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Abstract

We present a framework for uncovering and exploiting dependencies among tools
and documents to enhance exemplar artifact generation. Our method begins by
constructing a tool knowledge graph from tool schemas—including descriptions,
arguments, and output payloads—using a DeepResearch-inspired analysis. In
parallel, we derive a complementary knowledge graph from internal documents
and SOPs, which is then fused with the tool graph. To generate exemplar plans, we
adopt a deep–sparse integration strategy that aligns structural tool dependencies
with procedural knowledge. Experiments demonstrate that this unified framework
effectively models tool interactions and improves plan generation, underscoring the
benefits of linking tool graphs with domain knowledge graphs for tool-augmented
reasoning and planning.

1 Introduction

Large Language Models (LLMs) ([1, 2, 3, 17, 25]) have played a central role in driving progress
in artificial intelligence, yielding major advances across a wide range of domains. A key strength
of LLMs lies in their planning abilities and their capacity for tool use ([23, 24]), which allow them
not only to execute instructions and carry out web queries but also to significantly enhance their
mathematical reasoning skills. LLM Compiler [9] and subsequent studies ([5, 6]) propose modeling
tool interactions as directed acyclic graphs (DAGs), enabling the parallel execution of independent
tools and thereby improving efficiency in tool calling. CodeAct [18] and CodePlan [19] advocate for
generating pseudo-Python code as a means of structuring high-level reasoning steps, where each tool
invocation is expressed as a function call. ReWOO [20] introduces a modular approach that separates
the reasoning workflow from external observations of tool outputs, which reduces token usage and
improves efficiency. [10] groups tools into clusters, plans at the toolkit level, and performs replanning
within the same toolkit when errors occur. [11] presents Predictive-Decoding, a technique inspired
by Model Predictive Control, designed to mitigate early-stage errors and encourage non-myopic
planning, ultimately improving accuracy. ReasonFlux [22] outlines a framework where the LLM
reasons over template slots, executes tools through these templates, and employs reinforcement
learning with action completion rewards to refine planning accuracy.

In the agentic paradigm, LLMs are transitioning from purely text-based reasoning toward dynamic
agents capable of planning, tool usage, and multi-step (including multi-turn) execution. ToolRL
[13] provides a systematic study of reinforcement learning reward design—examining granularity,
temporal structure, and signal types—to enhance generalization in multi-turn, tool-integrated rea-
soning. Kimi K2 [16] demonstrates that stabilizing long-context training combined with multi-stage



RL enables strong performance across multi-round tasks in software engineering, mathematics, and
agentic reasoning.

Prior work on tool-using capabilities has largely centered on general-purpose tools [14], such as send
email and make calendar, as well as web search functionalities exemplified by systems like Manus.
These tools are typically uni-functional, designed to perform a single action or answer a single query,
with descriptions and argument structures that are straightforward for LLMs such as GPT-4o [12] and
Claude 3.5 to interpret. In contrast, the tools required by real-world business assistants—covering
areas such as inventory tracking, performance monitoring, and financial reporting—are far more
complex and domain-specific, posing significant challenges for general-purpose LLMs to parse and
utilize effectively. To address this gap, in-context planning (ICP) has emerged as a common strategy,
where exemplar API executions are provided to LLMs to guide plan generation.

Generating high-quality in-context planning exemplars is essential, as irrelevant or poorly chosen
examples can misguide the LLM and lead to suboptimal or erroneous plans [26]. For a business
assistant that must initially operate over hundreds of in-domain tools, obtaining sufficient and high-
quality exemplars is crucial for overcoming the cold-start problem in in-context planning and ensuring
reliable functionality. Therefore, it is highly important to automatically construct a tool knowledge
graph that captures the dependencies among tools and links them to internal documents or SOPs,
which provide the corresponding usage instructions.

In summary, this work makes several pivotal contributions:

• We propose a Deep Research approach [21] to explore tool schemas—including descriptions,
arguments, and output payloads—in order to uncover dependencies among tools and construct a
tool knowledge graph.

• We further model internal documents and SOPs containing tool usage instructions as a knowl-
edge graph via GraphRAG [4], and integrate this with the tool graph through knowledge graph
fusion. Based on this fusion graph, we propose a Dense-sparse integration framework following
HippoRAG2 for exemplar plan generation.

• Experimental results validate the effectiveness of studying tool dependencies with deep research
and demonstrate the usefulness of connecting tool graphs with document knowledge graphs.

2 METHODOLOGY

In this section, we describe how to adapt Deep Research—originally developed for web search and
report generation—to the task of exploring dependencies among tools using their schemas. We then
propose an appropriate data structure to represent and store these dependencies. Next, we explain
how GraphRAG can be leveraged to construct a domain knowledge graph from internal documents,
and how the two graphs can be integrated through knowledge fusion.

2.1 Tool Graph Construction

We modify the node in Deep Research original pipeline (web-search and then refine with LLM
feedback) into dependency extraction and then use LLM as a judge [7] to check if the identified the
dependency really makes sense in the sense we delete those which should not form the dependency
per in-domain specific requirements. When send pairwise tools to LLM and let it check the tools
description, input arguments and also the output payload. The extracted dependency data structure is
shown in Figure 2. The pipeline is written in LangGraph.

2.2 Fusion of Tool Graph and Domain Knowledge Graph

We first construct the domain knowledge graph, aligned with the corresponding internal documents
and SOPs, using GraphRAG1 with its default setup. We then enrich this graph by incorporating
the tool graph through graph fusion in Neptune2, where the dependency relation is defined as
_can_use_this_tool_output.

1https://github.com/awslabs/graphrag-toolkit
2https://aws.amazon.com/neptune/
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Figure 1: Tool Graph Construction

After constructing the unified knowledge graph that integrates the tool graph, we develop a pipeline
to derive the final exemplar artifacts for In-Context Planning (ICP) from this unified representation.
We adopt HippoRAG2 [8] as the pipeline for generating plan artifacts, as the integration of domain
knowledge with the tool graph aligns with the Dense–Sparse Integration framework described in
HippoRAG2, where the tool graph serves as the sparse component and the domain knowledge
represents the dense component.

query
Top documents

Top Triplets
Seed nodes for 

personalized PageRank

Return the exemplar plans 

through the detected 

graph after personalized 

PageRank

Figure 2: Dense-Sparse Integration framework for exemplar plans generation. Red dots represent
document nodes; blue dots represent tool nodes.

To prepare exemplar artifacts for cold-start ICP, we begin by collecting a set of queries from pro-
duction. For each query, we retrieve the top-K tool triplets and relevant knowledge documents
using embedding search. The selected tool triplets are then used as seed nodes to run Personalized
PageRank, producing a subgraph tailored to the query. Leveraging this subgraph, LLM generates the
exemplar artifacts, which are subsequently stored in the vector database for future retrieval.

3 EXPERIMENTS

Similar to prior work [10], we adopt TOOLBENCH [14] as our benchmark dataset. TOOLBENCH
includes 16,464 APIs and provides three levels of prompts—G1, G2, and G3—for generating queries
and corresponding plans using depth-first search (DFS) planning. Specifically, G1 corresponds
to single-tool instructions, G2 to intra-category multi-tool instructions, and G3 to intra-collection
multi-tool instructions. We repurpose the TOOLBENCH data by randomly selecting 1,000 queries
from G1, 1000 from G2, and 1000 from G3—and use the ground-truth provided in the dataset . After
filtering out invalid cases, we identified 1,500 valid tool dependencies derived from the queries and
their corresponding ground-truth plans. To evaluate whether our Dense–Sparse Integration framework
improves exemplar plan generation, we simulate external knowledge by using the Tavily-Search
API. For each API output payload in our dataset, we retrieve documents online that can utilize the
corresponding output payloads and add the documnents instruction in the ground-truth artifacts.

3.1 Performance on Dependency Checking

We apply the dependency-checking pipeline to all API documentation in our dataset and evaluate
performance across a range of LLMs. As shown in Table 1, both GPT-4o and Claude-4 achieve
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strong results, with precision and recall rates exceeding 80%. Notably, despite its smaller model
size, Qwen3-8B also performs well and even attains slightly higher precision than Claude-4. The
performance across most models demonstrates the validity of our framework in accurately identifying
dependencies.

Table 1: Performance on Dependency Checking

Model Predicted Dependencies True Dependencies Precision Recall

GPT-4o 1332 1500 90.7% 80.5%
Claude 4 1652 1500 79.9% 88.1%

Claude 3.7 1462 1500 80.9% 78.9%
DeepSeek R1 1652 1500 66.4% 73.2%

Qwen3-8B 1453 1500 83.2% 80.7%

3.2 Dense-sparse Framework for Exemplar Plan Generation

In this section, we assess the effectiveness of our Dense–Sparse framework under the setting where
the unified knowledge graph correctly integrates tools and domain knowledge. To this end, we
begin with the 3,000 queries introduced in Section 3. Since ground-truth plans are available for each
query, we employ LLM-as-a-judge to verify whether the generated exemplar artifacts align with the
ground-truth. We employ Jina Embedding (v3) [15] to compute semantic similarity, which is then
used to retrieve the top-ranked documents and tool triplets, and we use the same set of LLMs as in
Table 1 for generating the final plan artifacts after applying Personalized PageRank. The range of
LLM-as-a-judge score ranges from 0 to 2 for the plan coverage. We use Nova pro 3 as the LLM judge.
Based on both binary match accuracy and LLM-as-a-judge scores, we observe that performance

Table 2: Performance on Exemplar Plan Generation

Model Binary Match Accuracy LLM-as-a-judge Score

GPT-4o 77% 1.62
Claude 4 69% 1.47

Claude 3.7 71% 1.49
DeepSeek R1 64% 1.36

Qwen3-8B 72% 1.58

remains relatively stable across models. Notably, Qwen3-8B achieves strong results despite its
smaller size. This consistency suggests that performance may be largely determined by the quality of
the subgraph returned by Personalized PageRank and embedding match, rather than solely by model
capacity. We also conduct an ablation study to evaluate the effectiveness of Personalized PageRank
by comparing performance with and without its application. Removing Personalized PageRank yields

Table 3: Abalation study on Personalized PageRank in the pipeline

Model Binary Match Accuracy LLM-as-a-judge Score

GPT-4o with Personalized PageRank 77% 1.62
GPT-4o without Personalized PageRank 68% 1.56

a 9 percentage-point drop in binary match accuracy. A deeper analysis shows that PPR recovers tool
documents and procedural instruction pages that embedding-only retrieval often overlooks, enriching
the subgraph used for plan generation. For example, pure embedding search can miss tools like
BacklogCheck when they are dominated by other inventory-related tools, whereas PPR propagates
importance through dependency links to surface them.

4 CONCLUSION

In conclusion, we introduced a framework for uncovering and leveraging dependencies between tools
and documents to improve exemplar artifact generation. By constructing a tool knowledge graph
from schemas and fusing it with a domain knowledge graph from internal documents and SOPs,
our deep–sparse integration strategy aligns structural tool dependencies with procedural knowledge.
Experiments confirm that this unified approach effectively models tool interactions and enhances plan
generation. Nonetheless, the absence of real benchmarks for detecting tool dependencies remains a
limitation, which we plan to address in future work.

3https://aws.amazon.com/ai/generative-ai/nova/
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