titles and abstracts) from PubMed.

We applied the same topic modeling and LLM analysis pipeline
on both datasets with the number of topics set to 50 and 30, respec-
tively. Table 1 presents examples of LLM-summarized topics and
suggested topic-to-taxonomy mappings on the two datasets.

3.4 Front-end: Interactive Taxonomy Expansion
The front-end system provides an interactive web-based interface
for users to expand a taxonomywith topic modeling outputs4. Users
begin by uploading two input files: a taxonomy and a topicmodeling
output containing candidate topics and explanations (as detailed in
Section 3.2). Once uploaded, the system parses both files and loads
the interface shown in Figure 2. The interface comprises a control
panel at the top and a main workspace below. The workspace
supports two synchronized views—Topic View (shown by default)
and Taxonomy View—which users can toggle seamlessly for topic
exploration and taxonomy visualization.

In the Topic View, uploaded topics are displayed in a searchable
table. Users can browse topics freely or issue queries (e.g., “sub-
scription”) to focus on topics of interest. Each topic entry includes
its explanation and a Get AI Suggestions button. Clicking the

2https://github.com/asappresearch/abcd/blob/master/data/ontology.json
3https://www.ncbi.nlm.nih.gov/mesh/68015817
4The demo video is available at https://jiamingqu.com/CHIIR26_demo/.

button triggers a backend LLM call that generates up to three topic-
to-taxonomy mappings, each with a confidence score shown in
different opacity levels. For each topic, users can take one of three
actions after scrutinizing LLM-suggested mappings: (1) Ignore—
dismiss the topic as irrelevant; (2) Insert as a New Node—add it as
a new taxonomy node if it represents a novel concept; or (3) In-
sert as an Example—attach it as an illustrative example to clarify
an existing node. For insertion, users may either adopt an LLM-
recommended path or manually select a destination node using a
navigation tool. The Insert Topics button allows users to add
selected topics to the taxonomy or saving them as examples.

Users can switch to the Taxonomy View to visualize the updated
structure (Figure 3). The taxonomy visualization is implemented
with the D3.js library5, which renders the taxonomy in an interac-
tive tree structure. Newly added nodes are highlighted in red for
visual identification. Users can zoom, pan, and expand or collapse
branches to inspect hierarchical relationships in the taxonomy. Top-
ics inserted as examples are stored separately in another JSON file.
Finally, users can click the Download Taxonomy button to export
the updated taxonomy and the file containing topic examples.

4 Usage Scenarios and Demo Plan
Scenario I: Amplifying a Preliminary Taxonomy (ABCD).
As illustrated in Table 1, our system can expand an early-stage
taxonomy with vague concepts such as that in the ABCD dataset.
Consider an ontologist exploring customer–agent dialogues labeled
with the original ABCD taxonomy. During review, the ontologist
notices frequent mentions of words such as cotton, sponge, and
polyester in certain transcripts and begins to wonder whether cus-
tomers frequently ask about product materials—an intent not cov-
ered in the existing taxonomy. Using our system, this new concept
Product Material Information is automatically surfaced through
topic modeling and mapped to the Single Item Query node, which
reduces the manual effort of hypothesis generation and validation.

Similarly, the topics Membership Level Information and Premium
Membership Benefits are both mapped to Store-wide Query→ Mem-
bership node. By examining these LLM-suggested mappings, the
ontologist could have realized that the former reflects inquiries
about tier requirements, whereas the latter captures questions about
benefits and rewards after achieving a tier. Using the interface, the
ontologist could effectively expand the original Membership node
into two sub-nodes that represent two different concepts.

Scenario II: Refining a Mature Taxonomy (MeSH). Now,
consider a biomedical researcher uses our system to refine the
MeSH branch Diseases → Eye Diseases → Eye Infections. As shown
in Table 1, the system identifies new concepts such as Trachoma

5https://d3js.org/
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(3)
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Figure 2: System interface after a taxonomy and topic modeling outputs are uploaded. From top to bottom: (1) the control
panel, which includes buttons for switching views, searching for topics, inserting topics as nodes or examples, downloading
the updated taxonomy and file of examples, and resetting the session; (2) a progress bar indicating the current step; and (3)
the main workspace displaying topics. Each topic panel contains a Get AI Suggestions button that triggers LLM calls for
topic-to-taxonomy mappings. For each topic, users can ignore it or insert it as a new node or an illustrative example. For
insertion, users can accept LLM-suggested mappings or select their desired path in the taxonomy.

Figure 3: Taxonomy view after topic insertion. The newly
added nodes are highlighted in red in the interactive tree.

Epidemiology and Demodex Blepharitis, which were mapped to Eye
Infections, Bacterial and Eye Infections, Parasitic, respectively. These
additions capture meaningful variations—such as region-specific
disease prevalence and pathogen-specific etiologies—that are absent
from the original taxonomy node. By integrating these nuanced pat-
terns as child nodes or examples, domain experts can incrementally
refine an already mature taxonomy without disrupting its structure.

Demonstration Plan:We will demonstrate the system live at
the CHIIR conference. Participants will be encouraged to upload
their own datasets or use the provided ABCD and MeSH examples.

Participants will experience how our system can support two dif-
ferent usage scenarios (i.e., amplifying a preliminary taxonomy and
refining a mature taxonomy) in taxonomy development.

5 Discussion
Genralizability: Preliminary results on the ABCD and MeSH
datasets suggest that our system can generalize across domains and
usage scenarios. More importantly, the overall system architecture
is model-agnostic. On the back end, domain-specific pre-trained lan-
guage models can be incorporated to generate embeddings that fur-
ther enhance the quality of topics discovered by 𝑆3. Beyond 𝑆3, fu-
ture topic modeling approaches—those with superior performance—
can be seamlessly integrated as well. Likewise, one can use newer
LLMs and conduct prompt engineering for more accurate topic in-
terpretation and topic-to-taxonomy mapping results. On the front
end, the interface provides a user-friendly workspace for examining
machine-generated, data-driven insights. This design can be readily
extended to a broader range of human–AI collaboration scenarios
in knowledge discovery and information organization.

Limitations and Future Work: As a demonstration paper, our
primary goal has been to showcase system functionality rather
than to conduct a comprehensive empirical evaluation. As an im-
mediate next step, we plan to conduct a user study comparing how
ontologists develop taxonomies using our system versus traditional



spreadsheet-based workflows. Such a studywill help assess whether
our system improves both efficacy (e.g., quality of new concepts)
and efficiency (e.g., time and cognitive effort) during taxonomy ex-
pansion. On the system side, we aim to integrate an algorithmic
evaluation module that leverages established metrics such as topic
diversity and coherence [22] to provide feedback for topic modeling.
This module will guide users in selecting an appropriate number of
topics and make the system fully automated.
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