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Abstract

Dialogue State Tracking (DST) requires precise extraction
of structured information from multi-domain conversations,
a task where Large Language Models (LLMs) struggle de-
spite their impressive general capabilities. We present GEM
(Graph-Enhanced Mixture-of-Experts), a novel framework
that combines language models and graph-structured dialogue
understanding with ReAct agent-based reasoning for superior
DST performance. Our approach dynamically routes between
specialized experts: a Graph Neural Network that captures
dialogue structure and turn-level dependencies, and a fine-
tuned T5-Small encoder-decoder for sequence modeling, co-
ordinated by an intelligent router. For complex value genera-
tion tasks, we integrate ReAct agents that perform structured
reasoning over dialogue context. On MultiWOZ 2.2, GEM
achieves 65.19% Joint Goal Accuracy, substantially out-
performing end-to-end LLM approaches (best: 38.43%) and
surpassing state-of-the-art (SOTA) methods including TOA-
TOD (63.79%), D3ST (58.70%), and Diable (56.48%). Our
graph-enhanced mixture-of-experts architecture with ReAct
integration demonstrates that combining structured dialogue
representation with dynamic expert routing and agent-based
reasoning provides a powerful paradigm for dialogue state
tracking, achieving superior accuracy while maintaining com-
putational efficiency through selective expert activation.

Introduction
Dialogue State Tracking (DST) constitutes a fundamental
component of task-oriented dialogue systems, responsible for
accurately monitoring user intentions and extracting struc-
tured information throughout conversational interactions. As
conversations progress across multiple turns and domains,
DST systems must maintain precise representations of user
goals, preferences, and constraints to enable appropriate sys-
tem responses. Despite significant advances in neural archi-
tectures (Wu et al. 2019; Bebensee and Lee 2023; Lesci
et al. 2023), achieving robust performance in complex multi-
domain scenarios remains challenging due to the inherent
difficulties in tracking evolving contextual information and
resolving ambiguities across conversation turns.
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Figure 1: Our proposed architecture for dialogue state track-
ing. The MoE dynamically routes inputs between T5 encoder-
decoder (Raffel et al. 2020) and GNN model via a learned
gating network. This hybrid approach effectively combines
the strengths of transformer-based language understanding
with graph-based relational reasoning for improved intent
detection, slot prediction, and value extraction in multi-turn
conversations.

The development of large language models (LLMs) has
significantly transformed natural language processing capa-
bilities, demonstrating unprecedented performance across di-
verse tasks (Mann et al. 2020; Bang et al. 2023). Particularly
noteworthy is their emergent reasoning ability, which enables
complex problem-solving through stepwise decomposition of
tasks (Wei et al. 2022; Huang and Chang 2022). The plan-and-
solve paradigm (Chen et al. 2025) has further enhanced this
capacity by prompting LLMs to generate explicit reasoning
steps, allowing them to address intricate challenges through
systematic deconstruction into manageable sub-tasks (Khot
et al. 2022). However, as these models grow increasingly
large and complex, they present substantial computational



challenges while still exhibiting fundamental limitations in
knowledge representation and reasoning reliability. Despite
their significant advancements, LLMs remain constrained by
knowledge limitations and susceptibility to hallucinations
during reasoning processes, leading to consequential errors
in critical applications (Hong et al. 2023; Wang et al. 2023).

Knowledge graphs (KGs) offer a promising direction for
addressing these limitations by providing structured factual
representations that can enhance dialogue understanding (Pan
et al. 2024). Existing integration approaches are typically
divided between semantic parsing methods that convert ques-
tions into logical queries (Lan and Jiang 2020; Ye et al. 2021)
and retrieval-augmented methods that enhance context with
relevant information (Jiang et al. 2022). More sophisticated
knowledge fusion techniques like retrieval-augmented gener-
ation (RAG)(Lewis et al. 2020) and knowledge graph prompt-
ing(Zhang et al. 2024) have emerged to address these limita-
tions. However, these approaches face persistent challenges:
semantic parsing often produces non-executable queries due
to syntactic constraints, while retrieval-based methods typ-
ically fail to fully utilize the rich structural information in-
herent in knowledge graphs (Mavromatis and Karypis 2024).
Furthermore, agent-based methods necessitate multiple inter-
action rounds, increasing computational overhead (Dehghan
et al. 2024).

Computational efficiency presents another critical consider-
ation for advanced dialogue systems. The Mixture-of-Experts
(MoE) approach (Xue et al. 2024) offers a promising solution
by activating only a subset of parameters or models at any
given time, allowing the total parameter count to grow with-
out proportional increases in computational requirements.
LLMs scaled using this approach have demonstrated impres-
sive performance across downstream tasks (Jiang et al. 2024),
yet their application to structured dialogue state tracking re-
mains underexplored.

This paper introduces a novel framework for DST that ad-
dresses these challenges through a Graph Enhanced Mixture-
of-Experts (GEM) architecture. Our approach dynamically
constructs and updates knowledge graphs through graph neu-
ral networks (GNNs), harnessing their representation learn-
ing capabilities to process complex structural information
while overcoming their inherent limitations in natural lan-
guage understanding. Different dialogue domains naturally
exhibit distinct processing requirements — some benefit from
structural reasoning while others require sequential linguistic
understanding — motivating our dynamic expert routing ap-
proach. The framework employs a routing mechanism that
dynamically allocates computational resources between a
finetuned T5 encoder-decoder model (Raffel et al. 2020) and
our proposed GNN-based method, activating only the most
appropriate expert for each specific dialogue segment. Un-
like conventional methods, our graph-based representation
system captures the intricate, evolving relationships between
dialogue states, user intents, and system responses through-
out conversation turns. We further enhance the architecture
through an agentic-based approach for value generation that
leverages structured reasoning via the ReAct framework, sig-
nificantly improving both the accuracy and interpretability of
slot-value extraction in challenging multi-domain conversa-

tional scenarios. Figure 1 illustrates our proposed method.
In this paper we make the following contributions:

1. A fine-tuned graph attention network architecture for ac-
curate intent detection and slot prediction that effectively
models complex interactional dynamics in multi-turn con-
versations,

2. A routing mechanism that dynamically selects between
finetuned T5 encoder-decoder and GNN expert models
based on query characteristics, optimizing the balance
between computational efficiency and prediction accuracy,

3. Extending the architecture by integration of a pre-trained
decoder-LLM for robust, slot-conditioned value extrac-
tion,

4. Extending the solution through an agentic-based approach
that leverages conversation history, content context, and
identified slots to perform reasoning-based value genera-
tion,

5. Obtaining the SOTA results on the challenging MultiWOZ
dataset, demonstrating the framework’s effectiveness in
complex dialogue systems.

Related work
DST is a critical component of task-oriented dialogue sys-
tems, requiring precise tracking of user intents and slot
values throughout conversations. Traditional approaches
have evolved from rule-based systems to neural network
architectures, with sequence-based models like TRADE
(Wu et al. 2019) and TripPy (Heck et al. 2020) establish-
ing strong baselines. More recent innovations include DS-
DST (Zhang et al. 2019), Seq2Seq-DU (Feng, Wang, and Li
2021), LUNA (Wang et al. 2022), SPACE-3 (He et al. 2022),
SPLAT (Bebensee and Lee 2023), Diable (Lesci et al. 2023),
D3ST (Zhao et al. 2022) and TOATOD (Bang, Lee, and
Koo 2023). While these models have advanced performance
boundaries, they continue to face limitations in modeling
complex interactional dynamics across multi-turn dialogues,
particularly in multi-domain scenarios where context flows
between distinct conversational topics.

LLMs have transformed the DST landscape, demonstrat-
ing impressive general language understanding capabilities
(Mann et al. 2020; Bang et al. 2023). However, they faces
challenges in extracting structured information and maintain-
ing consistency, leading to issues like hallucination (Hudeček
and Dusek 2023; Heck et al. 2023; Hong et al. 2023). Re-
cent prompt-based approaches like IC-DST (Hu et al. 2022),
SERI-DST (Lee and Lee 2024), InstructTODS (Chung et al.
2023), and FNCTOD (Li et al. 2024) leverage in-context
learning but still struggle to translate broad language under-
standing into precise, structured dialogue states—particularly
in multi-domain scenarios.

Knowledge representation frameworks offer promising so-
lutions (Pan et al. 2024), through either semantic parsing
(Lan and Jiang 2020; Ye et al. 2021) or retrieval-augmented
approaches (Lewis et al. 2020; Jiang et al. 2022), though each
approach has limitations. While more sophisticated knowl-
edge fusion techniques like RAG (Lewis et al. 2020) and KG
prompting (Zhang et al. 2024) have demonstrated improved
performance, they still face challenges with retrieval accuracy
and computational efficiency (Mavromatis and Karypis 2024;



Dehghan et al. 2024). GNNs (Gori, Monfardini, and Scarselli
2005; Veličković et al. 2017; Mavromatis and Karypis 2025;
Luo et al. 2025) show promise for modeling complex re-
lational structures, yet their application to dialogue under-
standing remains underdeveloped. Existing graph-based DST
methods (Chen et al. 2020) often rely on static, predefined
ontologies that cannot dynamic dialogue evolution.

Computational efficiency presents another significant chal-
lenge, particularly as models grow more complex to handle
sophisticated dialogue understanding tasks. MoE architec-
tures (Shazeer et al. 2017; Xue et al. 2024) have demonstrated
parameter efficiency in large-scale language models (Jiang
et al. 2024), though their application to DST remains unex-
plored. Similarly, agent-based approaches like ReAct (Yao
et al. 2023) have shown promise for enhancing reasoning
capabilities through explicit stepwise decomposition (Wei
et al. 2022; Khot et al. 2022), but require further investigation
for structured DST.

These limitations highlight the need for a hybrid architec-
ture that combines graph-based dialogue representation for
structural understanding, efficient computational allocation
through expert routing, and specialized value generation for
accurate knowledge extraction. Our work addresses these
challenges through the integration of GNN, MoE, and spe-
cialized state value generators within a unified dialogue state
tracking framework.

Method
We present a hybrid architecture that combines Graph Neural
Networks (GNNs) and sequence model for structural dia-
logue understanding, Mixture of Experts (MoE) for efficient
computation allocation, and state value generators for accu-
rate knowledge extraction.

Intents and Slots Detection
We use two approaches for intent and slot detection, (i) a
GNN that captures structural relationships across dialogue
turns, and (ii) a T5 encoder-decoder model that leverages se-
quential context for comprehensive language understanding.

Graph Neural Network Following the success of
GNNs(Gori, Monfardini, and Scarselli 2005) in process-
ing graph-structured data, we construct our dialogue un-
derstanding framework using the Graph Attention Network
(GAT)(Veličković et al. 2017; Brody, Alon, and Yahav 2021)
to effectively model the complex interactional dynamics pre-
sentation in multi-turn conversations. Our approach leverages
GAT’s attention mechanism specifically for joint slot filling
and intent detection tasks in dialogue understanding. In this
work, we represent dialogue as graph structure G = (V,E),
where nodes vi ∈ V contains the contextual embedding of
utterances, with special tokens [USER] and [ASSISTANT]
to distinguish speaker types. The edges E create directed
temporal connections between consecutive utterances, en-
abling information flow for both intent classification and slot
labeling tasks.

For both slot filling and intent detection, we compute node
representations through L layers of graph attention. At layer

l, the representation is updated as:

h
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j
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where | represents concatenation and a⃗ is a learnable attention
vector.

For both slot filling and intent detection tasks, we perform
utterance-level multi-label classification using the final node
representations. We employ K independent attention heads
and combine their outputs:

h
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 1

K

K∑
k=1

∑
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k h
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The multi-head attention mechanism helps the model at-
tend to different aspects of the dialogue context, which is
particularly beneficial for capturing the relationships between
slots and intents across multiple turns. This approach allows
our model to jointly learn slot and intent representations
while accounting for the dialogue history and conversational
dynamics.

T5 Encoder-Decoder Model While graph-based ap-
proaches excel at modeling structural relationships,
transformer-based sequence models have demonstrated ex-
ceptional capabilities in natural language understanding
tasks (Raffel et al. 2020). The T5 architecture models intent
detection and slot filling as a sequence-to-sequence genera-
tion task, where the input is the dialogue context and the out-
put is a structured representation of intents and slots. We fine-
tune the T5 model using a standard sequence-to-sequence
objective that maximizes the probability of generating the
correct structured output given the dialogue context.

State Value Generator
After slot and intent detection, we extract slot values using
two approaches that share a common dynamic few-shot ex-
ample selection mechanism.

Dynamic Few-Shot Example Selection To enable effec-
tive information retrieval for few-shot learning, we create
dense vector representations of dialogue contexts. Each
training example is encoded using Cohere’s embedding
model (AWS Documentation 2023), represented as zi =
Embed(fcombine(D

sys
i−1, D

useri, Si)), where fcombine constructs
a structured text representation combining the previous sys-
tem response, current user utterance, and identified slots. For
a given dialogue turn t, we retrieve the most relevant exam-
ples by computing semantic similarity:



Et = TopK(e ∈ E : cos(ze, zt) > τsim), (4)
where zt represents the embedding of the current turn and

τsim is a similarity threshold. These embeddings are indexed
in ChromaDB for efficient similarity-based retrieval. Each
retrieved example e ∈ Et includes its ground truth slot si,
value vj pairs Ve = {(sj , vj)}me

j=1, providing demonstration
instances for the subsequent value generation methods.

LLM-Based Generation We utilize pre-trained decoder-
only LLMs for slot value extraction through few-shot learn-
ing. For turn t, we construct input using dynamically retrieved
examples Et along with dialogue history and identified slots
to generate structured slot-value pairs:

xt = fconcat(δprefix, Et, δhistory, D0:t−1,

δcurrent, Dt, δslots, St), (5)

Vt = LLMθ(xt) = {(si, vi)}ki=1, (6)
where St are identified slots from the GNN module, δ· rep-
resent delimiter tokens, and the model generates structured
JSON responses with slot-value pairs.

ReAct Agent-Based Generation The ReAct agent utilizes
structured reasoning to extract slot values through explicit
analysis and reasoning steps in a single turn. Using the same
retrieved examples Et as the LLM approach, the agent per-
forms compositional reasoning functions:

Vt = Aϕ(Et, D0:t, St)

= (fanalysis ◦ freasoning ◦ fjson)(Et, D0:t, St), (7)

where fanalysis analyzes dialogue context with retrieved exam-
ples, freasoning provides explicit reasoning traces for identified
values, and fjson generates structured JSON outputs. This ap-
proach enhances interpretability while maintaining the same
extraction protocols as the LLM-based method.

Mixture of Experts
To speed up learning and improve generalization across dif-
ferent scenarios (Jacobs et al. 1991) proposed using several
different expert networks instead of a single model. Mixture
of expert models have been extensively studied since then,
consistently demonstrating both performance improvements
and cost reductions (Yao et al. 2009; Liu et al. 2024; Vats
et al. 2024). In this work we consider using gating strategy for
model selection. When designing an effective gating function,
two key criteria must be prioritized: (1) accurate discernment
of both input and expert characteristics to enable assignment
of similar data to the same expert, and (2) even distribution
of input data among experts to prevent model collapse and
ensure efficient utilization of all experts. Our routing archi-
tecture leverages domain-weighted voting strategy to direct
dialogue turns to the most appropriate expert model. The
system employs a BERT-based multi-label domain classifier
trained on conversational history to identify active domains
for each dialogue turn. The voting scheme for our proposed
method is presented in Algorithm 1, where in this algorithm
H represents the dialogue history, U is the current utterance,
AccGNN and AccT5 represent slot accuracies for respective
models.

Algorithm 1: Routing Mechanism

Require: H , U
Ensure: M ∈ (GNN,T5)

1: D ← DomainClassifier(H,U)
2: votesGNN ← 0, votesT5 ← 0
3: for each domain d ∈ D do
4: if AccGNN > AccT5 then
5: votesGNN ← votesGNN +1
6: else
7: votesT5← votesT5 +1
8: end if
9: end for

10: if votesGNN ≥ votesT5 then
11: return GNN
12: else
13: return T5
14: end if

Experiments
We evaluate our method for dialogue state tracking task
on the MultiWOZ 2.2 dataset. Detailed ablation studies
examining the impact of different GNN configurations,
embedding models, context window sizes and loss weighting
are provided in their respective sections. Latency analysis
across different model configurations is presented separately
as well.
Dataset: We conduct experiments on MultiWOZ
2.2 (Budzianowski et al. 2018), a multi-domain task-
oriented dialogue dataset containing 10,438 human-human
conversations across 7 domains (restaurant, hotel, attraction,
taxi, train, hospital, police). This dataset provides rich
annotations for intent detection and slot filling tasks, with
13 intent types and 25 slot types across approximately 13.7
average turns per dialogue. We specifically choose Multi-
WOZ 2.2 as it offers consistent annotation quality for intent
and slot labels throughout the corpus, while later versions
(2.3-2.4) primarily address co-reference annotations and test
set corrections that are orthogonal to our focus. The dataset’s
multi-turn nature (with dialogues extending up to 30+ turns)
makes it particularly suitable for evaluating contextual
understanding capabilities. Additionally, MultiWOZ 2.2
remains a widely-used version in the dialogue understanding
literature, enabling direct comparison with existing baselines
and SOTA methods.
Evaluation Metrics: We report Joint Goal Accuracy (JGA)
and Joint Turn Accuracy (JTA) for the slot-value generation.
For intent and slot classification we report turn-level
accuracy.

Experimental setup
Our experimental framework utilizes the multi-expert ar-
chitecture described in Section . For the GNN, we utilize
BERT-base (Devlin et al. 2019) to encode dialog histories
with speaker tokens, which then feeds into a three-layer
GATv2 network with three parallel MLP decoders to si-
multaneously predict intent, domain, and slot values, jointly
optimized using binary cross-entropy loss. We use QLoRA-



Model Configuration Intent Acc Slot Acc

T5 Small 86.69 73.76

GNN

BERTbase + GNNbase 86.84 71.07

BGE small + GNNbase 87.00 69.71

BERT base + GNNlarge 86.63 71.55

(BERT base + GNNlarge)opt 86.53 74.54

Table 1: Test set performance for intent classification and
slot identification across different model configurations. The
GNN rows show variations in embedding models (BERTbase,
BGEsmall), architecture (GNNbase, GNNlarge), and other
optimization approaches (opt) including residual connections,
BCE loss weighting and dialogue context window. Results
demonstrate the impact of different design choices on model
performance.

tuned T5-Small (Raffel et al. 2020) to transform concate-
nated dialog histories into structured domain-intent-slot com-
binations through sequence-to-sequence generation. For slot
value extraction, we applied two approaches: (1) a retrieval-
augmented generation (RAG) system and (2) a ReAct agent-
based for slot-value generation. For both we use Llama 3.1 8B
Instruct (Grattafiori et al. 2024) and Claude 3.7 Sonnet (AWS
Sonnet Documentation 2023) as the LLM model. All models
were trained on NVIDIA A10G GPU with 24GB memory, 8
vCPUs, 32GB RAM.

Results
We evaluate our proposed framework on the MultiWOZ 2.2
benchmark dataset, analyzing performance across multiple di-
mensions: intent and slot detection accuracy, value generation
quality with different LLM configurations, domain-specific
routing behavior, and overall dialogue state tracking perfor-
mance compared to SOTA baselines. All experiments were
conducted on the standard test split to ensure fair comparison
with existing methods.
Intent and Slot Detection: Table 1 provides a detailed anal-
ysis of our model’s performance on intent classification and
slot identification tasks across different architectural config-
urations. Our GNN architecture demonstrates strong perfor-
mance on both intent classification (86.53%) and slot identi-
fication (74.54%) when using the optimized configurations.
The finetuned T5-Small encoder-decoder model shows com-
parable intent and slot classification performance (86.69%
and 73.76% respectively). Ablation studies are provided in
Appendix.
Dialog State Tracking using LLM: We evaluate three LLM
configurations: zero-shot (no examples), few-shot (with in-
context examples), and ReAct (reasoning and acting frame-
work) across two LLM families. The results for this exper-
iment are illustrated in Table 2. The ReAct based method
dramatically improves Llama 3.1 8B performance, achiev-
ing 26.74% JGA improvement over zero-shot prompting and
representing the best end-to-end LLM results on the test set.

Domain-Aware Routing Mechanism: As was explained,
we introduce a routing architecture that leverages domain-
specific characteristics to direct dialogue turns to the most ap-

Model Type JGA JTA
Llama 3.1 8B Zero 10.33 80.65
Llama 3.1 8B Few 32.62 89.77
Llama 3.1 8B ReAct 37.07 93.36
Claude 3.7 S. Zero 32.50 90.82
Claude 3.7 S. Few 38.43 91.48
Claude 3.7 S. ReAct 37.09 91.48

Table 2: End-to-end LLM performance on MultiWOZ 2.2

Metric Attraction Hotel Restaurant Taxi Train
GNN

Routing %
91.31 10.01 14.18 12.73 93.48

T5
Routing %

8.69 89.99 85.82 87.27 6.52

Router
Accuracy

70.21 56.05 71.64 61.62 78.47

Table 3: MoE Performance by domain showing routing dis-
tribution and accuracy metrics for each expert model.

propriate expert model. Table 3 presents the domain-specific
routing performance across each domain. The results show
an interesting pattern where the router predominantly selects
GNN for attraction 91.31% and train 93.48% domains, while
favoring T5 for hotel 89.99%, restaurant 85.82%, and taxi
87.27% domains. This routing strategy reflects the inherent
structural differences between domains. Attraction and train
domains typically involve more complex entity relationships
and key components to extract, which benefits from GNN’s
graph-structured reasoning capabilities. These domains often
contain interconnected information about locations, sched-
ules, and facilities that can be effectively modeled as graphs.
Conversely, hotel, restaurant, and taxi domains tend to in-
volve more straightforward slot-value pairs where T5’s se-
quential processing excels.
Dialog State Tracking using MoE: Table 4 presents our pro-
posed methods against baselines on the MultiWOZ dataset.
We compare our approach with several SOTA baselines
including DS-DST, Seq2Seq-DU, and LUNA (all using
BERTbase with 110M parameters), SPACE-3 (UniLM with
∼340M parameters), SPLAT (using both Longformerbase
and Longformerlarge), Diable (T5v1.1base), D3ST (T5 vari-
ants), and TOATOD (T5small and T5base), which achieved
strong results on the MultiWOZ leaderboard. Among the
traditional baselines, TOATODbase achieved the highest per-
formance at 63.79% JGA with 220M parameters, while
D3STxxl achieved 58.70% JGA at the substantial cost of
11B parameters. In contrast, our single models (T5small and
GNN) achieve considerably higher performance with dramat-
ically lower parameter counts. The GNN-based models with
Llama 3.1 8B and Claude 3.7 Sonnet as value generators
achieve 62.66% and 64.34% JGA respectively, while main-
taining JTA scores above 97.6% with only 271M parameters.
Our T5small architecture achieves 63.39% JGA with Llama
3.1 8B and 64.66% JGA with Claude 3.7 Sonnet, both out-
performing the previous SOTA by significant margins while
using less than 1% of the parameters compared to D3STxxl

(70M vs 11B). These results demonstrate the effectiveness



Method Model(s) JGA JTA
DS-DST BERTbase 51.70 -

Seq2Seq-DU BERTbase 54.40 -
LUNA BERTbase 56.13 -

SPACE-3 UniLM 57.50 -
SPLAT Longformerbase 56.60 -

Longformerlarge 57.40 -
Diable T5v1.1base 56.48 -
D3ST T5base 56.10 -

T5large 54.20 -
T5xxl 58.70 -

TOATOD T5small 61.92 -
T5base 63.79 -

Single
Expert(ours)

BERTbase + GNN + Llama 3.1 8B 62.66 97.66
BERTbase + GNN + Claude 3.7 S. 64.34 97.74

T5small + Llama 3.1 8B 63.39 97.44
T5small + Claude 3.7 S. 64.66 97.50

GEM(ours)
(BERTbase + GNN) / T5small + Llama 3.1 8B 63.57 97.56
(BERTbase + GNN) / T5small + Claude 3.7 S. 65.19 97.65

Table 4: This table presents comparative results of our proposed GEM (Graph-
Enhanced Mixture) framework against existing SOTA dialogue state tracking
models. GEM achieves superior JGA of 65.19% by efficiently combining GNN
and T5 architectures with ReAct agent integration.

Val Test
Model Intent Slot Intent Slot
BERT 87.46 72.67 86.84 71.07
BGE-s 87.36 70.36 87.00 69.71
BGE-b 86.38 69.50 85.47 68.05
DistilUSE 82.68 51.71 81.99 52.17

Table 5: Embedding model comparison.

Val Test
α:β:γ Intent Slot Intent Slot
1:1:1 86.34 73.58 86.10 72.25
1:0.5:1 87.09 74.80 86.63 72.99
1:0.5:2 86.85 75.86 86.53 74.54
1:0.5:3 86.64 76.09 86.39 74.39
1:0.5:5 86.49 75.20 86.19 73.86

Table 6: Loss weighting schemes.

of our method and the agentic approach proposed in Sec-
tion . Our GEM framework combining GNN and T5 experts
with ReAct agent-based value generation further improves
performance across both LLM families, achieving 63.57%
JGA with Llama 3.1 8B and 65.19% JGA with Claude 3.7
Sonnet, demonstrating effective routing between complemen-
tary expert architectures through our domain-weighted voting
strategy described in Algorithm 1, which dynamically routes
dialogue turns based on conversational characteristics.

Analysis and Discussion
Our experimental results demonstrate that specialized ar-
chitectural components with dynamic routing mechanisms
significantly outperform pure LLM approaches for dialogue
state tracking, while maintaining computational efficiency
through selective expert activation.
Performance Analysis: As shown in Table 2, the MoE ap-
proach significantly outperforms end-to-end LLM methods,
achieving 65.19% JGA compared to 32.50% JGA for zero-
shot Claude (a 32.69 percentage point improvement). Our
domain-specific routing analysis reveals that GNN models ex-
cel in domains with complex relational structures (attractions
and train domains), while T5 performs better in domains with
straightforward slot-value extraction patterns (hotels, restau-
rants, and taxis). The choice of LLM for value generation
(Table 4) shows modest but consistent impact, with Claude
3.7 Sonnet achieving 1.62 percentage points higher JGA than
Llama 3.1 8B in the MoE configuration (65.19% vs 63.57%)
, though the ReAct framework provides the most substantial
gains for Llama 3.1 8B.
Computational Efficiency: Our MoE framework achieves
SOTA performance while maintaining computational effi-
ciency through selective expert activation, using either the
lightweight T5-Small (70M parameters) or GNN architecture

(271M parameters), dramatically fewer than previous ap-
proaches like D3ST-T5XXL (11B parameters). As presented
in Table 4, while Claude 3.7 Sonnet achieves marginally
better performance (65.19% vs. 63.57% JGA in MoE con-
figuration), Llama 3.1 8B offers significant advantages in
deployment latency and computational cost with only a 1.62
percentage point JGA trade-off, enabling practical deploy-
ment scenarios where cost-effective, low-latency inference is
prioritized.

Ablation Studies
To systematically evaluate and optimize the GNN compo-
nent of our architecture, we conducted comprehensive ab-
lation studies examining how different GNN configurations
contribute to slot detection performance. We focus on four
critical aspects: (1) embedding model selection, (2) GNN
architecture configuration, (3) dialogue context window size,
and (4) loss weighting strategies. All experiments use the
MultiWOZ 2.2 dataset with consistent evaluation protocols
to ensure optimal GNN performance before integration into
our broader MoE framework.

Impact of Embedding Models: We investigated different
pre-trained language models for utterance encoding, as shown
in Table 5. BERT-base consistently outperforms other mod-
els, particularly for slot accuracy. While BGE-small (Xiao
et al. 2024) shows comparable intent detection, it underper-
forms on slot accuracy. DistilUSE-multilingual (Reimers and
Gurevych 2019) performs significantly worse on both met-
rics. These results suggest BERT-base’s representations better
capture the semantic information required for DST.

GNN Architecture Configuration: We investigated how
different GNN configurations affect performance using our
BERT-base embedding approach with full dialogue context.



Validation Test
Configuration Intent Slot Intent Slot
Small (1L, 4H, 128d) 86.76 70.98 86.67 69.38
Baseline (2L, 8H, 256d) 87.46 72.67 86.84 71.07
Large (3L, 12H, 512d) 87.67 73.11 86.63 71.55
XLarge (4L, 16H, 768d) 87.51 72.29 86.54 70.67
Small (1L, 4H, 128d) r. 87.50 71.71 86.75 69.70
Baseline (2L, 8H, 256d) r. 87.52 73.38 87.03 71.28
Large (3L, 12H, 512d) r. 86.66 73.88 86.75 72.15
XLarge (4L, 16H, 768d) r. 87.33 75.29 86.63 73.33

Table 7: Performance comparison of different GNN configu-
rations. ’r.’ denotes with residual connections.

Validation Test
Context Window Intent Slot Intent Slot
0 (current turn only) 76.93 50.38 75.61 50.08
1 turn 84.50 64.70 83.79 63.85
2 turns 85.77 70.27 84.93 69.18
3 turns 86.13 71.79 85.09 70.43
5 turns 86.15 73.73 85.53 71.76
10 turns 86.34 73.58 86.10 72.25
Full history 86.66 73.88 86.75 72.15

Table 8: Performance comparison of different context window
sizes.

We denote configurations as (Layers, Heads, Dimension).
In configurations with residual connections (denoted as ’w.
residual’), each GAT layer’s input is added to its output, facil-
itating gradient flow and preserving information from earlier
layers in deeper architectures. Table 7 presents results for
three configurations of increasing complexity. The results
suggest that intent detection benefits from the more com-
pact Baseline configuration, while slot prediction accuracy
increase as model size increasing. For our following exper-
iments, we adopted the Large configuration that balances
parameter efficiency and model performance, prioritizing
slot prediction accuracy which has greater impact on the
overall JGA.

Context Window Size: Using BERT-base encodings and
GNN-Large configuration, we systematically varied the dia-
logue context window size to quantify its impact on perfor-
mance. The empirical results shown in Table 8 demonstrate
the critical importance of dialogue context for accurate state
tracking. The most substantial improvements occur within
the first two turns. This dramatic improvement confirms that
DST fundamentally requires cross-turn reasoning.

Loss Weighting Strategies: We investigated different
weighting schemes for the multi-task learning objective, us-
ing a normalized weighted sum formulation:

Ltotal =
α× Lintent + β × Ldomain + γ × Lslot

α+ β + γ
, (8)

where α, β, and γ represent the weights for intent detection,
domain classification, and slot detection tasks respectively.
Table 6 shows performance across different configurations
where performance peaks with configuration (1:0.5:2) which
achieves 74.54% slot accuracy on the test set. This confirms
our hypothesis that slot prediction represents a more chal-
lenging task requiring additional optimization emphasis.

Model Params Latency (ms)
BERTbase + GNN 271M 5
T5small 70M 21
GEM 341M 12

Table 9: Comparison of latency per turn for slot extraction
models.

ReAct Agent LLM Latency (ms)
Llama 3.1 8B 2050
Claude 3.7 Sonnet 3950

Table 10: Comparison of latency per turn for LLM-based
value extraction. Llama 3.1 8B measurements on 4x NVIDIA
L40S, Claude 3.7 Sonnet via Amazon Bedrock API

Latency Analysis
We analyze the computational efficiency of our proposed
models by measuring inference latencies across different
components of our system, as shown in Tables 9 and 10.
For slot extraction efficiency, our individual expert models
demonstrate highly optimized performance with BERTbase +
GNN achieving 5ms per turn with 271M parameters, while
T5small provides 21ms per turn with only 70M parameters,
representing different points on the efficiency-capacity trade-
off curve for slot extraction tasks. Our GEM method suc-
cessfully combines both expert architectures through an opti-
mized gating mechanism, achieving a balanced 12ms per turn
latency with 341M total parameters, demonstrating that the
mixture approach provides a practical middle ground between
the speed of BERT-based processing and the generative ca-
pabilities of T5 while maintaining deployment feasibility for
real-time dialogue systems. Regarding LLM value generation
trade-offs, we observe substantial differences in inference
performance where Llama 3.1 8B deployed on 4x NVIDIA
L40S GPUs achieves 2050ms per turn compared to Claude
3.7 Sonnet’s 3950ms per turn, representing a 48% latency
reduction that makes Llama 3.1 8B particularly attractive for
latency-sensitive applications where the modest 1.62 percent-
age point decrease in Joint Goal Accuracy is an acceptable
trade-off for nearly doubling the inference speed.

Conclusion and Future Work
In this work, we present GEM, a novel Mixture-of-Experts
framework for Dialogue State Tracking that addresses the
fundamental limitations of end-to-end LLM approaches in
structured information extraction. By dynamically routing
between a Graph Neural Network that captures dialogue
structure and a T5 encoder-decoder for sequence modeling,
followed by slot-value extraction using an LLM-based ReAct
approach, our method achieves 65.19% Joint Goal Accu-
racy on MultiWOZ 2.2, outperforming SOTA methods like
TOATOD (63.79%). Our analysis reveals that specialized ar-
chitectures excel at capturing dialogue dynamics that general-
purpose LLMs struggle with, particularly in multi-domain
conversations requiring precise slot-value tracking.

Future work will extend the framework to cross-dataset
evaluation, explore modeling the MoE router using additional
dimensions such as dialogue text and chains of domains /



intents / slots from previous turns, and investigate knowl-
edge distillation into smaller unified models for resource-
constrained deployment. These directions advance more effi-
cient and deployable dialogue understanding systems.
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