
Bridging Tool Dependencies and Domain Knowledge:
A Graph-Based Framework for In-Context Planning

Shengjie Liu
Amazon

zycjlsj@amazon.com

Li Dong
Amazon

ldonga@amazon.com

Zhenyu Zhang
Amazon

zhenyuzh@amazon.com

Abstract

We present a framework for uncovering and exploiting dependencies among tools
and documents to enhance exemplar artifact generation. Our method begins by
constructing a tool knowledge graph from tool schemas—including descriptions,
arguments, and output payloads—using a DeepResearch-inspired analysis. In
parallel, we derive a complementary knowledge graph from internal documents
and SOPs, which is then fused with the tool graph. To generate exemplar plans, we
adopt a deep–sparse integration strategy that aligns structural tool dependencies
with procedural knowledge. Experiments demonstrate that this unified framework
effectively models tool interactions and improves plan generation, underscoring the
benefits of linking tool graphs with domain knowledge graphs for tool-augmented
reasoning and planning.

1 Introduction

Large Language Models (LLMs) ([1, 2, 3, 17, 25]) have played a central role in driving progress
in artificial intelligence, yielding major advances across a wide range of domains. A key strength
of LLMs lies in their planning abilities and their capacity for tool use ([23, 24]), which allow them
not only to execute instructions and carry out web queries but also to significantly enhance their
mathematical reasoning skills. LLM Compiler [9] and subsequent studies ([5, 6]) propose modeling
tool interactions as directed acyclic graphs (DAGs), enabling the parallel execution of independent
tools and thereby improving efficiency in tool calling. CodeAct [18] and CodePlan [19] advocate for
generating pseudo-Python code as a means of structuring high-level reasoning steps, where each tool
invocation is expressed as a function call. ReWOO [20] introduces a modular approach that separates
the reasoning workflow from external observations of tool outputs, which reduces token usage and
improves efficiency. [10] groups tools into clusters, plans at the toolkit level, and performs replanning
within the same toolkit when errors occur. [11] presents Predictive-Decoding, a technique inspired
by Model Predictive Control, designed to mitigate early-stage errors and encourage non-myopic
planning, ultimately improving accuracy. ReasonFlux [22] outlines a framework where the LLM
reasons over template slots, executes tools through these templates, and employs reinforcement
learning with action completion rewards to refine planning accuracy.

In the agentic paradigm, LLMs are transitioning from purely text-based reasoning toward dynamic
agents capable of planning, tool usage, and multi-step (including multi-turn) execution. ToolRL
[13] provides a systematic study of reinforcement learning reward design—examining granularity,
temporal structure, and signal types—to enhance generalization in multi-turn, tool-integrated rea-
soning. Kimi K2 [16] demonstrates that stabilizing long-context training combined with multi-stage



RL enables strong performance across multi-round tasks in software engineering, mathematics, and
agentic reasoning.

Prior work on tool-using capabilities has largely centered on general-purpose tools [14], such as send
email and make calendar, as well as web search functionalities exemplified by systems like Manus.
These tools are typically uni-functional, designed to perform a single action or answer a single query,
with descriptions and argument structures that are straightforward for LLMs such as GPT-4o [12] and
Claude 3.5 to interpret. In contrast, the tools required by real-world business assistants—covering
areas such as inventory tracking, performance monitoring, and financial reporting—are far more
complex and domain-specific, posing significant challenges for general-purpose LLMs to parse and
utilize effectively. To address this gap, in-context planning (ICP) has emerged as a common strategy,
where exemplar API executions are provided to LLMs to guide plan generation.

Generating high-quality in-context planning exemplars is essential, as irrelevant or poorly chosen
examples can misguide the LLM and lead to suboptimal or erroneous plans [26]. For a business
assistant that must initially operate over hundreds of in-domain tools, obtaining sufficient and high-
quality exemplars is crucial for overcoming the cold-start problem in in-context planning and ensuring
reliable functionality. Therefore, it is highly important to automatically construct a tool knowledge
graph that captures the dependencies among tools and links them to internal documents or SOPs,
which provide the corresponding usage instructions.

In summary, this work makes several pivotal contributions:

• We propose a Deep Research approach [21] to explore tool schemas—including descriptions,
arguments, and output payloads—in order to uncover dependencies among tools and construct a
tool knowledge graph.

• We further model internal documents and SOPs containing tool usage instructions as a knowl-
edge graph via GraphRAG [4], and integrate this with the tool graph through knowledge graph
fusion. Based on this fusion graph, we propose a Dense-sparse integration framework following
HippoRAG2 for exemplar plan generation.

• Experimental results validate the effectiveness of studying tool dependencies with deep research
and demonstrate the usefulness of connecting tool graphs with document knowledge graphs.

2 METHODOLOGY

In this section, we describe how to adapt Deep Research—originally developed for web search and
report generation—to the task of exploring dependencies among tools using their schemas. We then
propose an appropriate data structure to represent and store these dependencies. Next, we explain
how GraphRAG can be leveraged to construct a domain knowledge graph from internal documents,
and how the two graphs can be integrated through knowledge fusion.

2.1 Tool Graph Construction

We modify the node in Deep Research original pipeline (web-search and then refine with LLM
feedback) into dependency extraction and then use LLM as a judge [7] to check if the identified the
dependency really makes sense in the sense we delete those which should not form the dependency
per in-domain specific requirements. When send pairwise tools to LLM and let it check the tools
description, input arguments and also the output payload. The extracted dependency data structure is
shown in Figure 2. The pipeline is written in LangGraph.

2.2 Fusion of Tool Graph and Domain Knowledge Graph

We first construct the domain knowledge graph, aligned with the corresponding internal documents
and SOPs, using GraphRAG1 with its default setup. We then enrich this graph by incorporating
the tool graph through graph fusion in Neptune2, where the dependency relation is defined as
_can_use_this_tool_output.

1https://github.com/awslabs/graphrag-toolkit
2https://aws.amazon.com/neptune/

2



All tools schema

…
…

……

Tool 1 and Tool n 

dependency check

Tool x and Tool y 

dependency check

Tool n-1 and Tool n 

dependency check

se
nd

LLM grading LLM grading LLM grading

no no

Dependency Collection

Yes Yes

Human in the Loop

Knowledge Graph 

Construction

Dependency_check(tool1_schema, 

tool2_schema, feedback from LLM grading)

Entity_dependency_extraction(

Source_tool = … , source_key = ...,

Target_tool = …., target_key = …, 

Reason = …, 

Is_delayed = …,)

Tool Graph constructing…

1. get_stock_index(stock_name)

2. stock_current_return(stock_index)

Figure 1: Tool Graph Construction

After constructing the unified knowledge graph that integrates the tool graph, we develop a pipeline
to derive the final exemplar artifacts for In-Context Planning (ICP) from this unified representation.
We adopt HippoRAG2 [8] as the pipeline for generating plan artifacts, as the integration of domain
knowledge with the tool graph aligns with the Dense–Sparse Integration framework described in
HippoRAG2, where the tool graph serves as the sparse component and the domain knowledge
represents the dense component.

query
Top documents

Top Triplets
Seed nodes for 

personalized PageRank

Return the exemplar plans 

through the detected 

graph after personalized 

PageRank

Figure 2: Dense-Sparse Integration framework for exemplar plans generation. Red dots represent
document nodes; blue dots represent tool nodes.

To prepare exemplar artifacts for cold-start ICP, we begin by collecting a set of queries from pro-
duction. For each query, we retrieve the top-K tool triplets and relevant knowledge documents
using embedding search. The selected tool triplets are then used as seed nodes to run Personalized
PageRank, producing a subgraph tailored to the query. Leveraging this subgraph, LLM generates the
exemplar artifacts, which are subsequently stored in the vector database for future retrieval.

3 EXPERIMENTS

Similar to prior work [10], we adopt TOOLBENCH [14] as our benchmark dataset. TOOLBENCH
includes 16,464 APIs and provides three levels of prompts—G1, G2, and G3—for generating queries
and corresponding plans using depth-first search (DFS) planning. Specifically, G1 corresponds
to single-tool instructions, G2 to intra-category multi-tool instructions, and G3 to intra-collection
multi-tool instructions. We repurpose the TOOLBENCH data by randomly selecting 1,000 queries
from G1, 1000 from G2, and 1000 from G3—and use the ground-truth provided in the dataset . After
filtering out invalid cases, we identified 1,500 valid tool dependencies derived from the queries and
their corresponding ground-truth plans. To evaluate whether our Dense–Sparse Integration framework
improves exemplar plan generation, we simulate external knowledge by using the Tavily-Search
API. For each API output payload in our dataset, we retrieve documents online that can utilize the
corresponding output payloads and add the documnents instruction in the ground-truth artifacts.

3.1 Performance on Dependency Checking

We apply the dependency-checking pipeline to all API documentation in our dataset and evaluate
performance across a range of LLMs. As shown in Table 1, both GPT-4o and Claude-4 achieve

3



strong results, with precision and recall rates exceeding 80%. Notably, despite its smaller model
size, Qwen3-8B also performs well and even attains slightly higher precision than Claude-4. The
performance across most models demonstrates the validity of our framework in accurately identifying
dependencies.

Table 1: Performance on Dependency Checking

Model Predicted Dependencies True Dependencies Precision Recall

GPT-4o 1332 1500 90.7% 80.5%
Claude 4 1652 1500 79.9% 88.1%

Claude 3.7 1462 1500 80.9% 78.9%
DeepSeek R1 1652 1500 66.4% 73.2%

Qwen3-8B 1453 1500 83.2% 80.7%

3.2 Dense-sparse Framework for Exemplar Plan Generation

In this section, we assess the effectiveness of our Dense–Sparse framework under the setting where
the unified knowledge graph correctly integrates tools and domain knowledge. To this end, we
begin with the 3,000 queries introduced in Section 3. Since ground-truth plans are available for each
query, we employ LLM-as-a-judge to verify whether the generated exemplar artifacts align with the
ground-truth. We employ Jina Embedding (v3) [15] to compute semantic similarity, which is then
used to retrieve the top-ranked documents and tool triplets, and we use the same set of LLMs as in
Table 1 for generating the final plan artifacts after applying Personalized PageRank. The range of
LLM-as-a-judge score ranges from 0 to 2 for the plan coverage. We use Nova pro 3 as the LLM judge.
Based on both binary match accuracy and LLM-as-a-judge scores, we observe that performance

Table 2: Performance on Exemplar Plan Generation

Model Binary Match Accuracy LLM-as-a-judge Score

GPT-4o 77% 1.62
Claude 4 69% 1.47

Claude 3.7 71% 1.49
DeepSeek R1 64% 1.36

Qwen3-8B 72% 1.58

remains relatively stable across models. Notably, Qwen3-8B achieves strong results despite its
smaller size. This consistency suggests that performance may be largely determined by the quality of
the subgraph returned by Personalized PageRank and embedding match, rather than solely by model
capacity. We also conduct an ablation study to evaluate the effectiveness of Personalized PageRank
by comparing performance with and without its application. Removing Personalized PageRank yields

Table 3: Abalation study on Personalized PageRank in the pipeline

Model Binary Match Accuracy LLM-as-a-judge Score

GPT-4o with Personalized PageRank 77% 1.62
GPT-4o without Personalized PageRank 68% 1.56

a 9 percentage-point drop in binary match accuracy. A deeper analysis shows that PPR recovers tool
documents and procedural instruction pages that embedding-only retrieval often overlooks, enriching
the subgraph used for plan generation. For example, pure embedding search can miss tools like
BacklogCheck when they are dominated by other inventory-related tools, whereas PPR propagates
importance through dependency links to surface them.

4 CONCLUSION

In conclusion, we introduced a framework for uncovering and leveraging dependencies between tools
and documents to improve exemplar artifact generation. By constructing a tool knowledge graph
from schemas and fusing it with a domain knowledge graph from internal documents and SOPs,
our deep–sparse integration strategy aligns structural tool dependencies with procedural knowledge.
Experiments confirm that this unified approach effectively models tool interactions and enhances plan
generation. Nonetheless, the absence of real benchmarks for detecting tool dependencies remains a
limitation, which we plan to address in future work.

3https://aws.amazon.com/ai/generative-ai/nova/

4



References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[2] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

[3] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[4] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to
global: A graph rag approach to query-focused summarization, 2025.

5



[5] Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon,
Coleman Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. Tinyagent:
Function calling at the edge, 2024.

[6] Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks, 2025.

[7] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao,
Lionel Ni, and Jian Guo. A survey on llm-as-a-judge, 2025.

[8] Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to
memory: Non-parametric continual learning for large language models, 2025.

[9] Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer,
and Amir Gholami. An llm compiler for parallel function calling, 2024.

[10] Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei Zhang, Xuhong Zhang, Sheng Cheng,
Xun Wang, Jianwei Yin, and Tianyu Du. Tool-planner: Task planning with clusters across
multiple tools, 2025.

[11] Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He, and Lingpeng Kong. Non-myopic
generation of language models for reasoning and planning, 2024.

[12] OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex
Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina
Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter,
Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel
Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson,
David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen,
Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang,
Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan
Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann,
Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi
Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather
Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Hui-
wen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian
Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitschei-
der, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker,
James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang,
Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee,
Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero
Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan
Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga,
Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi,
Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg,

6



Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry
Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus,
Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang,
Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric
Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan,
Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan,
Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie
Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah
Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk,
Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul
McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter
Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes,
Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene,
Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal
Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan,
Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell,
Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit
Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. Gpt-4o system card, 2024.

[13] Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025.

[14] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
models to master 16000+ real-world apis, 2023.

[15] Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus
Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan
Wang, and Han Xiao. jina-embeddings-v3: Multilingual embeddings with task lora, 2024.

[16] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y.
Liu, Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying
Liu, Enzhe Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei,
Xin Men, Yibo Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong
Shi, Shengyuan Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi
Tang, Jiawen Tao, Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang,

7



Jianzhou Wang, Jiaxing Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie
Wang, Yiqin Wang, Yuxin Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang,
Chu Wei, Qianqian Wei, Wenhao Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie,
Weimin Xiong, Boyu Xu, Jing Xu, Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran
Xu, Yangchuan Xu, Ziyao Xu, Junjie Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang,
Zhilin Yang, Zonghan Yang, Haotian Yao, Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong
Yin, Longhui Yu, Enming Yuan, Hongbang Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang,
Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun Zhang, Yizhi Zhang, Yongting Zhang,
Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang, Haotian Zhao, Yikai Zhao, Huabin
Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and
Xinxing Zu. Kimi k2: Open agentic intelligence, 2025.

[17] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[18] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents, 2024.

[19] Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Unlocking reasoning
potential in large langauge models by scaling code-form planning, 2024.

[20] Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan
Xu. Rewoo: Decoupling reasoning from observations for efficient augmented language models,
2023.

[21] Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodolo-
gies, and applications, 2025.

[22] Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang. Reasonflux: Hierarchical llm reasoning
via scaling thought templates, 2025.

[23] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

[24] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023.

[25] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Peng Zhang, Yuxiao Dong, and Jie Tang. Glm-130b: An open bilingual pre-trained
model, 2023.

[26] Xinran Zhao, Hanie Sedghi, Bernd Bohnet, Dale Schuurmans, and Azade Nova. Improving
large language model planning with action sequence similarity, 2025.

8


	Introduction
	METHODOLOGY
	Tool Graph Construction
	Fusion of Tool Graph and Domain Knowledge Graph

	EXPERIMENTS
	Performance on Dependency Checking
	Dense-sparse Framework for Exemplar Plan Generation

	CONCLUSION

