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ABSTRACT
Virtual machines (VM) form the foundation of modern cloud computing as they help logically abstract per-
user compute from shared physical infrastructure. Users of these services require VMs of varying sizes and
configurations, which the provider places on a set of physical machines (PMs). VMs on the same PM share
memory and CPU resources so a bad placement directly impacts the quality of user experience. We consider the
placement of Firecracker VMs (a form of Micro-VMs or µVMs) - lightweight VMs that are typically used for
short lived tasks. Our objective is to place each VM as it arrives, so that the peak to average ratio of resource usage
across PMs is minimized. Placement is challenging as we need to consider resource use in multiple dimensions,
such as CPU and memory, and because resource use changes over time. Past approaches to similar problems have
suggested that one could forecast VM resource use for placement. We see that in our production traffic, µVM
resource use is spiky and short lived, and that forecasting algorithms are not useful. We evaluate Reinforcement
Learning (RL) approaches for this problem, but find that off-the-shelf RL algorithms are not always performant.
We present a forecasting free algorithm, called FirePlace, that learns the placement decision using a variant of
hindsight optimization, which we call hindsight imitation. We evaluate our approach using a production traffic
trace of µVM usage from AWS Lambda. FirePlace improves upon baseline algorithms by 10% on a production
data trace of 100K µVMs.

1 INTRODUCTION

Virtual Machines (VMs) (Barham et al., 2003) are an essen-
tial technology in modern computing and form the core of
many cloud services. A VM wraps the functionality of a
physical compute system and presents it to the user, while
sandboxing her from other users who may share the same
Physical Machine (PM). VMs are useful because they allow
providers to allocate resources efficiently by fitting many
VMs on a single PM, while giving the functionality of a
separate machine to the end user. VMs on the same physi-
cal PM share memory, compute and network resources. A
bad packing of VMs would impact the stability, latency and
throughput of computations and increase costs.

Algorithms for packing VMs efficiently into PMs have been
studied for over a decade (Bobroff et al., 2007; Xiao et al.,
2012; Meng et al., 2010b). Firecracker VMs are a recent
innovation - a form of lightweight VMs that have fast startup
times and can be packed with high density, while still pro-
viding strong security (Madhavapeddy et al., 2013; Agache
et al., 2020). Firecracker VMs are an instantiation of Mi-
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croVMs, and we refer to them as µVMs for brevity. They
are used to provide serverless services such as Function as a
Service (Kratzke, 2018) with low overheads. We consider
an online placement setting common in cloud computing,
where µVMs are created and deleted based on exogenous
demand. The objective is to place the VMs such that the
total number of PMs used is minimized, while ensuring that
resource use in any of the PMs does not exceed limits. A
good packing directly translates to increased availability,
reduced operational costs and energy savings (Fan et al.,
2007).

Our VM placement problem is similar to the problem of on-
line bin packing (Song et al., 2013; Gupta & Radovanovic,
2012). However, in our setting, not only do we need to
consider multiple resource dimensions such as compute and
memory, but also how resource use changes over time. Since
vector bin packing itself is an NP complete combinatorial
problem, and APX hard for 2 or more dimensions (Chris-
tensen et al., 2016), our problem in its general form is in-
tractable. Related prior work has proposed forecasting the
resources that will be used by each VM, followed by well-
known heuristics such as Best-Fit or genetic algorithms to
decide placement (Chen et al., 2018). In our production
dataset, we find that µVM are short lived and their use is
spiky, and hence, difficult to forecast. We can pack hundreds
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of µVMs in a physical machine (PM) as each µVM resource
use is small in comparison to the PM capacity. Therefore,
forecasting solutions become untenable as the error in the
prediction of each VM accumulates and leads to poor place-
ment. In particular, the best p90 forecast for µVM CPU1

use over its entire lifetime is 0.

Given the difficulty of forecasting, the best that any algo-
rithm could realistically do is hedge placement decisions
based on ‘typical’ compute and memory use of a new µVM
when compared with the historical compute and memory
use of the PM. This hedged decision rule could be state
dependent. We formulate the problem as a Markov Decision
Process (MDP) (Puterman, 1990), where the agent places
a µVM at each time step. The MDP still suffers from the
curse of dimensionality because of the large state and action
spaces - in particular, the large number of PMs available
at each time instant. Hence, we build on the power of two
choices (Mitzenmacher, 2001) to reduce the action space.
We find that off-the-shelf reinforcement learning (RL) algo-
rithms do not perform well due to long horizon and noisy
state space as µVM resource use change over time. We
propose FirePlace, a hindsight imitation learning algorithm
for µVM placement. We leverage historical data to identify
placement decisions that could have been made using hind-
sight of future µVM compute and memory use, similar to
hindsight optimization (Chong et al., 2000). We then cast
placement as a supervised learning problem with the hind-
sight based decision as the label. We show that FirePlace
does not require per µVM forecasting, outperforms off-the-
shelf model-free deep RL algorithms, runs fast enough to
deploy to a latency sensitive large scale production service,
and generates a learned model that generalizes to unseen
data.

2 µVM PLACEMENT IN OUR FLEET

Our problem formulation is informed by AWS Lambda2,
which provides function execution as a managed service.
Users provide the function they want to execute, written in
their preferred programming language, configure limits on
memory use in 64 MB increments from 128 MB up to 3000
MB, and configure execution time maximums in 1 second
increments up to 15 minutes. They can then execute the
function as often as they like, using a variety of different
event triggers. Users are alleviated from the burden of
provisioning infrastructure and save on costs as they are
billed only for the function execution time. The service
provisions the compute resources, creates µVMs, installs
the required dependencies and executes the function for
the user. Users can use these functions for many different

1CPU is used here to represent compute resources as measured
by the number of cores on the physical machine.

2AWS Lambda - https://aws.amazon.com/lambda/

Figure 1. An overview of our model system that uses µVMs for
invoke executions. Our objective is to pack the µVMs such that
the demand for resources is satisfied and the size of the fleet is
minimized.

purposes, from real-time data processing to serving web
requests. Our aim is to reduce the operational cost of the
service.

We now describe the system model we use to derive our
problem formulation in the paper. The description is in-
spired by the real production system of AWS Lambda, but
redacts sensitive proprietary information.

In our model system, the infrastructure consists of a fleet of
data center servers, which we refer to as physical machines
(PMs). Once a user configures and calls the function, we
create a µVM for that function in one of the PMs, and
execute it. The µVM is not destroyed immediately, in case
the user executes again immediately. The µVM is eventually
deleted if it remains idle for a threshold amount of time.
Each function call is called an invoke, and the user can
execute the same function concurrently. Hence, a single
function may have multiple µVMs. Each PM can host and
execute multiple µVMs at a time. Figure 1 illustrates our
model system.

Functions to µVMs have a one-to-many relationship, and
µVMs are created and used for only one function. Two
different functions cannot share execution on the same µVM.
A µVM can only accommodate one invoke at a time. While
the µVM is processing an invoke, it is said to be active.
Once function execution ends for that invoke, the µVM
enters an idle state and can be kept around to accommodate
additional invokes if and when they arrive. Invoking on an
idle µVM results in lower user latency compared to creating
a new µVM.

Each decision in infrastructure management and function
request routing impacts the operational cost and user experi-
ence. If an idle µVM for a particular function is available
when an invoke arrives, then the latency of execution is re-
duced. µVMs use memory even when they are not executing
a function. Hence, idle µVMs waste resources. If µVMs are
packed in the PMs tightly, the number of PMs in the fleet
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is reduced. However, we need to ensure the µVMs are not
packed too tightly to ensure they can execute without hitting
PM resource limits, or PM performance limits which would
negatively impact the user observed latency or availability.
We also need to ensure the PMs have enough resources to
create new µVMs as they are needed. Proactive deletion
of µVMs can reduce memory use. However, aggressive
deletion may create churn with reactive creation of µVMs,
and increase execution latency. Each of these decisions can
be optimized to reduce cost. We focus on the placement
of µVMs in PMs to ensure tight packing, and as a result,
reduce the fleet cost.

3 PROBLEM SETTING

We formulate our problem by modeling the characteristics
of a typical cloud system. µVMs are created by an external
service based on user demand, and at each time step we
receive a µVM to place. Our objective is to identify a PM in
the fleet on which to place the µVM so that the Peak to Av-
erage Ratio (PAR) of resource use in the fleet is minimized
while ensuring the resource use in any of the PMs does not
exceed capacity in the future as the compute and memory
use of the µVMs change. We can reduce our fleet size if
the peak use of the fleet falls below a threshold. If the total
number of active VMs on a PM require more compute or
memory than the PM has available, then user experience
is degraded. In practice, we observed that our PMs are
not bottlenecked on resources such as network bandwidth.
Therefore, we scoped the problem to only track the CPU
and memory use of the PM. The placement decision needs
to be made quickly (∼20ms) and with reasonable through-
put (∼5 placements/s). Each fleet can consist of hundreds
or thousands of PMs, and it is impractical to require the
updated state of all PMs to make the placement decision.
The algorithms we tried, including RL and baselines, did
not scale well with large state and action spaces. Hence, we
sample K PMs at a time and identify the PM to place. Our
design is motivated by the power of two choices (Mitzen-
macher, 2001), which shows that making an optimal choice
out of two randomly sampled PMs is exponentially better
than a random choice. This limits our action space to size
k = |K|, rather than the total number of active PMs.

µVMs start executing user invokes sometime after they are
created, consuming memory and compute when they do so.
An external service deletes the µVMs if it is idle for more
than a specific period of time. We consider a fleet with a
single type of PM with fixed compute and memory capacity.

A PM’s resource use is simply the sum of resources con-
sumed by the µVMs in the PM. We compared the sum of
resource use by the µVMs to the total resource use of the
PM measured in our system. We find the difference between
the estimated and measured PM use can be explained with

a constant bias term using regression analysis. The con-
stant term does not impact our agent decisions, therefore we
ignore overheads in our formulation.

µVMs arrive online, and the order of arrival cannot be
changed. We cannot migrate µVMs once they have been
placed. µVM resource use is unknown before placement
and changes over time as invokes are executed. The memory
use of a PM increases monotonically over time until dele-
tion, since µVMs do not release memory. The µVM uses
compute only when it is executed, thus the CPU use of the
µVM is zero when it is idle (we ignore idle CPU overhead),
and spikes up when it executes invokes.

Each µVM is represented by a timeseries of its resource use.
Let cvt and mv

t denote the CPU and memory use of µVM
v at time t. Each PM consists of a collection of µVMs.
Let Cpt =

∑
v∈V p cvt and Mp

t =
∑
v∈V p mv

t denote the
CPU and memory use of PM p ∈ P at time t, where V p

is the set of µVMs in the PM and P is the set of PMs in
the fleet. Let cv = cv0, .., c

v
T and mv = mv

0, ..,m
v
T denote

the CPU and memory use timeseries of length T for µVM
v. Let Cp =

∑
v∈V i cv and Mp =

∑
v∈V p mv denote

the PM CPU and memory timeseries respectively. The
placement algorithm places one µVM at a time in one of K
PMs randomly sampled from the fleet.

We assume each PM in the fleet can be restarted any point
with a low probability to ensure our formulation is robust
to such changes in practice. In the simulation, each step
corresponds to a VM placement. At each step, we decide
to restart a PM with a low probability. When such a restart
occurs, we randomly pick one of the PMs, and set its CPU
and Memory use to zero. In practice, this corresponds to a
PM that is no longer available for placement, and the VMs
in that PM are deleted once they are idle for a period of time.
A new PM is added to the fleet as replacement.

3.1 Compute Based Packing

Figure 2 shows the memory and compute characteristics of
an example µVM. CPU use predictability is much lower
than memory predictability, and for most algorithms com-
pute violations are much more common than memory viola-
tions. As a result, we also report results for a version where
we only consider compute use during the placement. We
formulate the problem as an MDP, where the agent places
the µVMs across an episode. We introduce τ ∈ [0, T ] as
the wall clock time at which µVM v at time step t is placed
in the PM. The input to the agent is the state: s(Cpt , c

v
t ) for

p ∈ Kt, t ∈ [0, τ ], and the agent takes action by picking one
of Kt PMs. If the agent picks a PM that is too full to fit the
µVM - which we can tell in simulation by considering future
memory and compute use - we repeatedly pick another PM
in the fleet at random, and try to place the µVM there, until
we find a PM that can hold the µVM. The agent receives
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a penalty, since bad placements degrade performance. The
episode terminates when all µVMs are placed or if all the
PMs in the fleet are full. We define the reward function at
each time step t as:

Rt =

1
|P |
∑
p∈P maxt∈τ C

p
t

maxp∈P ,t∈τ Cp
−Wt (1)

where |P | is the number of PMs in the fleet. Wt = 1 if
the PM picked is too full to place this µVM, and Wt = 0
otherwise. PM resource use is represented by its maximum
CPU use, as the maximum use should not exceed capacity
of the PM. We consider CPU and memory use smoothed
over a minute in our experiments. Therefore, momentary
spikes due to OS scheduling bottlenecks are not considered
as violations.

The first term in Equation 1, encourages the agent to increase
the mean CPU use of the fleet compared to the max use
(PAR) which encourages the agent to pack µVMs tightly
yet maintain the same CPU use across PMs. This choice
of metric represents our desire to be efficient, yet robust to
e.g. single instance failures, at any time. The fleet is sized
so that there are adequate resources for peak traffic. An
algorithm that is efficient in µVM packing will ensure that
the peak resource use is minimized, allowing for reduction
in fleet size. The PAR metric normalizes the peak use at each
decision time. The Wt parameter accounts for egregious
violations in resource use.

3.2 Compute and Memory Based Packing

The above formulation can be extended to include mem-
ory use. The state includes both CPU and memory use:
s(Cpt ,M

p
t , c

v
t ,m

v
t )|p ∈ Kt, t ∈ [0, τ ]. The reward function

is modified as:

Rt =

1
|P |
∑
p∈P maxt∈τ C

p
t

maxp∈P ,t∈τ Cp
+

1
|P |
∑
p∈P maxtM

p
t

maxp∈P ,t∈τ Mp
−Wt

(2)
Our formulation can be extended to heterogeneous fleets,
where the PMs have different amount of compute and mem-
ory resources, as we use normalized measures of CPU and
memory in our metrics. However, we focus on homoge-
neous fleet setting in this paper.

A simple baseline algorithm is to pick a PM uniformly at
random, and try to place the µVM. An ideal algorithm will
pick the PM in the fleet that minimizes the overall PAR in
the long term. While we only have |K| � |I| PMs from
the fleet to choose from, prior work has shown that if we
pick the best of K PMs, we can perform much better than
random (Richa et al., 2001).
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Figure 2. CPU and memory use of a long lived µVM in our dataset.
Compute is used only when the µVM is executing invokes and
memory use is the maximum of memory used in µVM history.

4 DATA CHARACTERISTICS

We collect a dataset with ∼200K µVMs across 24 hours
of use from AWS Lambda, and analyze its characteristics.
Figure 2 shows the CPU and memory use of a particularly
extreme µVM in our dataset, across the 2 hours it was active.
Data is recorded every minute and consists of µVM CPU
and memory use. The CPU use spikes up whenever invokes
are executed. Most µVMs are relatively small (median
values – memory: ∼100MB, CPU: ∼15-20% of a cpu core,
execution time: 0.2-0.6s, inter arrival time: 50-100s) but
a small percentage of µVMs have extreme values (99th
percentile (p99) values – memory > 1GB, CPU > 150%,
execution time > 90s, inter arrival time: >10 min). The
median life of a µVM is∼15 minutes and the p99 value is>
2 hours. The memory use grows gradually as invokes take up
more memory and assigned memory is not reclaimed until
µVM is deleted. At the time of the placement decision, these
detailed µVM characteristics are unknown, since each µVM
is unique from the perspective of the placement algorithm.

To make good placement decisions, we may need to fore-
cast how µVMs use resources in aggregate. In particular,
we need to place µVMs such that the aggregate use does
not exceed the capacity of the PM. In case of memory, an
individual µVM use has low variance. Hence, aggregate
memory use can be approximated as sum of individual µVM
memory use. However, aggregate CPU use varies depending
on when invokes are executed and how the invokes are inter-
leaved across µVMs. Hence, estimating aggregate CPU
use is challenging. Aggregate resource use also depends on
when the µVMs are deleted.

5 METHODS

5.1 Hindsight Placement

One approach to the problem could be to split it into two
parts: forecasting and optimization (Meng et al., 2010a;
Chen et al., 2016; 2018). We could forecast individual µVM
use and estimate the aggregate PM use given the µVMs in
it. We then need to optimize the placement of µVMs to
minimize PAR. In our approach, we instead start with the
optimization problem, assuming we have perfect forecasts
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available using real µVM use data from our historical data.
Given this future knowledge, we can pack µVMs to greedily
maximize the reward in Equations 1 or 2 at each step. We
call this algorithm Hindsight based packing.

Hindsight based placement is still greedy, even though it
uses perfect information, since we do not attempt to account
for future µVM arrivals. Still, a well trained placement
agent could learn to hedge against the ‘typical’ distribution
of future arrivals, and predict future resource requirements
of already placed VMs.

For the hindsight CPU packing problem, we assume we
have access to the entire future timeseries of µVM use
and PM use, together with the µVMs already placed in it:
(Cpt , c

v
t )|p ∈ K, t ∈ [0, T ]. We pick the PM that minimizes

the maximum CPU use if the µVM was placed in it:

Bcpuk = max
t∈T

(cvt + Ckt ) (3)

A = arg min
k∈K

Bcpuk (4)

where A is the PM picked by the algorithm. We call this a
Hindsight algorithm as it utilizes future information un-
known in production. For 2-dimensional CPU/memory
packing (or, 2D packing for brevity), we pick the PM that
minimizes theL2-norm of CPU and memory use if the µVM
were placed in that PM:

Bk =

∥∥∥∥(max
t∈T

(cvt + Ckt ),max
t∈T

(mv
t +Mk

t )

)∥∥∥∥2 (5)

This choice of metric is somewhat arbitrary, and comes from
domain experience, not first principles.

In full generality, hindsight optimal placement can be treated
as a combinatorial optimization based bin packing problem
and we can use classic techniques like dynamic program-
ming. However, the high dimensional state space and the
large number of µVMs to be placed make these approaches
infeasible, even offline. Online bin packing is a much eas-
ier problem when all the items are of the same size (Shen
et al., 2017). Since our µVM resource use is small when
compared to PM capacity, we can justify use of greedy hind-
sight techniques. We thus focus on the time varying nature
of resource use, rather than the combinatorial optimization
aspects.

5.2 Simple Baselines

We present a Baseline algorithm that simply uses the mean
values to represent the µVM and PM CPU/memory use.
This algorithm picks the the PM that minimizes the follow-
ing for CPU packing:

Bcpuk =
1

T

T∑
t=0

cvt +
1

T

T∑
t=0

Ckt (6)
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Forecasting CPU use with TCN & LSTM
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Figure 3. An example of forecasting CPU use with TCN and
LSTM for 20 time steps in future given 50 time steps of history.
We trained both neural networks for 1000 epochs with a batch size
of 10 in Tensorflow Keras. Both LSTM and TCN consisted of 1
layer with 64 units each.
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Forecasting memory use with TCN & LSTM
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Figure 4. An example of forecasting memory use with TCN and
LSTM for 20 time steps in future given 50 time steps of history.
We trained both neural networks for 1000 epochs with a batch size
of 10 in Tensorflow Keras. Both LSTM and TCN consisted of 1
layer with 64 units each.

For 2D packing, we use the L2-norm to represent both cpu
and memory use:

Bmemk =
1

T

T∑
t=0

mv
t +

1

T

T∑
t=0

Mk
t (7)

Bk = ‖(Bcpuk , Bmemk )‖2 (8)

In addition to the Baseline algorithm, we also present results
of randomly picking the PMs as a comparison.

5.3 Forecasting

One approach to this problem is to featurize the inputs
available at decision time, forecast the VM use, and use the
same optimizations in Equations 3-5. For the optimization,
we could forecast the µVM use based on historical µVM
use, e.g. using other µVMs that belong to the same user,
and forecast the PM use by forecasting the resource use by
individual µVMs in that PM (Chen et al., 2016; 2018).
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However, we found that there are multiple challenges to
this forecasting based approach. µVM use, especially CPU
use, is inherently difficult to predict as it depends on user
demand at the invoke level and how invokes are routed to
a µVM when multiple µVMs per user exist at a time. We
need to forecast the µVM use for its entire lifetime of up
to ∼2 hours. We evaluated LSTMs (Hochreiter & Schmid-
huber, 1997) and TCNs (Bai et al., 2018) for forecasting of
µVM resource use. We split the µVM timeseries to feed
50 timesteps of historical data and predict 20 timesteps of
future use, where each timestep is a minute. Both methods
failed to learn predict CPU and memory use on test data
for even such a short horizon. As we add individual fore-
casts for hundreds of µVMs in a PM, the uncertainty in
forecasts increases further. While it is possible to mitigate
some of these uncertainties using techniques like hierarchi-
cal forecasting (Hyndman et al., 2011) and multi-horizon
recurrent forecasting (Wen et al., 2017), we have a tight
budget of 20ms to make placement decisions, and using
sophisticated forecasting approaches easily exceeded the
budget. As a result, we focus on forecasting free algorithms
for placement.

5.4 Reinforcement Learning

Having already defined the problem as an MDP, reinforce-
ment learning (RL) algorithms are a natural fit for the prob-
lem. In our case, the states are quantiles of CPU and memory
over different windows, for each of the |K| PMs and the
specific µVM we are placing in that time step. We have
|K| actions corresponding to each of the PMs where we can
place the µVM. We evaluate off-the-shelf deep RL algo-
rithms implemented in the Ray RLlib library (Liang et al.,
2017). We use the PPO (Schulman et al., 2017) algorithm,
and experimented with a number of hyper-parameters and
discuss results of the best settings we could find. As we
will see in the results (Figure 5), RL is sometimes able to
match or even slightly outperform the Hindsight algorithm
we described in the previous section. But for many settings
it is much worse.

5.5 FirePlace: Hindsight Imitation Learning

We propose a form of imitation learning - a strategy that di-
rectly learns to mimic the actions of the Hindsight algorithm,
using it as a teacher (Hussein et al., 2017; Pomerleau, 1989).
As we have historical data from our production workloads,
we can compute hindsight based decisions at each time step
and create a dataset for training. Use of hindsight imitation
learning circumvents the issues associated with forecasting,
as we directly learn a relationship between input features
and output decision that hedges placements. The idea is
similar to hindsight optimization proposed by Chong et al.
for tabular problems (Chong et al., 2000).

The input to the imitation model is features derived from the
state and the output is the action. We found that the choice of
features, model and dataset is important to avoid overfitting,
even with large amounts of data, given the variance in state
and action spaces. We use a random forest classifier (Liaw
et al., 2002) and support vector machines (Suykens & Van-
dewalle, 1999) as our model, whichever gives us the the
best classification accuracy on our validation data. Simple 2
layer neural networks (Haykin, 1994) did not perform well
in our datasets. We use quantiles of PM resource use over
different windows as our features. Specifically, we use the
p10, p25, p50, p75, p100 and mean values for CPU use,
and just the p100 and mean values for memory use because
the memory use is monotonic till deletion. We split the
µVMs from historical production data to two partitions, use
one partition to train our agent and the other to test. We
simulate the online µVM placement in a fleet with our train
partition, and use the features computed from state as well
as the Hindsight algorithm actions to create our training
dataset for imitation learning. We refer to the learned model
as FirePlace.

We list the hyper-parameters we use for each method in
Appendix A.

6 RESULTS

We use multiple datasets from a single region: one with
20,000 µVMs and another with 100,000 µVMs respectively.
We refer to them as the 20K and 100K datasets. We set
|K| = 2, i.e. the algorithm picks from 2 randomly sam-
pled PMs in the fleet and places the µVM on one of these.
The performance of the algorithm increases slightly with
increase in |K| (Mitzenmacher, 2001), but |K| = 2 gives
us a large improvement over random. We use PMs with 4
CPU cores and 16GB memory in the 20K dataset and use
8 CPU cores and 64GB memory in the 100K dataset. As
the number of PMs in the fleet decreases, the placement
becomes harder until all PMs very quickly become too full
to accommodate µVMs. We vary the number of PMs in our
experiments to show the impact of fleet size on the perfor-
mance of placement algorithms. We run each experiment
10 times, and report mean rewards with error bars.

We assign alternate µVMs to two partitions - this makes the
training data representative, but also well separated from
test data. We use the train partition to create our dataset
with the Hindsight algorithm. We use 75% of the dataset for
training and 25% for validation.

The results in Figure 5 show that the best RL algorithm
sometimes performed as well as or even slightly better than
the Hindsight algorithm, but usually performed worse. Fig-
ure 6 shows the training progress of the RL algorithms for
the 2D packing case in 20K and 100K datasets. While RL
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Figure 5. Online µVM packing based on CPU use in (a) and (c)
for 20K and 100K dataset respectively. µVM packing based on
CPU and memory use in (b) and (d) for 20K and 100K datasets
respectively.

performs well in the 20K dataset, it fails to even beat the
baseline algorithm in 100K dataset. RL also performs only
slightly better than Random in the CPU packing case, where
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Figure 6. RL training curves for 2D packing based on memory and
CPU use for the 20K (a) and 100K (b) datasets. We see that when
RL succeeds, it does so quickly. However, often the performance
plateaus much before performance of even the Baseline algorithm
is reached.

the stochasticity of the environment is higher.

To evaluate FirePlace, we ran the Hindsight algorithm,
logged its state and actions. We then used various ML
models to learn to predict the Hindsight decision from
the state. We got the best performance using both Ran-
dom Forests (Liaw et al., 2002), and Support Vector Ma-
chines (Suykens & Vandewalle, 1999), we report whichever
yielded the higher accuracy on the validation data here.
For the CPU packing case, the models yield a validation
accuracy of 91% and 92% for 20K and 100K datasets re-
spectively. For the 2D packing case, the models have a
validation accuracy of 79% and 85% for 20K and 100K
datasets respectively. We used the learned model to make
placement decisions for the test µVM partition. We use
the same learned model across different fleet sizes to test
generalization. Figures 5 shows the results for all datasets
across 10 runs on the test µVM partition.

Figure 5a shows the results of the CPU based packing. The
Hindsight algorithm performs 9% better than Baseline on
average and 33% better than random. Due to the sporadic
nature of CPU use (Figure 2), the temporal characteristics
of µVM and PM CPU use are useful in determining a good
placement. The Hindsight algorithm has access to the entire



FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation

future of PM and µVM use and can pick the PM whose low
usage period (troughs in the timeseries plot) align with the
peak µVM use. The Hindsight algorithm uses Equations
3 and 4 to determine the PM whose maximum CPU use
is minimized after the µVM is placed. This temporal in-
formation is lost in the Baseline algorithm because of the
coarse featurization, and hence the performance is worse.
The Baseline algorithm performs better than random, by
22% on average, as it places the µVM in PMs which have
more capacity using the best of K choices. Figure 5b shows
the results of the 2-dimensional CPU and memory based
packing. The trends in this case are similar to CPU packing,
with the Hindsight outperforming the Baseline and random
algorithms by 12% and 21% on average respectively.

The FirePlace performance is somewhere between Baseline
and Hindsight, demonstrating that the model has indeed
learned to make good decisions from the Hindsight dataset,
while relying only on features available at decision time.
FirePlace improves upon Baseline by 11% on average in the
2D packing problems, and performs almost as well as the
Hindsight algorithm. However, in the case of CPU packing,
the FirePlace performance is only as good as the Baseline
algorithm. We hypothesize that the stochasticity in the CPU
packing is too high to bridge the gap between Hindsight and
Baseline algorithm.

FirePlace generalizes to the 2D case and is able to find a
good trade-off between CPU and Memory features. In one
2D packing case, Figure 5b, we see that RL outperforms
the Hindsight expert. This indicates that better trade-offs
between CPU and Memory than the L2 norm we used in
Equation (8) are possible in the short term to minimize the
long term PAR. If we introduced µVM features or raw time-
series as features and used LSTMs to represent the policy,
the model overfitted to the training data and gave poor vali-
dation results. This indicates that, while the data we have
seems large, it is still insufficient for data hungry RL models.
FirePlace is much more sample efficient than RL, and we
plan to explore the use of FirePlace as a pre-trained model
for RL training in future work. Finally, we observe that
within an episode, there were occasionally large jumps in
the reward, where a few placement decisions lead to large
shift in rewards, while most decisions have no impact. In
ongoing work, we are working to characterize these ‘impor-
tant’ placement decisions, and adjust the loss function used
in training FirePlace to further improve performance.

7 DISCUSSION

7.1 Train Test Split

The evaluation assigns alternate micro VMs from the pro-
duction trace to the training and test data partitions, which
ensures the train and test data have similar distributions.

However, in practice, the model needs to generalize to un-
seen data in another day or a different region. When we
evaluated our trained models on data from a different day,
the performance of the model indeed dropped. Upon anal-
ysis, we identified that the shift in distribution is primarily
due to shift in demand from train to test data. We were
able to mitigate any performance impact by normalizing the
features on a per decision basis. We normalized the CPU
and memory use features such that the model is given a
comparative state of the PMs rather than their absolute val-
ues. More representative features are likely to yield higher
performance gains.

7.2 A/B Testing in Production

We briefly describe how FirePlace can be evaluated in a pro-
duction environment. The FirePlace model can be trained
offline using historical data, and used in production for in-
ference. Historical µVM use data is fed into our simulator
to collect Hindsight decisions, and the resulting dataset can
be used to train the FirePlace imitation model. We ensure
the inference time of the model is sufficient for production
settings, and validate the model performance in held out
test set. Methods to ensure the simulator is representative to
the production infrastructure is paramount to ensure model
performs well in practice.

We create two fleets of equal size distinct from the produc-
tion fleet, and direct a small but equal percentage of traffic
to both fleets. For the test to be effective, we recommend
sizing the fleet to be just large enough to accommodate the
traffic for the period of the test. We maintain historical
memory and CPU use for each instance in the fleet required
for the features to be fed to the FirePlace model. Our for-
mulation uses all the historical data available, but we found
that even 10 minutes of historical data is sufficient to train a
performant model in practice. While we do not use µVM
features in our model, one can create representative features
given historical use by the same function that creates a par-
ticular µVM. When µVM arrives for placement, the system
randomly picks K PMs from the fleet and uses FirePlace for
placement. The performance of the model is aggregated for
a fixed period of time. The performance of FirePlace can
be compared with baseline algorithms using aggregate CPU
and memory use of the A and B fleet.

8 RELATED WORK

VM packing has been studied extensively in literature (Bo-
broff et al., 2007; Xiao et al., 2012; Meng et al., 2010b).
A popular class of problems is VM migration (Bobroff
et al., 2007; Xiao et al., 2012; Feller et al., 2012; Lebre
et al., 2015). Here VMs are migrated periodically to re-
duce hot spots in the data center and exploit freed resources.
The VMs and the invokes associated have longer lifetime



FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation

compared to the µVMs we studied, and forecasting algo-
rithms such as exponentially weighted mean average, suf-
ficed to predict the workload well. In contrast, we consider
placement of µVMs when they are created, and do not
consider migration in our formulation. Our invokes are
short and bursty, making its resource use prediction hard.
Some works consider the dependencies that exist between
invokes (Grandl et al., 2016; Agarwal et al., 2012; Ferguson
et al., 2012; Meng et al., 2010b) using heuristics (Grandl
et al., 2016; 2014) and even RL recently (Mao et al., 2019).
We work in an orthogonal setting, where the invokes and
µVMs are independent from each other.

Our problem setting can be considered as a dynamic bin
packing problem (Coffman et al., 1983), where items are
packed into bins one at a time, their arrival order is un-
known and they depart at an unknown time. The the-
oretical properties of the problem has been studied ex-
tensively, and it has been shown that even myopic algo-
rithms like First Fit perform well compared to optimal pack-
ing (Gupta & Radovanovic, 2015; Chan et al., 2009; Stolyar
& Zhong, 2013). Xin et al. (Li et al., 2013) show that
multi-dimensional online packing is an NP-complete prob-
lem. They present a practical algorithm that avoids resource
fragmentation and outperforms First Fit. However, in these
works, the VM resource use is considered fixed and the
algorithms have full access to the state of all PMs. In our
use case, VM resource use changes over time. We need to
pack VMs such that their peak usages are not aligned, so
that the resource capacity of the PM is never exceeded.

Several works have considered packing of VMs such that
their usage is anti-correlated with each other and leads to
tight packing (Meng et al., 2010a; Chen et al., 2016; Kim
et al., 2013; Shaw et al., 2018; Chen et al., 2018). Kim et
al. (Kim et al., 2013) consider the covariance of the VM
use from historical data and use a Pearson correlation based
heuristic for placement. Meng et al. (Meng et al., 2010a)
use ARMA and kernel density estimation based forecasting
model to predict VM use. Chen et al. (Chen et al., 2016)
use a neural network model for forecasting. In a follow
up work (Chen et al., 2018), they improve their forecasting
using PCA with ARIMA models. The forecasting models
are used for placement using solutions like First Fit, Best
Fit or genetic algorithms. All of these consider time scales
of hours to days, making resource use pattern prediction fea-
sible. They also consider the VM migration setting, where
the horizon of forecasting is only one placement time step.
In contrast, our work considers online placement with no
migration, and hence we need to forecast the VM resource
for its lifetime. In our µVM dataset, the time scales of in-
voke execution are of the order of seconds, and the bursty
nature of invokes makes it a difficult forecasting problem.
Therefore, we take a hindsight imitation approach, which
circumvents the forecasting model and directly learns a

hedged placement policy.

The hindsight optimization algorithm was proposed by
Chong et al. (Chong et al., 2000). They used hindsight infor-
mation to learn a Q function in a tabular setting for a network
traffic control problem. Tamar et al. (Tamar et al., 2017)
proposed a similar algorithm where they learn a invoke
execution plan with model predictive control (MPC) (Ca-
macho & Alba, 2013) using hindsight data, available only
after decisions have been made. The learned plan is used
as to shape the cost function of the online MPC algorithm
that plans on a shorter horizon. Our work is related to, and
draws inspiration from these approaches, but we directly use
classification based imitation learning instead of MPC or Q
learning to learn from hindsight. Our work is orthogonal to
Hindsight Experience Replay (Andrychowicz et al., 2017)
and Hindsight Policy Gradients (Rauber et al., 2017), which
are designed for goal oriented problems.

9 CONCLUSIONS

We have demonstrated that we can exploit historical data to
learn to optimize µVM placement. The results presented
here are an initial proof of concept, and the algorithms need
to evaluated on a variety of datasets and tested for robust-
ness over longer periods of time in production settings. We
continue to evaluate how to seed RL models with the Fire-
Place model, since RL demonstrated the ability to perform
better than the Hindsight algorithm. It may also be possible
to improve on the results with better feature engineering and
machine learning models. Much of our current fleet cost can
be attributed to how many µVMs are present at a time, and
we can use similar machine learning approaches to identify
when to create and destroy µVMs to save on infrastructure
costs. The approaches presented here can be extended to
reduce the operational cost of other compute services such
as allocating PMs for autoscaling and many other managed
serverless services.
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Lebre, A., Pastor, J., and Südholt, M. Vmplaces: A generic
tool to investigate and compare vm placement algorithms.
In European Conference on Parallel Processing, pp. 317–
329. Springer, 2015.



FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation

Li, X., Qian, Z., Lu, S., and Wu, J. Energy efficient vir-
tual machine placement algorithm with balanced and im-
proved resource utilization in a data center. Mathematical
and Computer Modelling, 58(5-6):1222–1235, 2013.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. I., and Stoica, I.
Rllib: Abstractions for distributed reinforcement learning.
arXiv preprint arXiv:1712.09381, 2017.

Liaw, A., Wiener, M., et al. Classification and regression by
randomforest. R news, 2(3):18–22, 2002.

Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh,
B., Gazagnaire, T., Smith, S., Hand, S., and Crowcroft,
J. Unikernels: Library operating systems for the cloud.
ACM SIGARCH Computer Architecture News, 41(1):461–
472, 2013.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., and Alizadeh, M. Learning scheduling algorithms
for data processing clusters. In Proceedings of the ACM
Special Interest Group on Data Communication, pp. 270–
288. 2019.

Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and
Pendarakis, D. Efficient resource provisioning in compute
clouds via vm multiplexing. In Proceedings of the 7th
international conference on Autonomic computing, pp.
11–20, 2010a.

Meng, X., Pappas, V., and Zhang, L. Improving the scala-
bility of data center networks with traffic-aware virtual
machine placement. In 2010 Proceedings IEEE INFO-
COM, pp. 1–9. IEEE, 2010b.

Mitzenmacher, M. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. In Advances in neural information
processing systems, pp. 305–313, 1989.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331–434,
1990.

Rauber, P., Ummadisingu, A., Mutz, F., and Schmidhu-
ber, J. Hindsight policy gradients. arXiv preprint
arXiv:1711.06006, 2017.

Richa, A. W., Mitzenmacher, M., and Sitaraman, R. The
power of two random choices: A survey of techniques and
results. Combinatorial Optimization, 9:255–304, 2001.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shaw, R., Howley, E., and Barrett, E. A predictive anti-
correlated virtual machine placement algorithm for green
cloud computing. In 2018 IEEE/ACM 11th International
Conference on Utility and Cloud Computing (UCC), pp.
267–276. IEEE, 2018.

Shen, B., Sundaram, R., Russell, A., Aiyar, S., Gupta, K.,
Nagpal, A., Ramesh, A., and Shukla, H. High availability
for vm placement and a stochastic model for multiple
knapsack. In 2017 26th International Conference on
Computer Communication and Networks (ICCCN), pp.
1–9. IEEE, 2017.

Song, W., Xiao, Z., Chen, Q., and Luo, H. Adaptive resource
provisioning for the cloud using online bin packing. IEEE
Transactions on Computers, 63(11):2647–2660, 2013.

Stolyar, A. L. and Zhong, Y. A large-scale service sys-
tem with packing constraints: Minimizing the number
of occupied servers. ACM SIGMETRICS Performance
Evaluation Review, 41(1):41–52, 2013.

Suykens, J. A. and Vandewalle, J. Least squares support
vector machine classifiers. Neural processing letters, 9
(3):293–300, 1999.

Tamar, A., Thomas, G., Zhang, T., Levine, S., and Abbeel,
P. Learning from the hindsight plan—episodic mpc im-
provement. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 336–343. IEEE,
2017.

Wen, R., Torkkola, K., Narayanaswamy, B., and Madeka,
D. A multi-horizon quantile recurrent forecaster. arXiv
preprint arXiv:1711.11053, 2017.

Xiao, Z., Song, W., and Chen, Q. Dynamic resource allo-
cation using virtual machines for cloud computing envi-
ronment. IEEE transactions on parallel and distributed
systems, 24(6):1107–1117, 2012.



FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation

APPENDIX

A HYPERPARAMETERS

Below we provide the hyperparameters used for each ex-
periment. Note that no formal hyperparameter search was
conducted and the hyperaparameters were generally set to
default values found in the Ray RLlib (Liang et al., 2017)
and Scikit-learn (Pedregosa et al., 2011) libraries.

Table 1. Hyperparameters used for RL experiments. We used the
Proximal Policy Optimization algorithm (Schulman et al., 2017),
as implemented in Ray RLlib repository (Liang et al., 2017).

Hyperparameter Value
Gamma 0.995

KL coefficient 1.0
SGD iterations 5
Minibatch size 512
Train batch size 8192
Learning rate 0.00001
Hidden layers [256, 256]

Use GAE False

Table 2. Hyperparameters used for Hindsight Imitation Learning
experiments with Support Vector Machines. We used the imple-
mentation in the Scikit-Learn library (Pedregosa et al., 2011).

Hyperparameter Value
C 10

Cache size 200
Class weight None

Coef 0 0.0
Decision function shape ovr

Degree 3
Gamma Auto Deprecated
Kernel RBF

Max Iter -1
Probability False

Random State None
Shrinking True

tol 0.001

Table 3. Hyperparameters used for Hindsight Imitation Learning
experiments with Random Forests. We used the implementation in
the Scikit-Learn library (Pedregosa et al., 2011).

Hyperparameter Value
Bootstrap True

Class Weight None
Criterion gini

Max Depth None
Max Features auto

Max Leaf Nodes 0.None
Min Impurity Decrease 0.0005

Min Impurity Split None
Min Samples Leaf 1
Min Samples Split 2

Min Weight Fraction Leaf 0.0
Number of Estimators 50

Number of Jobs None
OOB Score False

Random State 1
Warm Start False


