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Abstract

Language identification is a crucial first step in multilingual
systems such as chatbots and virtual assistants, enabling lin-
guistically and culturally accurate user experiences. Errors
at this stage can cascade into downstream failures, setting a
high bar for accuracy. Yet, existing language identification
tools struggle with key cases–such as music requests where
the song title and user language differ. Open-source tools like
LangDetect, FastText are fast but less accurate, while large
language models, though effective, are often too costly for
low-latency or low-resource settings. We introduce PolyLin-
gua, a lightweight Transformer-based model for in-domain
language detection and fine-grained language classification.
It employs a two-level contrastive learning framework com-
bining instance-level separation and class-level alignment
with adaptive margins, yielding compact and well-separated
embeddings even for closely related languages. Evaluated
on two challenging datasets—Amazon Massive (multilingual
digital assistant utterances) and a Song dataset (music re-
quests with frequent code-switching)—PolyLingua achieves
99.25% F1 and 98.15% F1, respectively, surpassing Sonnet
3.5 while using 10× fewer parameters, making it ideal for
compute- and latency-constrained environments.

Introduction
Identifying a customer’s language quickly and accurately
is critical for delivering a more personal and culturally re-
spectful experience (Wu et al. 2025; Tedeschi et al. 2021).
This need is especially acute in tools such as virtual as-
sistants, chatbots, and customer-service centers that interact
with speakers of many languages. Detecting the language at
the earliest point in the interaction enables a personalized ex-
perience by routing the user to the most appropriate content
or support channel exactly when it is needed, thereby reduc-
ing friction, increasing satisfaction, and improving overall
engagement and conversion rates (Jauhiainen et al. 2019b).
Moreover, early language detection allows downstream lan-
guage models to be prompted in the user’s language and cul-
tural context, making the generated responses more helpful
and respectful (Deroy and Maity 2024).
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Commercial APIs and rule-based approaches (Nakatani
2010) are widely used for language detection because of
their speed and simplicity. However, they frequently strug-
gle with short utterances or when the text contains names or
entities from another language (Joulin et al. 2017). At the
same time, more precise approaches rely on large, highly
resource-intensive models that are not ideal for systems
with limited memory or latency. Despite its importance,
language detection is frequently overlooked when devel-
oping better model architectures (Jauhiainen et al. 2019a).
Although large language models (LLMs) often achieve
higher accuracy, they are computationally more expensive.
In contrast, encoder-only models are especially well-suited
for task-specific problems such as sentiment analysis and
named-entity recognition (Zaratiana et al. 2024), as demon-
strated by recent work on ModernBERT (Warner et al.
2025).

In this paper, we frame the problem as multi-class classi-
fication because out-of-domain (OOD) languages can mis-
leadingly resemble supported languages and be classified
with high confidence. Therefore, we introduce POLYLIN-
GUA, a lightweight yet effective multi-task model for lan-
guage identification (Aghajanyan et al. 2021; Aribandi et al.
2022; Liu et al. 2021). PolyLingua performs two tasks si-
multaneously: (1) in-domain detection to determine whether
a given utterance falls under a set of supported languages,
serving as a quick gating mechanism to route the request,
and (2) fine-grained language classification within those
supported languages to enable precise customized experi-
ences. Both tasks are trained end-to-end with a shared en-
coder, allowing the model to efficiently learn common rep-
resentations while supporting task-specific objectives. This
shared architecture leverages the complementary informa-
tion between the two tasks to enhance generalization, while
reducing the number of parameters and minimize computa-
tional overhead.

PolyLingua employs a two-level contrastive learning
strategy (Wu et al. 2018; Wang, Liu, and Yu 2021). At the in-
stance level, it utilizes a margin-based supervised contrastive
loss for separating embeddings from confusable language
pairs. At the class level, the model introduces a class-aware,
margin-based separation loss that encourages each utterance
to stay close to the mean embedding of its own language
class while maintaining a minimum margin from those of



other classes, particularly for analogous or confusable lan-
guage pairs. This dual contrastive signal helps the model
in forming tight, well-separated clusters in the embedding
space, increasing both accuracy and generalization (Chen
et al. 2020).

Finally, we conduct thorough assessments of PolyLin-
gua against a variety of baselines, such as commercial
APIs, rule-based tools, open-source multilingual models,
and LLMs (Anthropic 2023) employed for language detec-
tion. Our experiments show that PolyLingua matches the
performance of LLMs while using far fewer computational
resources, making it a practical choice for real-world appli-
cations that need both accuracy and low latency. In sum-
mary, our contributions are:

• We propose PolyLingua, a lightweight, end-to-end multi-
task model that leverages a shared encoder to jointly per-
form in-domain detection and fine-grained language clas-
sification, avoiding the risk of confidently misclassifying
OOD utterances as supported languages.

• We create a two-level contrastive training objective by
combining instance-level supervision with a novel class-
level separation loss that improves robustness to ambigu-
ous languages.

• We present a comprehensive empirical evaluation of dif-
ferent methods using a variety of datasets. Results show
that PolyLingua delivers high performance at a low com-
putational cost.

Related Works
Recent research on multi-task learning has shown that it
is capable of significantly improving sample efficiency and
generalizing in low-resource and multilingual settings (Sanh
et al. 2022; Aribandi et al. 2022). In parallel, contrastive
learning has become a popular framework for training mod-
els with more structured and discriminative embeddings.
Beyond SimCLR (Chen et al. 2020), efforts like SupCon
(Khosla et al. 2020)and SPCL (Wang et al. 2022) intro-
duce supervised contrastive mechanisms that improve per-
formance, robustness, and generalization.

As multilingual user bases expand, services such as vir-
tual assistants, chatbots, and support platforms should accu-
rately detect a user’s language to deliver personalized and
culturally appropriate responses. Large models are some-
times too heavy or expensive for real-time use, and many
commercial or rule-based solutions lack robustness. There
are several approaches in the literature for language identi-
fication. For example, FastText (Joulin et al. 2017), langde-
tect (Nakatani 2010), and XLM-RoBERTa (Conneau et al.
2020a) are popular options. However, these methods often
perform poorly on short or less structured text containing
code-switching languages. While prompt-based LLMs of-
fer higher accuracy (Touvron et al. 2023; Anthropic 2023),
their computational overhead limits deployment in latency-
sensitive or resource-constrained environments (Wan et al.
2023; Bai et al. 2024). In this paper, we propose PolyLin-
gua, a model that balances speed and performance for effi-
cient and real-world uses.

Methodology
Let assume the training dataset consist of utterance and la-
bel tuples {(ui, yi)}Ni=1, where ui is the input utterance,
yi ∈ Y is the language label (e.g., English, Spanish, etc.),
and di ∈ {0, 1} is a binary label indicating whether the ut-
terance belongs to a supported in-domain language di = 1
(in-domain) or di = 0 (out-of-domain). Note that di can be
directly inferred from yi, as the set of in-domain languages
Yin ⊂ Y is known. Leveraging this, we include di during
training to enable effective multitask supervision. Below, we
propose PolyLingua, a multi-task learning framework that
learns more robust and separable representations to enhance
language identification task.

Architecture
Contrastive learning is an approach that brings samples in
the same class closer and pushes ones across classes fur-
ther in the embedding space (Khosla et al. 2020) (see 1 for
the objective). Leveraging this, we propose PolyLingua, a
model based on two-level supervised contrastive objectives
with adjustable inter-class margins, which improves perfor-
mance on both in-domain detection and fine-grained lan-
guage identification. The model is built based on a shared
transformer encoder that converts the input utterance ui into
a representation. Based on this, we incorporate three compo-
nents in this encoder: (1) an in-domain detection head that
performs binary classification over di; (2) a language iden-
tification head that classifies among the in-domain language
classes yi ∈ Yin; and (3) a projection head that converts the
encoder outputs into a L2-normalized embedding space (see
Figure 1). This projection is used to calculate a contrastive
loss that pushes utterances from different classes away while
encouraging utterances with the same language label to be
near together in the embedding space.

Training Objectives
PolyLingua employs a two-level supervised contrastive loss
at the instance level. The loss for the projected embeddings
{zi} pushes apart different-label tuples with class-awareness
that promoting proximity between same-label pairs.

Linstance =
∑
i∈I

1

|P (i)|
∑

p∈P (i)

− log

(
exp(z⊤i zp/τ)∑

a∈A(i) exp(z
⊤
i za/τ)

)
,

(1)

where τ > 0 is the temperature, I represents the set of all
anchor instances, and P (i) represents the set of indices cor-
responding to positive utterances for instance i, encouraging
proximity between pairs with the same label. A(i) stands for
the set of all candidate samples used in the batch except i.

In addition to instance-level contrastive learning, we en-
force separation at the class level by encouraging each em-
bedding zi to be close to the mean embedding of its class
and far from those of other classes. Let cy denote the cen-
troid (mean embedding) of class y, computed as:

cy =
1

|Ay|
∑
i∈Ay

zi, (2)



where Ay = {i ∈ I : yi = y} is the set of samples be-
longing to class y in the batch. We then define a class-level
contrastive loss:

Lclass =
∑
i∈I

− log

(
exp(z⊤i cyi/τ)∑

y∈Yin
exp(z⊤i cy/τ − δyi,y)

)
, (3)

where δyi,y ≥ 0 is an adaptive margin penalty between
classes yi and y.

Adaptive margins for linguistically similar classes: A
key contribution of our approach is the introduction of class-
pair-specific adaptive margins that reflect linguistic simi-
larity between languages. Linguistically similar languages
(e.g., Portuguese and Spanish, which share substantial vo-
cabulary and grammatical structures, or French and Spanish
with considerable lexical overlap) are more prone to confu-
sion. To enforce stronger separation between such confusing
pairs, we assign larger margins:

δyi,y =


0 if yi = y

δhigh if yi ̸= y and (yi, y) ∈ Pconfusing

δlow otherwise
(4)

where δhigh > δlow ≥ 0, Pconfusing is the set of confusing
language pairs identified based on linguistic family relation-
ships and empirical confusion patterns. The margin penalty
δyi,y reduces the similarity score for negative class centroids
in the denominator of Equation 3, making exp(z⊤i cy/τ −
δyi,y) smaller for negative classes. This effectively decreases
their contribution to the denominator, making it harder for
the model to assign high probabilities to incorrect classes,
particularly those linguistically similar to the true class. Dur-
ing training, this mechanism pushes each embedding closer
to its class centroid while enforcing larger separations from
confusing classes, resulting in well-separated and discrimi-
native language clusters in the embedding space.

Combined objective: The final training objective com-
bines both contrastive losses with the standard cross-entropy
losses for in-domain detection and language identification:

L = λ1Lindomain + λ2Llangid + λ3(Linstance + Lclass), (5)

where Lindomain and Llangid are cross-entropy losses for the
domain detection and language identification heads respec-
tively, and λ1, λ2 are weighting hyperparameters that bal-
ance the contribution of each loss component.

Positive pairs: To generate positive pairs for contrastive
learning, we utilized data augmentation techniques that
maintain the original semantics. An original utterance and its
augmented variant produced using the following techniques
make up each positive pair:

• Random Deletion: Randomly removing tokens (with
probability of p = 0.15).

• Adding Noise: Injects character-level perturbations typ-
ing errors and noisy user inputs or ASR transcriptions.
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Está lloviendo ahora.

It’s raining now
It’s raining outside today

Figure 1: Given ui and a positive up from the same class, and
a negative un from a different language, PolyLingua aligns
ui with up while pushing it away from un, using a shared
encoder and class-aware margin-based contrastive losses.

• Dynamic Entity Replacement: Using a multilingual
named entity recognition model (Tedeschi et al. 2021)
to locate entities in the utterance with high confidence.
Then in each epoch, we replaced another randomly cho-
sen entity of the same type. This increases cross-lingual
diversity while preserving semantic consistency.

Further information on data augmentation and hyperparam-
eter tuning is provided in Appendix A.

Experiments
Model Setup
We train our model in a multitask setup consisting of two
classification objectives. We use a single backbone with two
classification heads for each objective. As a result, sharing
a common base model for both tasks simplifies deployment
and lowers latency during inference. Additionally, we used
a projection head with a margin-based, class-aware loss to
help the model group examples from the same language
together and push apart different ones. This made it eas-
ier to tell apart similar languages like Portuguese, Spanish,
and French. For experiments, we employed the multilingual
MiniLM encoder (Gu et al. 2023) due to its efficiency and
robust performance across a wide range of languages. The
encoder processes each utterance and produces the embed-
dings. Lastly, the model is trained end-to-end using the joint
objective presented in 5.

Datasets
Amazon Massive We use the Amazon Massive dataset,
which covers 52 languages on natural language understand-
ing (NLU) tasks. In our experiments, we only focus on the
utterances and their language labels to build a dataset for
both in-domain detection and language classification. For
this, we pick 10 in-domain target languages for classifica-
tion: English, Spanish, French, Arabic, Hindi, Dutch, Ger-
man, Italian, Portuguese, and Japanese, which are the key
languages for our international businesses. Therefore, ut-
terances from the remaining languages are considered out-
of-domain (OOD) and are used for the in-domain detection
task. To preserve class balance as the original dataset, we
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XLM-LID

(a) XLM-LID on Amazon Massive

Baseline+SupCon

(b) Baseline+SupCon on Amazon Massive

PloyLingua

(c) PolyLingua on Amazon Massive
XLM-LID

(d) XLM-LID on Song Dataset

Baseline+SupCon
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PolyLingua

(f) PolyLingua on Song Dataset

Figure 2: UMAP projections of utterance embeddings from Amazon Massive (top row) and the Song dataset (bottom row).
Each point represents an utterance and is colored by its true language label. On Amazon Massive, PolyLingua forms more
compact and well-separated clusters than XLM-LID and Baseline+SupCon, especially for similar languages such as French,
Portuguese, and Spanish, due to its margin-based inter-class separation. On the Song dataset, which includes noisy utterances
with diverse and multilingual artist and song entities, PolyLingua again shows clearer clustering, demonstrating robustness to
intra-class variation and entity-induced noise.

subsample the out-of-domain utterances such that the out-
domain examples constitute 40% of the total training set
size. Additionally, we follow the same approach to create
the test set from the Amazon Massive test split. More in-
formation about the dataset has been provided in Appendix
C.

Synthetic Dataset To test our model’s ability to handle
real and less structured inputs, we also constructed a diffi-
cult synthetic dataset containing a lot of entities that mim-
ics real-world conversations, such as music requests with
artist and song names. For each in-domain language, we
created 50 different diverse templates with placeholders like
[SONG NAME] and [ARTIST NAME]. Eventually, we filled
these placeholders with actual names from the Million Song
Dataset (Bertin-Mahieux et al. 2011). As a result, the result-
ing dataset covers a broad range of entities; spanning several
languages, genres, and scripts (such as non-standard capital-
ization and accented characters). This made the utterances
complex and often ambiguous. Moreover, these templates
reflect informal grammar, code-switching, and incomplete
structures common in real-world utterances. We eventually
created 10,000 of these utterances per language that many

language identification techniques currently in use find chal-
lenging to tag. See Appendix C for more information.

Base Models
We tested our proposed model against a variety of language
detection methods and baselines: (1) Baseline: A multi-task
model trained with just cross-entropy (CE) loss for abla-
tion analysis, using the same architecture as our proposed
method; (2) Baseline+SupCon: A multi-task model trained
with the same architecture, using cross-entropy loss for both
tasks along with a supervised contrastive loss (Conneau
et al. 2020b), allowing us to evaluate the contribution of the
proposed loss functions; (3) FastText (LID.176.bin): An ef-
ficient, open-source language identifier trained on Wikipedia
text (Joulin et al. 2017); (4) Langdetect: A lightweight,
rule-based language detection tool (Nakatani 2010); (5)
XLM-LID: A multilingual transformer model fine-tuned for
language identification, available at papluca/xlm-roberta-
base-language-detection; and (6) Sonnet 3.5 (via Amazon
Bedrock): A powerful large language model prompted with
a carefully crafted instruction for language detection. See
Appendix B for additional details about the prompt.



Table 1: Comparison of models performance on the Amazon Massive and Song datasets. Metrics reported: In-domain Accuracy
(InAcc), Precision (Prec), Recall, Top-1 Accuracy (Top-1), Top-5 Accuracy (Top-5), and F1 Score, all in percentage (%).

Model Amazon Massive Song Dataset
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Langdetect 95.08 79.17 79.29 79.29 – 78.60 90.25 71.33 40.13 40.13 – 41.18
FastText 97.74 94.56 92.95 92.95 – 93.20 95.44 89.60 79.44 79.44 – 81.53
XLM-LID 82.59 97.43 96.02 96.02 98.64 96.65 91.45 87.02 82.18 82.18 90.06 81.73
Baseline 99.58 99.20 99.20 99.20 99.52 99.20 96.24 95.41 91.83 91.83 98.84 93.47
Baseline+SupCon 99.27 99.24 99.23 99.23 99.47 99.23 97.82 95.79 93.15 93.15 96.60 94.31
Sonnet 3.5. 99.67 97.90 97.77 97.77 – 97.79 98.95 96.07 95.03 95.03 – 95.52
PolyLingua 99.51 99.25 99.25 99.25 99.49 99.25 99.71 98.29 98.06 98.06 99.73 98.15

These baselines include a wide variety of simple rule-
based tools, open-source models, commercial APIs, and
large language models, enabling us to compare our approach
from different angles.

Results
The results in Table 1 compare multiple language iden-
tification models evaluated on the two datasets. Conven-
tional tools such as Langdetect and FastText show rea-
sonable performance, with FastText outperforming Langde-
tect notably in both precision and recall on the Amazon
dataset. XLM-LID shows high recall but has significantly
lower in-domain accuracy (82.59%). Our two ablation mod-
els—Baseline and Baseline+SupCon—show consistent im-
provement over open-source and commercial tools, with
top-5 accuracy exceeding 99% in both variants, suggesting
that supervised contrastive learning contributes positively to
model robustness. For additional comparative examples of
PolyLingua versus Sonnet 3.5, see Table 5 in the Appendix
C.

Our proposed model, PolyLingua, achieves the best over-
all performance across both datasets. On Amazon Massive,
it has a top-1 accuracy of 99.25% and the highest F1 score of
99.25%. More importantly, the improvements are even more
prominent on the more challenging Song Dataset. Addition-
ally, Polylingua surpasses all baselines with an F1 score
of 98.15%, indicating strong generalization across unseen
and noisier utterances. Compared to Sonnet 3.5, for which
we constructed a strong tailored prompt (see Appendix C),
PolyLingua delivers higher accuracy and recall, particularly
in top-5 metrics (99.73% vs. 96.60%). Overall, these find-
ings show that PolyLingua performs better than LLM, com-
mercial APIs, and supervised baseline. This highlights the
efficacy of our end-to-end training. Also, we report on aver-
age latency per single inference in Table 2, with full bench-
marking details provided in Appendix A.

In Figure 3, left plot displays the confusion matrix for
PolyLingua, indicating high true positive rates and low con-
fusion. On the other side, the center and right plots visu-
alize the differential impact of PolyLingua over the Base-
line+SupCon and Baseline models, respectively. Blue on
diagonal cells show gains in true positives, while red off-
diagonal cells show reduced misclassification. These results

Table 2: Average latency per inference call for different
models.

Model Latency (ms)

Langdetect 8.53
FastText 0.01
XLM-LID 7.29
Sonnet 3.5 1373.31
PolyLingua 7.19

demonstrate that our two-level margin-based contrastive loss
significantly enhances language separation and reduces con-
fusion, especially among closely related languages such as
Spanish, Portuguese, French and English. Arrows in the cap-
tion highlight improvements.

Table 3: Performance comparison on Amazon Massive
dataset.

Method T-1↑ T-5↑ Inter↑ Intra↓ Ratio↑

Baseline+SupCon 93.98 95.02 0.042 0.042 9.72
XLM-LID 84.64 88.91 0.242 0.978 4.04
PolyLingua 97.69 98.43 1.096 0.037 29.79

Figure 2 presents 2D UMAP projections of model embed-
dings on the Amazon Massive and Song datasets for visual-
ization. In both cases, each maker is an utterance colored by
its language. We can see how well each model groups same-
language utterances and separates different languages. Our
model, PolyLingua, gives tighter and more separated clus-
ters compared to XLM-LID and Baseline+SupCon. Indeed,
it clearly separates confusing language pairs like French,
Portuguese, and Spanish. On the Song dataset, which in-
cludes artist and song names with added noise, PolyLingua
still forms clean language groups. This shows it can focus
on language signals even when the input is noisy.

To further assess how well different approaches distin-
guish between similar and dissimilar utterances, we quantify
the results in Figure 4. The cosine similarity for both posi-
tive and negative pairings can be seen in the top histograms.
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Figure 3: Left: Confusion matrix for the proposed PolyLingua model on 10 in-domain languages, demonstrating low mis-
classification. Center: Difference in the normalized confusion matrices between PolyLingua and the Baseline+SupCon model.
Right: Difference between PolyLingua and the standard Baseline. Blue cells on the diagonal indicate improvements in true
positive rates by PolyLingua, while red cells off the diagonal represent reductions in misclassification and confusion. Arrow

pointer indicates the improvement in the performance in the Difference confusion matrix .
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Figure 4: Comparison of cosine similarity distributions between PolyLingua and baseline models on the Amazon Massive
dataset. (a) and (b) show positive and negative pair distributions for PolyLingua against XLM-LID and Baseline+SupCon,
respectively. (c) shows difference histograms, indicating better class separation in PolyLingua.

Positive samples for PolyLingua are located closer together,
while negative samples are broadly spaced compared to
both Baseline+SupCon and XLM-LID. More importantly,
the difference between the positive and negative pair similar-
ities is displayed in the bottom plots. It is worth mentioning
that better separation is indicated by a larger difference. Us-
ing this, the biggest difference is seen by PolyLingua, which
demonstrates superior class boundary learning.

These findings demonstrate that PolyLingua creates clus-
ters that are more robust and distinct than the baselines.
Also, different approaches of assessing model performance
are shown in Table 3, which uses a k-NN classifier on the
learned embeddings to measure classification accuracy. This
approach evaluates the capability of presented models to ef-
fectively capture representations without the need for a sep-
arate classifier head. With higher Top-1 and Top-5 accuracy,
larger inter-class distance, and lower intra-class variation,
PolyLingua performs better than Baseline and XLM-LID on
all measures. Its high inter-to-intra ratio provides more evi-
dence of its capacity to create small, distinct language clus-

ters.

Conclusion
We introduced PolyLingua, a lightweight multi-task model
for language identification that performs in-domain detec-
tion and fine-grained classification simultaneously. PolyLin-
gua achieves outstanding accuracy and computational effi-
ciency by utilizing a shared encoder and a two-level con-
trastive learning strategy. As part of this, we propose a
novel two-level margin-based contrastive loss function that
brings embeddings of the same class closer and explicitly
enforces separation between different classes by introduc-
ing adjustable inter-class margins at the class level. By do-
ing this, it promotes compact clusters and improves the
model’s performance to distinguish between closely related
languages.
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Appendix A: Implementation Details
Parameters

We fine-tune a lightweight multilingual transformer,
MiniLM-L12-H384, in a multi-task learning setup that per-
forms binary in-domain detection as well as multi-class lan-
guage identification. Notably, the suggested technique is
model-agnostic and can be used with any other pretrained
encoder. Please see Table 4 for more details. Hyperparame-
ters, including λ1, λ2, · · · , δhigh and others, were optimized
using random search.

Latency Evaluation Setup

To evaluate inference efficiency, we measured the aver-
age latency for each model over 200 independent single-
inference runs. For transformer-based models like XLM-
LID and PolyLingua, the measurements were conducted on
an A10 GPU. For Sonnet 3.5, latency was calculated using
Amazon Bedrock API calls made from an EC2 instance. For
lightweight baselines such as FastText and Langdetect, la-
tency was computed by their python package directly on the
same EC2 instance. All measurements reflect end-to-end la-
tency per input utterance.

Augmentation

Appendix B: Prompt for Sonnet 3.5
We employ the following prompt to assess the language
identification capabilities of proprietary models, like Claude
Sonnet 3.5. By specifically telling the model to disregard
named entities like artist or brand names, the prompt aims to
isolate the linguistic structure of each utterance. To guaran-
tee deterministic results, we set the temperature to 0.0 and
use the Bedrock API to invoke the model. The model is ex-
pected to return only the ISO 639-1 code of the primary lan-
guage enclosed in <language>...</language> tags.

Prompt for Language Detection (Claude Sonnet 3.5)

Identify any named entities (titles, brand names,
people, etc.). Ignore these named entities when de-
termining the overall language. Focus on the re-
maining words and grammar. DO NOT OUTPUT
ANY REASONING. Just output the ISO 639-
1 code of the text’s primary language between
<language>...</language> tags.
Example: Reproduciendo ”My Ghoulish Figure” de
Conan O’Brien Needs A Friend en Amazon Music.
<language>es</language>
<text>utterances</text>

Appendix C: Datasets Statistics
Amazon Massive
In this section, we visualize the distribution of in-domain
language labels and the number of words per utterance. The
Amazon MASSIVE dataset exhibits a diverse range of lan-
guages and utterance lengths, which presents challenges for
consistent language identification.
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Figure 5: Distribution of language labels in the Amazon
MASSIVE dataset. We consider ten languages as in-domain;
all others are grouped under out domain.



Table 4: Implementation Details

Parameters Values

Pretrained Model Multilingual-MiniLM-L12-H384
Max Input Length 256 tokens
Batch Size (per GPU) 150
Epochs 10
Optimizer AdamW
Learning Rate 2e-5
Scheduler CosineAnnealingLR (Tmax = 5)
Temperature (τ ) 0.07
Class Contrastive Loss Weight 20.0
Inter-class Margin Loss Weight 20.0
Contrastive Margin (δhigh) 0.4 (for pairs of es, pt, fr)
Contrastive Margin (δlow) 0.0 (for other pairs)
Classification Loss Weight (λ1, λ2) 1.0 (each for in-domain and language ID)
Contrastive Loss Weight λ3 0.1
Augmentations Random deletion, typo noise, entity replacement

Table 5: sample code-mixed utterances from the Song Dataset where PolyLingua correctly identifies the primary language while
Sonnet 3.5 misclassifies them. Utterances contain commands and song/artist names (highlighted in orange) mixing multiple
languages.

Utterance Label PolyLingua Sonnet 3.5
reproduz Looking Thru Bloodshot Eyes do The Casualties pt pt en
toca por favor G2 K1 do Tara Putra pt pt en
balance-moi Number One de Lightspeed Champion fr fr en
je peux entendre Takaj Zhizn de Amsterdam Klezmer Band fr fr nl
hey mets Sleepy Shores de Laurindo Almeida fr fr pt
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Figure 6: Distribution of utterance lengths (in words) for
in-domain languages. Most utterances contain fewer than 7
words, emphasizing the need for robust modeling of short
inputs.



Samples from Song Dataset

Utterance Label

ich will Nautical Spirits Welcome to the Aquarium von Our Brother The Native hören de
lass Penny Lane von Orlando Pops Orchestra laufen de
oh spiel von Whole Wheat Bread de
kannst du das Lied My Girlhood Among The Outlaws von Maria McKee spielen de
could you put on Something Right by Julia Fordham en
play This Room by Mikroboy feat Get Well Soon please en
i want to listen to Cry now by Elliott en
would you play Was wir alleine nicht schaffen by Xavier Naidoo en
pon por favor Life In The Air Age de Be Bop Deluxe es
tócanos When The Light Came Around de Florian Horwath es
ponme por favor Fruitcake de Eraserheads es
este pon People come people go de David Guetta Joachim Garraud Chris Willis es
mets la chanson Cuando Te Vi de Vicentico fr
j’aimerais écouter Oh mama oh papa de Ottavo Padiglione fr
on écoute Third From The Sun de Chrome fr
est-ce que tu pourrais mettre LÉternel féminin de Juliette Gréco fr
mi fai sentire Mannequins di 108 it

Table 6: Some typical samples from the Song dataset


