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ABSTRACT
Despite advances in large language model (LLM)-based natural lan-
guage interfaces for databases, scaling to enterprise-level data cata-
logs remains an under-explored challenge. Prior works addressing
this challenge rely on domain-specific fine-tuning—complicating
deployment—and fail to leverage important semantic context con-
tained within database metadata. To address these limitations, we
introduce a component-based retrieval architecture that decom-
poses database schemas and metadata into discrete semantic units,
each separately indexed for targeted retrieval. Our approach prior-
itizes effective table identification while leveraging column-level
information, ensuring the total number of retrieved tables remains
within a manageable context budget. Experiments demonstrate
that our method maintains high recall and accuracy, with our sys-
tem outperforming baselines over massive databases with varying
structure and available metadata. Our solution enables practical
text-to-SQL systems deployable across diverse enterprise settings
without specialized fine-tuning, addressing a critical scalability gap
in natural language database interfaces.
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1 INTRODUCTION
Text-to-SQL systems translate natural language questions into exe-
cutable SQL queries, enabling non-technical users to extract insights
from databases without SQL expertise. While these systems have
evolved from rule-based approaches to powerful large language
model (LLM) solutions [8], scaling them to industrial settings with
massive database catalogs remains an underexplored challenge.

Current state-of-the-art methods primarily leverage LLMs using
techniques like task decomposition and prompt optimization, avoid-
ing the overhead of maintaining fine-tuned models [11, 13, 17, 22].
However, these approaches face critical limitations when applied
to enterprise environments with thousands of tables and tens of
thousands of columns. In such massive database settings, provid-
ing comprehensive schema context to LLMs becomes untenable
due to token limitations, computational costs, and semantic over-
load [12, 21, 23]. For example, a typical enterprise data catalog with
10,000 tables averaging 50 columns each would require over 500,000
schema entities—far exceeding current LLM context windows and
creating prohibitive costs for commercial API usage.

Existing solutions for scaling to massive catalogs either rely on
hierarchical selectionmethods that require domain-specific training
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and well-defined database-table hierarchies [23], employ compu-
tationally intensive multi-agent frameworks that process entire
schemas through many LLM calls [21], or use complex optimiza-
tion techniques that don’t scale to truly massive schemas [6]. These
methods struggle in real-world deployments where database ar-
chitectures often follow monolithic NoSQL paradigms, metadata
about join relationships is incomplete, or database schema is often
changing. The scalability challenge becomes exponentially worse as
database size increases: while methods may work reasonably well
on benchmarks with hundreds of tables, they fail to maintain ac-
ceptable performance and cost efficiency when scaled to enterprise
catalogs with thousands of tables [21].

We present Retrieval Augmented Schema Linking (RASL), a
novel approach designed specifically for text-to-SQL over massive
database schemas without requiring fine-tuning or well defined
database relations. RASL decomposes schemas into semantic enti-
ties, indexes them in a vector database, and employs a multi-stage
retrieval process with relevance calibration to efficiently narrow
the search space while maintaining compatibility with hosted LLM
services.

Our contributions include:
• A zero-shot schema linking architecture that scales to massive

databases with minimal preprocessing, no model training, and
no requirement of known database hierarcy and join relations

• An entity-level decomposition strategy with keyword-based
context retrieval and entity-type relevance calibration

• Empirical evidence of RASL’s effectiveness on industrial-scale
benchmarks

Our work bridges the gap between academic text-to-SQL re-
search and industrial requirements, providing a practical solution
for natural language interfaces to massive data environments.

2 RELATEDWORKS
Schema linking—mapping natural language elements to database
components—becomes exponentially more challenging as database
size increases. While some works have found schema-linking to
be unnecessary on standard benchmarks with the latest founda-
tion model offerings [15], others have shown that text-to-SQL per-
formance degrades as database size increases and state-of-the-art
methods are unable to scale to full industry-scale data catalogs [21].

Several approaches have been proposed for massive database en-
vironments, each with limitations in industrial settings. DBCopilot
[23] models schema linking as path generation through a hierarchi-
cal graph, first predicting the database, then tables, before generat-
ing SQL. While effective with clear database boundaries and known
join relations, this approach struggles in monolithic data lake set-
tings and requires extensive training on synthetic question-schema
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pairs, making adaptation to schema changes difficult. CHESS [21]
incorporates an Information Retriever and Schema Selector to re-
trieve and prune context, but faces severe scalability issues with
industry-sized datasets. It processes the full schema via many LLM
calls, only using retrieval to augment already-identified schema
elements with additional indexed context.

CRUSH4SQL [12] embeds column names during build time and
hallucinates a candidate schema from input questions to retrieve rel-
evant columns. While conceptually similar to our approach, CRUSH
is limited to column name schema context, showing degraded per-
formance on complex benchmarks containing additional context
such as descriptions and value formats. Additionally, its reliance
on LLMs to hallucinate schemas for querying can lead to misalign-
ment with ground truth database schemas where columns follow
non-standard naming conventions.

RASL addresses these limitations through a zero-shot architec-
ture that leverages both column-level and table-level context with-
out requiring database hierarchy knowledge or comprehensive table
relationship metadata. By separating build-time schema decompo-
sition from inference-time retrieval, RASL provides an effective
balance between accuracy and efficiency for industrial deployments
where schemas frequently evolve across diverse storage paradigms.

3 PRELIMINARIES
We begin by establishing notation for the components of our ap-
proach.

Database Schema. We define a database schema 𝑆 as a collection
of tables𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}. Each table 𝑡𝑖 consists of a set of columns
𝐶𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, . . . , 𝑐𝑖,𝑚𝑖

}, where 𝑚𝑖 is the number of columns in
table 𝑡𝑖 . The complete set of columns across all tables is denoted as
𝐶 = ∪𝑛

𝑖=1𝐶𝑖 .

Entity Types. We define Λ = {𝜆1, 𝜆2, . . . , 𝜆𝑙 } as the set of all
entity types, where each 𝜆 𝑗 represents a specific type of schema
information (e.g., table description). Entity types are partitioned
into table-level types Λ𝑇 ⊂ Λ and column-level types Λ𝐶 ⊂ Λ.

Schema Entities. For each table 𝑡𝑖 and entity type 𝜆 𝑗 ∈ Λ𝑇 , we
define entity 𝑒 (𝑡𝑖 , 𝜆 𝑗 ) as the representation of table 𝑡𝑖 according to
type 𝜆 𝑗 (e.g., its name or description). Similarly, for each column
𝑐𝑖,𝑘 and entity type 𝜆 𝑗 ∈ Λ𝐶 , we define entity 𝑒 (𝑐𝑖,𝑘 , 𝜆 𝑗 ) as the
representation of column 𝑐𝑖,𝑘 according to type 𝜆 𝑗 . The complete
set of all entities is denoted as 𝐸.

Vector Representations. Each entity 𝑒 ∈ 𝐸 is embedded in a 𝑑-
dimensional space using an embedding function 𝜙 : 𝐸 → R𝑑 .
Similarly, a natural language question 𝑞 is embedded as 𝜙 (𝑞) ∈ R𝑑 .
The similarity between two embeddings is measured using cosine
similarity.

4 METHODOLOGY
4.1 Overview
RASL addresses the challenge of scaling text-to-SQL to massive
database catalogs through a two-phase approach: build-time knowl-
edge base construction and inference-time retrieval augmented
schema linking. Figure 1 illustrates our pipeline.

At build time, RASL decomposes database schema 𝑆 into se-
mantic entities 𝐸Λ𝑇

and 𝐸Λ𝐶
, which are embedded and indexed in

a vector database with metadata tags incorporating full schema
context for later reconstruction. At inference time, given a natural
language question 𝑞, RASL extracts keywords 𝐾 and performs par-
allel retrieval for each 𝑘 ∈ 𝐾 ∪ {𝑞} across each entity type 𝜆 𝑗 ∈ Λ.
For each retrieval query, RASL applies entity-type-level calibration
to account for variably discriminative entity types when training
samples are available. RASL then filters entities to retain only those
belonging to the top 𝑁 tables, considering both table-level and
column-level entities for table ranking. This filtered subset serves
as input for LLM-based table prediction to identify the most rele-
vant tables for the query. Finally, RASL loads the complete schema
context for these predicted tables to support downstream SQL gen-
eration.

4.2 Knowledge Base Construction
Schema Entity Decomposition. We decompose database schema
𝑆 into semantic entities at table and column levels as defined in our
preliminaries. Specific 𝐸 vary by dataset, with examples of 𝐸Λ𝑇

in-
cluding table names, aliases, and descriptions and examples of 𝐸Λ𝐶

containing column names, aliases, descriptions, and value format
descriptions. For example, consider a table student_club.member
with columns first_name, last_name, and zip. RASL would cre-
ate separate entities: 𝑒 (student_club.member, 𝜆table name) = "stu-
dent_club.member", 𝑒 (first_name, 𝜆column name) = "first_name",
𝑒 (last_name, 𝜆column name) = "last_name", and 𝑒 (zip, 𝜆column name)
= "zip". Each entity 𝑒 ∈ 𝐸 is indexed with metadata tags linking it to
the original schema structure, preserving hierarchical relationships
for inference-time schema re-construction.

Vector Embedding and Indexing. Each semantic entity 𝑒 ∈ 𝐸
is embedded using the embedding function 𝜙 to capture its seman-
tic meaning in a 𝑑-dimensional vector space. These embeddings
are indexed in a vector database optimized for similarity search,
enabling efficient retrieval without task-specific fine-tuning.

Table description Synthesis. For tables with limited or missing
descriptions, which is common across all datasets evaluated, we
explore synthesizing descriptive text using an LLM that analyzes
table structure, column names, and available metadata. This descrip-
tion is saved as 𝜆table descr. ∈ Λ𝑇 , with specific details on synthesis
prompts provided in C.4. For fair comparison with baselines, we
primarily evaluate our system without the inclusion of 𝐸𝜆table descr. ,
with ablation studies exploring the effect of adding additional syn-
thesized context on RASL’s performance.

4.3 Retrieval-Augmented Schema Linking
4.3.1 Question Decomposition. Inspired by CHESS-SQL [21], we
decompose each user question 𝑞 into keywords 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑚}
using a light-weight LLM to enhance retrieval effectiveness for
complex questions referencing multiple schema elements, with
prompt details provided in C.3. These extracted keywords serve as
independent retrieval queries that help capture relevant schema
elements even when the full question’s semantic representation
doesn’t closely match corresponding schema elements.

For each 𝑒 ∈ 𝐸 we concurrently perform retrieval across each
𝑘 ∈ 𝐾 ∪ {𝑞}, with an ablation study in 5.7 analyzing the impact
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Figure 1: System overview. (left) Build-time process of constructing the schemametadata knowledge base. (right) Inference-time
retrieval process for text-to-SQL applications.

of keyword-level and question-level retrieval. We also evaluate
appending 𝑘 directly to 𝑞 as done in CHESS, but we find that this
under-performs direct keyword-level retrieval.

4.3.2 Entity-Type Relevance Calibration. We hypothesize that each
𝜆 ∈ Λ will have varying levels of importance within each dataset,
which may not be captured by direct relevance scores. To account
for this, we propose an entity-type relevance score calibration,
where weights are calibrated over ground truth training samples
when available. For each entity type 𝜆 ∈ Λ, we compute:

𝑤𝜆 =
|Λ| · AUC(𝜆)2∑
𝜆′∈Λ AUC(𝜆′)2 (1)

where AUC(𝜆) is the area under the table-level recall curve for
entity type 𝜆 over training data. We square the AUC values to
amplify differences between entity types, giving greater weight
to those with stronger predictive power. These weights are then
applied to scale relevance scores at inference time, ensuring that
entity types with consistently stronger predictive power receive
higher influence in the final ranking.

Inspired byCRUSH [12], we also explored keyword-level entropy-
guided relevance calibration prior to entity-level calibration, which
is designed to address the variable discriminative power of different
keywords across schema entities. However, we found that this com-
ponent did not improve system performance and have excluded

it from our results; details on the component methodology and
observed impact are discussed in B.

4.4 SQL Generation
Table Prediction. While the resulting schema entities can be used
directly to construct a schema for SQL generation, we find it is
beneficial to perform an intermediary table prediction prior to
final query generation. This step constructs a candidate schema
and applies an LLM to predict rank-ordered tables relevant to 𝑞,
with specific prompts used detailed in C.1. Full schemas of tables
identified as revelant are then loaded for final SQL generation. We
find that this step is especially beneficial for covering unknown
join relations which cannot be inferred from 𝑞, as well as better
leveraging semantic context in 𝐸Λ𝑇

.
SQLGeneration. Following retrieval, any SQL generation pipeline

can be applied to the final schema, with our specific evaluations
using zero-shot text-to-SQL with self-correction. Details on the
specific prompt used in experiments is provided in C.2.

5 EXPERIMENTS
5.1 Dataset Details
We evaluate our method over three benchmarks with dataset sta-
tistics provided in Table 1. The Spider and BIRD benchmarks are
designed for the single-database setting, which we adapt to the
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massive catalog setting by considering the full set of training and
test schema for each test record.
• Spider [24]: A widely-used cross domain text-to-SQL bench-

mark with Λ𝐶 = {column name, column alias}, Λ𝑇 =

{table name, table alias}. Database schemas are well-named,
with schema elements that are well-aligned with questions.

• BIRD [14]: A challenging text-to-SQL benchmark emphasiz-
ing database content understanding. BIRD contains richer
schema context designed to test text-to-SQL systems’ abili-
ties to incorporate domain knowledge, with Λ𝐶 = {column
name, column alias, column descr., value descr.}, Λ𝑇 = {table
name}. Questions may involve references to associated schema
context, as opposed to direct column and table names as in
Spider.

• Fiben [19]: An enterprise-focused benchmark developed by
IBM across financial schemas. Fiben uses minimal metadata
with Λ𝐶 = {column name}, Λ𝑇 = {table name}. Questions
often lack context, making schema identification challenging.

For all datasets, we additionally synthesize 𝐸𝜆table descr. from table
schemas following the process in C.4 and analyze the impact of
adding it toΛ𝑇 on token consumption and performance in ablations.
Primary evaluations are reported with 𝜆table descr. excluded for fair
comparison.

Dataset Size Schema

Train Test
N
DBs

N
Tables

N
Cols

Avg Cols
per Table

Spider 7000 1034a 166 876 4503 5.1
BIRD 9427 1534a 80 597 4337 7.26
Fiben 0 279 1 152 374 2.46

Table 1: Statistics of datasets. a We use the original develop-
ment sets for testing.

5.2 Baseline Methods
We compare RASL to various retrieval baselines, including both
general methods adapted to text-to-SQL and methods proposed
specifically for text-to-SQL schema retrieval.
• BM25 [5]: BM25 is a lexical retrieval method widely used for

document retrieval and ranking.We adapt this to table retrieval
by treating each table’s complete schema as one document.

• Sentence transformer (SXFMR) [18]: The sentence trans-
former is a semantic retrieval model designed to embed text to
the same latent representation. Similar to BM25, table schemas
are treated as documents for embedding.

• CRUSH [12]: CRUSH uses an LLM to hallucinate a schema
from 𝑞, followed by retrieving target schema columns by lex-
ical or semantic similarity to hallucinated schema columns.
For table-level retrieval evaluations, we take the distinct tables
corresponding to top ranking columns.

• DTR [10]: DTR uses contrastive learning on (𝑞, 𝑡 ) pairs to
train a table retriever. This method requires synthesizing ex-
tensive training data over the target database, and may not be
best suited for enterprise settings with continuously evolving
databases.

• DBCopilot [23]: DBCopilot synthesizes text-to-SQL pairs over
a hierarchical graph of known database and table relations and
uses these to train a constrained decoder for table prediction.
Similar to DTR, this requires synthesis of training data over
the target database schema.

5.3 Evaluation Details
Consistent with previous works [10, 12, 23], we primarily evaluate
our method using macro-average Recall@𝑁 with respect to ground
truth tables used in each SQL query, which measures the fraction
of relevant instances in the top-𝑁 predicted tables. For primary
evaluations on Recall@𝑁 , we directly adopt the metrics reported
in [23], where specific method configurations are provided in F
and RASL is applied over identical testing sets. For ablation studies,
we focus on comparison to retrieval-based baselines which do not
involve model fine-tuning, as these methods are most relevant to
industry settings with evolving catalog schemas. For all ablations,
we closely follow the implementation details reported in [23], with
the exception of using Anthropic Claude 3.5 Sonnet-v2 [2] instead
of OpenAI GPT-3.5-turbo [16] for CRUSH schema hallucination
due to model access constraints.

Model Spider BIRD Fiben
R@5 R@15 R@5 R@15 R@5 R@15

BM25 86.5 93.9 68.3 82.8 33.3 38.6
SXFMR 80.4 92.3 67.6 83.1 28.2 46.5
CRUSHBM25 87.2 95.0 68.4 87.8 34.9 54.0
CRUSHSXFMR 82.2 93.9 70.6 85.1 34.1 50.8
DTR 76.3 93.2 76.2 92.0 37.7 48.9
DBCopilot 91.6 97.6 85.8 94.6 41.1 56.9
RASLretriever 72.1 94.1 70.5 92.6 34.6 64.5
RASLfull 97.0 98.0 97.5 97.8 69.1 69.2

Table 2: Primary performance comparison measuring
Recall@𝑁 , where 𝑁 is the maximum number of tables. RASL
is applied without 𝜆table descr. in this setting.

5.4 Experiment Settings
For all experiments, RASL uses Anthropic Claude 3.5 Haiku [1] for
keyword extraction, Cohere Embed-v3-English [7] in OpenSearch
Serverless through Amazon Bedrock Knowledge Bases [3] for vec-
tor database embedding, and Anthropic Claude 3.5 Sonnet-v2 [2]
for table prediction and SQL generation; temperature is set to 0.0
throughout for reproducibility.

For all datasets except Fiben, which does not contain a training
set, we perform entity-type weight calibration using 200 randomly
sampled training instances. During retrieval, the top 100 entities
within each keyword and entity type are retrieved prior to relevance
calibration and filtering, as this is the maximum allowed by Bedrock
Knowledge Bases.

5.5 Table Retrieval Results
In Table 2 we evaluate RASL against baseline systems for table
retrieval. We evaluate RASL in two settings: (1) retriever-only, which
ranks tables by calibrated relevance scores across all entities 𝐸, and
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Figure 2: Table 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 over BIRD (left) and Fiben (right). BIRD benefits from both Λ𝐶 and Λ𝑇 , achieving notable recall
improvement over individual 𝜆 at higher 𝑁 , while Fiben primarily leverages 𝐸𝐶 .

(2) full-system, which applies table prediction after filtering 𝐸 to
entities from the top 𝑁 ranked tables. For full-system, we limit the
retrieved candidate entities to 𝑁 = 50 tables, as we find that this
consistently keeps schema entities below 3% per type (A) while
maintaining high table recall, ensuring manageable prompt lengths
for prediction.

RASLfull out-performs all baselines, with similar 𝑅@5 and 𝑅@15,
demonstrating the effectiveness of our dual-stage retrieve-then-
predict apporach for precise table identification using rich granular
context. While RASLretriever shows lower recall at 𝑁 = 5, analyses
in E attributes this to highly overlapping columns/tables across
databases, with performance improving at higher 𝑁 and consis-
tently ranking among the top three retrieval-based methods at
𝑁 = 15. This stronger recall at higher 𝑁 proves particularly valu-
able when combined with entity-level schema construction, as we
can significantly reduce context while preserving the most infor-
mative schema entities for table prediction and SQL generation.
Figure 2 further demonstrates the advantages of our combined en-
tity retrieval approach, which outperforms entity-specific methods
on both context-rich (BIRD) and context-sparse (Fiben) datasets.

5.6 Impact of Retrieval Mechanism on Table
Prediction

We believe that RASL’s primary strength lies in efficiently loading
relevant context for precise table identification within manageable
context budgets, rather than standalone context retrieval. To val-
idate this, we compare RASLretriever against BM25, SXFMR, and
CRUSH for context retrieval prior to LLM-based table prediction.
However, since these methods operate at different granularities–
RASL employs multi-entity retrieval, BM25 and SXFMR work at

Without RASL Table Descriptions

Model LLM-Filtered Prediction Initial Retrieval Pool
Spider BIRD Fiben Spider BIRD Fiben
(R@5) (R@5) (R@5) (R@N) (R@N) (R@N)

BM25 87.0 71.8 41.5 87.7 72.3 43.4
SXFMR 88.0 66.9 40.1 89.0 70.1 41.8
CRUSHBM25 91.7 83.5 57.1 96.4 86.7 61.1
CRUSHSXFMR 94.2 93.4 58.2 97.6 97.7 73.7
RASLfull 97.0 97.5 69.1 99.3 98.1 90.6

With RASL Table Descriptions

Model LLM-Filtered Prediction Initial Retrieval Pool
Spider BIRD Fiben Spider BIRD Fiben
(R@5) (R@5) (R@5) (R@N) (R@N) (R@N)

BM25 95.6 84.8 68.9 96.7 86.5 99.9
SXFMR 96.2 83.2 70.0 99.1 87.8 99.9
CRUSHBM25 95.4 87.8 70.7 100.0 95.0 99.1
CRUSHSXFMR 94.5 93.1 67.1 100.0 99.5 99.9
RASLfull 98.2 97.5 77.6 99.1 98.9 90.4

Table 3: Performance comparison across datasets with and
without RASL table descriptions. LLM-Filtered Prediction
shows the recall@5 after filtering, while Initial Retrieval
Pool shows the table recall@N of the initial retriever output
prior to filtering, where N varies by model and dataset.

the table level, and CRUSH operates at the column level–we im-
plement a standardized protocol to ensure fair comparison across
these diverse approaches:
• For RASL: Filter entities to those from top N=50 tables by

relevance
• For baselines: Add schema elements until reaching RASL’s

context budget
– BM25/SXFMR: Add full table schemas
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– CRUSH: Add column names, where the first column in-
cludes the table name

– All baselines: Include all benchmark-provided 𝐸Λ in con-
structed schemas

Given 𝜆table descr.’s substantial length compared to other entity
types, we evaluate performance both with and without it, adjusting
baseline context budgets accordingly. While this approach doesn’t
guarantee identical contexts, it ensures RASL’s context size never
exceeds baselines.

Results in Table 3 show RASL significantly outperforming base-
lines in both settings, demonstrating strong synergy between multi-
entity retrieval and table prediction. Without table descriptions,
RASL achieves higher initial retrieval recall than all baselines under
equal context budgets. With table descriptions included, baselines
often achieve higher initial recall by fitting more distinct schemas
within the budget. However, RASL still achieves superior table
prediction performance, suggesting it retrieves more relevant con-
text. This is further evidenced by RASL’s larger improvements in
prediction recall versus initial pool recall when including table
descriptions, indicating these descriptions provide unique value
beyond other retrieved entities.

5.6.1 Impact of Table Descriptions on Context Usage. While in-
cluding 𝜆table descr. improves RASL’s table prediction performance
(Table 3), it significantly increases token consumption. Analysis of
token usage statistics in Table 4 reveals that consumption patterns
strongly depend on dataset structure, and given RASL’s fixed N=50
table retrieval limit, 𝜆table decr. token usage inversely correlates with
average columns per table. For BIRD, which has 7.26 columns/table,
table descriptions consume only 3% of the original schema tokens.
In contrast, for Fiben, with just 2.46 columns/table and significantly
smaller total database size, table descriptions exceed the entire
original schema size.

While experiments validate the utility of comprehensive table
descriptions, their token consumption generally outweighs perfor-
mance benefits across tested datasets. Though this approach may
prove valuable for settings with wide tables or high-accuracy re-
quirements, we believe future work on more concise table context
synthesis could better serve RASL under tight context budgets.

Spider BIRD Fiben

Component Toks. Avg. Toks. Toks. Avg Toks. Toks. Avg Toks.
(Total) (N=50) (Total) (N=50) (Total) (N=50)

Table name 3,120 63 1,594 39 1,180 210
Table alias 3,178 44 - - - -
Column name 15,143 65 11,257 50 1,887 339
Column alias 15,657 93 10,105 38 - -
Column descr. - - 34,903 202 - -
Value descr. - - 28,379 55 - -
Table descr. 259,885 3,670 146,442 2,357 37,780 6,441
Total without
table descr. 37,098 266 86,238 384 3,067 549
Total with
table descr. 296,983 3,936 232,680 2,741 40,847 6,990

Table 4: Token usage breakdown by schema components
with and without including 𝜆table descr.. We compare the to-
tal database schema tokens to the average tokens used by
RASLretriever at 𝑁 = 50. Each token is approximately 3.5 char-
acters.

5.7 RASL Component Ablation
Table 5 presents our analysis of keyword-level retrieval and entity-
type relevance score calibration. Maintaining our experimental
setup of RASLfull with N=50 table filtering, we evaluate both fi-
nal table prediction and initial retrieval pool recall. Results show
keyword-based retrieval (𝐾) significantly outperforms question-
based retrieval (𝑞) across all datasets, demonstrating the impor-
tance of granular search queries for 𝐸 retrieval. While combining
both approaches (𝐾 ∪ {𝑞}) yields slight improvements in most
settings, keyword-based retrieval remains the primary driver of
performance.

The impact of entity-type weight calibration (𝑊Λ) varies by
dataset, providing substantial gains for Spider but only modest
improvements for BIRD; results are excluded for Fiben due to no
training samples being available. We observe that while𝑊Λ can
be beneficial, it is not a necessary component of RASL, which
demonstrates strong utility even in settings where no labeled data
exists.

RASLfull RASLretriever
Dataset Configuration R@5 R@15 R@50

Spider

𝐾 ∪ {𝑞} 97.0 98.0 99.3
𝐾 only 96.6 98.2 99.1
𝑞 only 92.7 93.2 97.8
𝐾 ∪ {𝑞} w/o𝑊Λ 94.3 95.8 96.8

BIRD

𝐾 ∪ {𝑞} 97.5 97.8 98.1
𝐾 only 96.8 97.1 98.3
𝑞 only 90.1 90.1 95.8
𝐾 ∪ {𝑞} w/o𝑊Λ 97.2 97.4 98.0

Fiben

𝐾 ∪ {𝑞} 69.1 69.2 90.6
𝐾 only 69.1 69.2 89.7
𝑞 only 67.4 67.5 79.4
𝐾 ∪ {𝑞} w/o𝑊Λ - - -

Table 5: Ablation study on the impact of retrieval query type
(𝐾 vs. 𝑞) and entity-level weight calibration (𝑊Λ). RASLfull
filters 𝐸 to the top 𝑁 = 50 tables prior to table prediction,
with recall reported over final table prediction and initial
candidate tables.

5.8 Error Analysis
Next we cover some common error cases observed across baseline
methods. In Figure 3 we show how assumptions in CRUSH schema
hallucination can impact retrieval performance. In this case, we see
that an incorrect person table name causes all segments to over-
index on people-related columns and associated tables. In contrast,
RASL uses granular and isolated keywords directly extracted from
the question. When paired with entity-level retrieval, this allows
for highly relevant specific tables and columns to be loaded from
any keywords extracted from the question, without assumptions
on how the schema is structured.

In Figure 4 and 5 we show the most common causes of error
in table retrieval baselines, which is insufficient granular retrieval
context. We see that important keywords, such as circuits in Figure
4 or cards in Figure 5 are not sufficiently captured in table-level
similarities, resulting in necessary tables being missed.
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Incorrect CRUSH hallucinated schema

Question: Where is Amy Firth’s hometown? Hometown refers to
city, county, state

Ground Truth Tables: [’student_club.member’,
’student_club.zip_code’]

Ground Truth Columns: [’member.first_name’,
’member.last_name’, ’member.zip’, ’zip_code.city’, ’zip_code.state’,
’zip_code.county’, ’zip_code.zip_code’]

CRUSHSXFMR

Hallucinated Schema: [’person.first_name’, ’person.last_name’,
’person.hometown_city’, ’person.hometown_county’,
’person.hometown_state’]

Top 5 Tables: [’human_resources.employee’,
’works_cycles.person’, ’movie_3.actor’, ’address.state’,
’address.country’]
Index of Correct Table: {’student_club.member’: 31,
’student_club.zip_code’: 30}

RASL

Keywords: [’person’ ’town’, ’city’, ’county’, ’state’, ’name’, ’first
name’, ’last name’, ’location’]

Top 5 Tables: [’law_episode.person’, ’regional_sales.‘store
locations‘’, ’student_club.zip_code’, ’student_club.member’,
’retail_complains.district’]

Figure 3: Example of schema hallucination leading to poor
matching by CRUSH.

Failure of Semantic Table Retrieval

Question: How many formula_1 races took place on the circuits
in Italy?

Ground Truth Tables: [’formula_1.circuits’, ’formula_1.races’]

Ground Truth Columns: [’formula_1.circuits.circuitid’,
’formula_1.circuits.country’, ’formula_1.races.circuitid’]

SXFRMR

Top 3 Tables: [’formula_1.qualifying’, ’formula_1.results’,
’formula_1.constructorstandings’]

Index of Correct Table: {’formula_1.races’: 4,
’formula_1.circuits’: 24}

RASL

Keywords: [’formula_1’, ’races’, ’country’, ’circuits’, ’race
circuits’]

Top 3 Tables: [’formula_1.circuits’, ’formula_1.races’,
’formula_1.qualifying’]

Figure 4: Failure of semantic table retriever due to lack of
granular context.

Failure of Lexical Retrieval

Question: List down the name of artists for cards in Chinese
Simplified. Chinese Simplified’ is the language;

Ground Truth Tables: [’card_games.cards’,
’card_games.foreign_data’]

Ground Truth Columns: [’cards.artist’, ’cards.uuid’,
’foreign_data.language’, ’foreign_data.uuid’]

BM25

Top 3 Tables: [’language_corpus.langs’, ’mondial_geo.language’,
’mondial_geo.religion’]

Index of Correct Table: {’card_games.cards’: 61,
’card_games.foreign_data’: 15}

RASL

Keywords: [’artists’, ’cards’, ’language’, ’name’]

Top 3 Tables: [’card_games.cards’, ’card_games.foreign_data’,
’card_games.set_translations’]

Figure 5: Failure of lexical table retriever due to lack of gran-
ular context.

5.9 End-to-End SQL Generation
In Table 6 we compare the performance of RASL to retrieval-based
baselines on end-to-end SQL generation. This evaluation applies
the full RASL pipeline with the same setting as previously, where
all 𝐸 belonging to the top 𝑁 = 50 tables by relevance are used
for table prediction. For SQL generation we load the full original
schema for each predicted table, retaining only Λ provided by the
benchmarks and excluding 𝜆table descr. from RASL due to increased
token consumption outweighing benefits for practical enterprise
applications. Due to relatively low recall at 𝑁 = 5 for all baseline
methods, we evaluate performance over 𝑁 = 15 and 𝑁 = 30, as
well as compare to the standard single database text-to-SQL setting
where all tables corresponding to the target database are loaded.
We report text-to-SQL execution accuracy and table recall with
respect to ground truth SQL queries as our primary metrics. We
also list the average number of tokens used to construct schemas
used in prompting. Since RASL contains two prompting steps (table
prediction and SQL generation), we sum the total schema tokens
over both steps for RASL.

We see that RASL consistently ranks best in both SQL table recall
and execution accuracy compared with all baselines. We note that
for both BIRD and Spider, RASL never predicts over 15 tables, ac-
counting for identical metrics for both 𝑁 = 15 and 𝑁 = 30. We also
observe that RASL constructs token-efficient schemas, being the
most efficient method at 𝑁 = 30 and ranking second at 𝑁 = 15. For
both Spider and BIRD, we see that on average the table prediction
schema accounts for approximately 2/3 of the total schema tokens,
with the final SQL generation over full schemas from selected ta-
bles accounting for the other 1/3. A detailed cost analysis based on
commercial API pricing is provided in Appendix G.
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BIRD Spider
N=15 N=30 N=15 N=30

Model Acc. Recall Tokens Acc. Recall Tokens Acc. Recall Tokens Acc. Recall Tokens
BM25 47.4 84.6 4,057 49.5 89.3 8,577 58.3 87.0 1,304 59.3 89.2 2,662
SXFMR 43.6 82.6 4,989 48.0 89.1 8,993 58.0 85.7 1,182 59.0 87.9 2,364
CRUSHBM25 43.5 80.92 5,133 50.1 87.5 9,978 60.1 89.3 1,395 62.5 90.3 2,764
CRUSHSXFMR 49.4 91.6 5,589 52.9 93.0 10,385 55.9 87.0 1,374 58.0 91.6 2,744
RASLfull 53.5 94.6 4,696 53.5 94.6 4,696 64.5 92.5 1,266 64.5 92.5 1,266
Gold 54.0 96.7 2,489 54.0 96.7 2,489 69.0 99.5 389 69.0 99.5 389

Table 6: Execution accuracy and table recall of RASL versus baselines on end-to-end SQL generation. Token counts represent
total schema tokens consumed for each method, including both table prediction and SQL generation steps for RASL. Bold
indicates best method.

6 DISCUSSION AND NEXT STEPS
RASL successfully addresses the challenge of scaling text-to-SQL
systems to enterprise-level databases through an effective component-
based retrieval architecture. Our experiments demonstrate signifi-
cant performance improvements over baseline retrieval-basedmeth-
ods while maintaining practical context budgets. We outline key
insights, limitations, and future research directions that emerge
from our work.

6.1 Key Insights
Entity-level decomposition proves highly effective for context
retrieval under token constraints. By decomposing both questions
and schemas into granular semantic units, RASL preserves critical
information while scaling to massive schemas without requiring
domain-specific training. This approach shows particular strength
in context-rich environments like BIRD, where entity-level retrieval
achieves greater recall improvements over table-level methods,
which often fail at covering important details within user questions.

Two-stage retrieval-prediction creates a powerful synergy
that consistently outperforms alternative methods. Our approach
first narrows the search space through multi-entity retrieval, then
applies LLM reasoning to identify the most relevant tables. While
RASLretriever does not excel directly at stand-alone high-precision
table identification, we find that it retrieves more valuable context
than baseline retrieval methods under the same token budget, with
improved performance on table prediction. Furthermore, we show
that our end-to-end system consistently enables higher SQL gen-
eration accuracy than baseline methods while consuming fewer
overall input tokens.

6.2 Limitations
While we validate that synthesizing additional semantic context
such as table descriptions can further improve performance, their
inclusion creates significant token consumption trade-offs, partic-
ularly for databases with few columns per table. We believe that
although promising, the proposed approach requires more refine-
ment before additional synthesized context can provide low-cost
performance benefits.

For all evaluations, we apply RASL to retrieve context relating
to the top 𝑁 = 50 tables by relevance. While absolute token usage
at this setting is significantly lower than LLM context window
budgets, we believe that a deeper analysis of performance over

different 𝑁 values would help identify optimal trade-offs between
context size and retrieval effectiveness.

Lastly, while RASL proves effective using independent entity
retrieval, we believe that further information may be contained
in relative relevance across entity types. For instance, it may be
beneficial to increase column-level entity scores when multiple
distinct entities are retrieved from the same table.

6.3 Future Directions
Several promising research directions emerge from our work. Syn-
thesizing more concise and granular table context entities may
improve retrieval quality while keeping token consumption man-
ageable. Exploring dynamic entity-level token allocation based on
database characteristics could further enhance performance. Ad-
ditional opportunities include extending evaluation of RASL over
cross-database queries, integrating with recent advances in SQL
generation techniques (e.g., multi-prompting and self-verification),
and using agentic retrieval approaches to iteratively retrieve context
using guided keyword searches based on past retrieval observations.

RASL represents a significant step toward practical natural lan-
guage interfaces for massive database environments. By addressing
the critical bottleneck of schema linking at scale without requiring
specialized fine-tuning, it enables more accessible deployment of
text-to-SQL systems across diverse enterprise settings. Future work
building on this foundation has the potential to further bridge the
gap between natural language understanding and database access.

7 CONCLUSION
In this work, we present RASL, a zero-shot framework for scaling
natural language querying to massive databases. RASL decomposes
database schemas into granular semantic entities, retrieves relevant
context via calibration-enhanced similarity to important question
components, and reasons over the resulting reduced schema for pre-
dicting relevant tables and generating SQL queries. We demonstrate
that RASL out-performs baselines across multiple datasets vary-
ing in database size, relational information, and available semantic
context. While prior works addressing this challenge often rely on
domain-specific fine-tuning, which complicates deployment, RASL
is designed to be robust to database schema and context changes–
only requiring syncing the vector database with no model training
required–and can be easily deployed in serverless computing envi-
ronments.
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A SCHEMA ENTITY USAGE BY 𝑁 = 50 TOP
RELEVANT TABLES

Below we show the percent of total database schema entities used
with entities filtered by top 𝑁 = 50 distinct tables over Spider and
BIRD benchmarks. We see that total schema is consistently reduced
to less then 3% of the total schema entities for Λ𝑇 , and less than 1%
of total schema entities for Λ𝐶 .

Dataset
Entity Type Spider BIRD
Table Name 1.78% 1.99%
Table Alias 1.27% -
Table Descr. 1.32% 2.18%
Column Name 0.50% 0.42%
Column Alias 0.66% 0.37%
Column Descr. - 0.49%
Value Descr. - 0.29%

Table 7: Entity usage across different datasets

B EXPLORATION OF ENTROPY-GUIDED
KEYWORD-LEVEL WEIGHT CALIBRATION

Information retrieval systems often struggle with keywords that
have varying levels of specificity–some termsmay be highly specific
to certain schema elements, while others may be generic and match
well with many elements. To address this challenge, we explored
applying the entropy-guided similarity approach introduced by
CRUSH [12], adapting it to handle our keyword-level retrieval
approach.

Building onCRUSH’s core insight that keyword specificity should
influence matching weights, we developed a calibration system
that automatically identifies and adjusts for differences in keyword
discriminative power. For example, a keyword like "latitude" that
strongly matches only geographic coordinates should have more
influence than "value" which may match well with many different
schema elements.

We quantify this specificity using an information theory ap-
proach. For each keyword 𝑘 and entity type 𝜆, we first compute a
probability distribution over matching entities:

𝑝 (𝑒 |𝑘, 𝜆) = exp(𝛼 · 𝑟0 (𝑒, 𝑘))∑
𝑒′∈𝐶𝑘,𝜆

exp(𝛼 · 𝑟0 (𝑒′, 𝑘))
(2)

where 𝑟0 (𝑒, 𝑘) is the initial relevance score and 𝛼 is a scaling fac-
tor that helps differentiate between similar scores. We then measure
how focused or diffuse these matches are using entropy:

𝐻 (𝑘, 𝜆) = −
∑︁

𝑒∈𝐶𝑘,𝜆

𝑝 (𝑒 |𝑘, 𝜆) log 𝑝 (𝑒 |𝑘, 𝜆) (3)

A low entropy indicates the keyword strongly prefers certain
schema elements (high specificity), while high entropy suggests the
keyword matches broadly across many elements (low specificity).

We adjust the final relevance scores:

𝑟 (𝑒, 𝑘) = 𝑟0 (𝑒, 𝑘) · 𝜎 (𝛼 (𝐻𝜆 − 𝐻 (𝑘, 𝜆))) (4)

where 𝜎 is the sigmoid function and 𝐻𝜆 is the mean entropy for
entity type 𝜆. This calibration is designed to automatically reduce
the influence of generic keywords while amplifying the impact of
specific ones. The scaling parameter 𝛼 controls the sharpness of
the probability distribution.

While beneficial in CRUSH, we found that the inclusion of
keyword-level entropy calibration had minimal impact on perfor-
mance, with marginal impact at low 𝛼 (1.0) and negative impact
at higher 𝛼 (2.0, 3.0, 5.0, 10.0). One possible explanation for this is
that sharp distributions with few informative 𝑒 for a given (𝑘, 𝜆)
will result in all 𝑒 from that (𝑘, 𝜆) being up-weighted, leading to
more non-informative 𝑒 being included. Another possible explana-
tion is that flat distributions with many high relevance 𝑒 may not
necessarily indicate they are uninformative. For instance, we see in
E that there can be commonly named tables and columns across
many databases. However, it may be more beneficial to include
these at higher retrieval budgets, rather than down-weighting them
due to lower specificity. For these reasons, we have excluded this
component from our results, but we believe additional refinement
of this method in future works may benefit RASL’s performance.

C LLM PROMPTS
C.1 Table Prediction Prompt

You are a database expert assistant that helps identify which
tables are relevant to answering SQL questions.

TASK:
Analyze the provided database schema and the user’s
question, then identify which specific tables (and their
databases) are most relevant for answering the question. You
must rank tables in strict order of relevance.

### Schema:
{SCHEMA}

### User Question:
{QUESTION}

### Instructions:
1. Examine the question carefully to understand what data
would be needed to answer it
2. Analyze the database schema to determine which tables
contain relevant information
3. Rank tables by relevance - tables listed first should be most
central to answering the question
4. Consider both direct mentions and implied data needs
5. Select only tables that would contribute to a SQL query
answering the question
6. Consider join paths needed to connect relevant information
7. IMPORTANT: The table schemas are incomplete and only
contain possibly relevant columns. There are many columns
not shown within each table.
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Ranking Criteria:
- Primary tables: Directly contain data explicitly asked for in
the question
- Secondary tables: Needed for joins or containing supple-
mentary information
- Tertiary tables: Might be useful for contextual information
but not essential

First, think through your reasoning step by step. Carefully
consider how to rank the relevance of each table.

Then provide your answer in the following XML format:

<thinking>
Your detailed analysis explaining why specific tables are
relevant to the question and how you determined their
ranking order.
</thinking>

<relevant_tables>
<database name="database_name">
<!– Tables in strict order of relevance, most relevant first –>
<table rank="1">most_relevant_table</table>
<table rank="2">second_most_relevant_table</table>
<table rank="3">third_most_relevant_table</table>
</database>
<database name="another_database_name">
<table rank="1">most_relevant_table_in_this_db</table>
<!– Additional tables in decreasing relevance –>
</database>
</relevant_tables>

IMPORTANT:
- List tables in strict order of decreasing relevance within each
database
- The "rank" attribute should reflect overall relevance across
all databases (1 = most relevant overall)
- Only include tables that are genuinely relevant to answering
the question
- If no tables from a particular database are relevant, do not
include that database
- Only a subset of columns are shown for each table. Leverage
these when relevant, but DO NOT assume the table is missing
any columns

C.2 End-to-End SQL Generation Prompt
Belowwe show the prompt for end-to-end SQL generation. Since all
datasets evaluated contain single-database target SQLs, we apply a
prompt while involves first predicting the correct database, and then
predicting the correct SQL over that database. For self-correction
performed in experiments, we apply the same system prompt, with
follow-up messages on the specific error encountered, or that the
output table is empty if no results are returned, until the number of
self-correction iterations is reached or a populated table is returned.

For extensions to cross-database querying using compatible SQL
engines, the database prediction tag can be removed and instruc-
tions added on how to properly format tables with database name
prefixes in the generated SQL query. There is no single-database
constraint on context retrieval or schema construction.

You are a data science expert.
Below, you are presented with a database schema and a
question.
Your task is to generate a SQL query to answer the question.
{DIALECT_INSTRUCTION}

### Database Schema
{DATABASE_SCHEMA}

### Question
{QUESTION}

First, think through your reasoning step by step. If there are
multiple databases, determine which one you should use, and
then carefully consider how to rank the relevance of each
table.
Then provide your answer in the following XML format:

<thinking>
Your detailed analysis explaining why specific tables are
relevant to the question and how you determined their
ranking order.
</thinking>

<database>
The database you are executing the SQL query on
</database>

<sql_query>
Your executable SQL query
</sql_query>

IMPORTANT:
- Pay close attention to the specific columns used for
selections and filtering, ensuring they are the correct ones.
- Pay close attention to any value formats provided in the
question, as well as specific values. For value conditions, if
the user question specifies a specific value, follow this closely.
- Think step by step to find the correct SQL query.

C.3 Keyword Extraction
The keyword extraction prompt applied is adapted from CHESS
[21], where various few-shot examples are provided to guide the
language model. We adopt their core structure, while removing
instructions on value extraction, which CHESS uses to find relevant
schema context based on specific values referenced in user ques-
tions. We do not explore additional indexing of database values, as
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this can lead to extreme cost and complexity for massive enterprise
datasets with terabytes of data and constantly changing values.

You will be provided with a user question that can be
answered by querying some database system. Your objective
is to analyze the question to identify and extract keywords
and keyphrases which might help indicate what parts of
the database schema to use. These elements are crucial for
understanding the core components of the question provided.
This process involves recognizing and isolating significant
terms and phrases that could be instrumental in formulating
searches or queries related to the posed question. You should
focus on entities such as column or table names that may be
referenced, as well as descriptions of what these are. Do not
focus on specific column values that may be referenced.

### Instructions

- Read the Question Carefully: Understand the primary focus
and specific details of the question. Look for any named
entities types (such as organization, location, etc.), technical
terms, and other phrases that encapsulate important aspects
of the inquiry.

- Keywords: Single words that capture essential aspects of the
question or hint.
- Keyphrases: Short phrases or named entity types that
represent specific concepts, locations, organizations, or other
significant details.

Example 1:
Question: "What is the annual revenue of Acme Corp in the
United States for 2022? Focus on financial reports and U.S.
market performance for the fiscal year 2022."

["annual revenue", "corporations", "country", "year", "financial
reports", "U.S. market performance", "fiscal year", "corporate
revenues"]

Example 2:
Question: "In the Winter and Summer Olympics of 1988,
which game has the most number of competitors? Find
the difference of the number of competitors between
the two games. the most number of competitors refer to
MAX(COUNT(person_id)); SUBTRACT(COUNT(person_id
where games_name = ’1988 Summer’), COUNT(person_id
where games_name = ’1988 Winter’));"

["olympic games", "competitors", "number of competitors",
"person_id", "games", "games_name", "competitors competing
in olympic games"]

Example 3:
Question: "How many Men’s 200 Metres Freestyle events did
Ian James Thorpe compete in? Men’s 200 Metres Freestyle

events refer to event_name = ’Swimming Men”s 200 metres
Freestyle’; events compete in refers to event_id;"

["events", "event_id", "event_name", "compete in", "competi-
tors", "competitive games", "competitors competing in events"]

Example 4:
Question: "List the infant mortality of country with the least
Amerindian."

["mortality rate", "infant mortality rate", "country", "ethnicity",
"population", "infant mortality"]

Example 5:
Question: "What are the first names of the students who
live in Haiti permanently or have the cell phone number
09700166582?"

[’students’, ’first names’, ’country’, ’permanent address’, ’cell
phone number’, ’contact information’, ’student location’,
’student contact details’]

### Task

Given the following question, identify and list all relevant
keywords and keyphrases which may indicate which parts of
a database schema might be necessary to answer the user
question.

Question: {QUESTION}

Please provide your findings as a json list, capturing the
essence of the question through the identified terms and
phrases.
Only output the json list with no explanations.

C.4 Table Description Synthesis Prompt
Table descriptions are synthesized using the below LLM prompt,
where table schemas are generated following D.

You are a database expert creating semantic table descriptions
for a text-to-SQL retrieval system.

### TASK
Generate a concise, high-level description of the provided
database table that captures its semantic purpose and usage
patterns. This description will be embedded in a structured
XML format and used for retrieving relevant tables when
processing natural language questions.

### DATABASE SCHEMA
{TABLE_SCHEMA}
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First, think through what makes this table important, what
business concepts it represents, and how users might refer to
it in natural language questions. Consider its likely role in
the database without listing all columns.

Then, create a concise table description that covers:
1. The table’s main purpose and real-world concept it
represents
2. Its context within the broader database domain
3. Typical query patterns or business questions it helps
answer
4. Key relationships with other tables (if any)
5. Alternative terms users might use when referring to this
table

Keep your description under 150 words, focusing on semantic
meaning rather than technical details. For tables with many
columns, focus on the overall table purpose and categories of
data rather than describing individual columns.

Format your response as follows:
<thinking>
Your analysis of the table and reasoning about its purpose,
usage, and significance.
</thinking>

<description>
Paragraph 1: Purpose and domain context of the table in 2-3
sentences.
Paragraph 2: Usage patterns and typical questions this table
answers in 2-3 sentences.
Paragraph 3: Key relationships with other tables in 1-2
sentences (if applicable).
Alternative terms: comma-separated list of 3-6 alternative
phrases users might use.
</description>

D SCHEMA FORMAT
Below is the schema format used for all LLM operations (table
prediction and SQL generation). We adopt a format similar to M-
Schema [9], with XML tags substituted for better alignment with
Anthropic Claude models. For any table-level entities we automati-
cally add 𝑡𝑎𝑏𝑙𝑒_𝑛𝑎𝑚𝑒 from the metadata, and for all column-level
entities we add in 𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒 and𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 . We have a separate
XML section for 𝑡𝑎𝑏𝑙𝑒_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, as this is the only table-level
contextual entity used, although other sections can be added if addi-
tional information types exist. For column-level context entities, we
map from a short description of the context type to the value, with
the specific example below shown for the BIRD dataset. Foreign
keys are added at the database-level when available.

<db>$db_id

<table>$table_name
<desc>
$table_description
</desc>

<schema>
($column_name:$data_type, $column_alias, Column
description: $column_description, Value description:
$value_description),
($column_name:$data_type, $column_alias, Column
description: $column_description, Value description:
$value_description),
...
</schema>
</table>

<table>$table_name
<desc>
$table_description
</desc>

<schema>
($column_name:$data_type, ...),
($column_name:$data_type, ...),
...
</schema>
</table>

...

<foreign_keys>
$table_name.$column_name=$table_name.$column_name
...
</foreign_keys>

</db>

<db>$db_id

...

</db>

E ANALYSIS OF CONFLICTING INFORMATION
OVERLAP

Below we highlight some common causes for low table-level recall
at low𝑁 values due to highly overlapping table/column information
across full datasets. We observe that while performance is affected
at low 𝑁 , this effect is eliminated at higher 𝑁 values, while still
reducing overall database schema to a small fraction (e.g. < 3% of
𝐸Λ𝑇

and < 1% of 𝐸Λ𝐶
at 𝑁 = 50) of the original schema.
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E.0.1 Example 1 (Spider). Question: Find the districts in which
there are both shops selling less than 3000 products and shops sell-
ing more than 10000 products.
Ground truth tables: {’employee_hire_evaluation.shop’}
Ground truth columns: {’employee_hire_evaluation.shop.district’,
’employee_hire_evaluation.
shop.number_products’}

RASL-ExtractedKeywords: [districts, shops, products, product
quantity, shop inventory, retail locations]

Finding: 19 tables contain the word ’products’, 6 contain ’shop’,
and 8 contain ’store’. Similarly, 51 columns contain ’product’, 14
contain ’shop’, and 11 contain ’district’. While entropy-guided rel-
evance calibration down-weights keywords such as column-level
’product’, the effect is less pronounced on high overlap across only
5-15 entities, requiring larger top-𝑁 values to load all relevant
context.

E.0.2 Example 2 (BIRD). Question: Where is Amy Firth’s home-
town? hometown refers to city, county, state
Ground truth tables: {’student_club.member’, ’student_club.zip_code’}
Ground truth columns: {’student_club.member.first_name’, ’stu-
dent_club.member.last_name’, ’student_club.member.zip’,
’student_club.zip_code.city’, ’student_club.zip_code.county’, ’stu-
dent_club.zip_code.state’, ’student_club.zip_code.zip_code’}

RASL-ExtractedKeywords: [’hometown’, ’city’, ’county’, ’state’,
’location’, ’residence’, ’person details’]

Findings: 7 tables contain the word ’city’, 7 contain ’location’,
and 5 contain ’state. Similarly, 19 columns contain ’city’, 16 contain
’state’, and 13 contain ’location’. Due to this highly overlapping
information of similar data across different databases, it can be
difficult to retrieve top-𝑁 context entities at low 𝑁 values, whereas
at higher 𝑁 values (e.g. 20-50), all sufficient context can be included
for schema reasoning.

F BASELINE METHOD IMPLEMENTATION
DETAILS

For 𝑅𝑒𝑐𝑎𝑙𝑙@5 and 𝑅𝑒𝑐𝑎𝑙𝑙@15 metrics, we directly adopt the met-
rics reported by DBCopilot [23] on external benchmarks, which
serializes table schemas into documents containing table names,
column names, and column context for use in BM25, SXFMR, and
DTR. BM25 uses Okapi BM25 with the two adjustable parameters
optimized over training, and SXFMR uses all-mpnet-base-v2 [20].
CRUSH uses gpt-3.5-turbo-0125 [16] for schema hallucination and
adopts the same BM25 and SXFMR settings. DTR and DBCopilot are
fine-tuned using 1× 105 question-SQL pairs, which are synthesized
over the target databases using the process detailed in [23].

For ablation study reproductions, we leverage the same settings
for BM25 and SXFMR, where we find BM25 works best on training
samples using shingles of 𝐾 = 4 for Spider and 𝐾 = 5 for BIRD
and Fiben, with word-level indexing performing poorly across all
datasets. For CRUSH, the same settings are used for BM25 and
SXFMR, but we leverage Anthropic Calude 3.5 Sonnet-v2 [2] for
schema hallucination due to access constraints for OpenAI models.

G COST ANALYSIS
A detailed input token cost analysis of RASL versus baseline meth-
ods for end-to-end SQL generation is provided in Table 8. We adopt
standard on-demand commercial API pricing provided by Ama-
zon Bedrock [4], which charges $0.0008 per 1,000 input tokens for
Anthropic Claude 3.5 Haiku, $0.003 per 1,000 input tokens for An-
thropic Claude 3.5 Sonnet v2, and $0.0001 per 1,000 input tokens
for Cohere Embed 3 English. Cost metrics are broken down by
retrieval, LLM prompt, and schema components, with all values
calculated per 100 questions to improve readability. LLM prompt
includes both the table prediction and SQL generation prompt steps
for RASL and only SQL generation for baselines, with the schema
prompt component removed to isolate variable costs.

The results demonstrate RASL’s superior cost scaling charac-
teristics despite retrieval overhead. While RASL incurs additional
costs for retrieval ($0.03 per 100 queries) and more complex prompt-
ing ($0.39-0.41 vs $0.10-0.11 for baselines), its key advantage lies
in maintaining constant costs as the number of tables increases.
Most notably, RASL costs remain identical at N=15 and N=30, while
baseline costs scale linearly with the number of included tables.
For Spider, RASL costs $0.80 per 100 queries at both N=15 and
N=30, compared to baselines ranging from $0.45-0.52 at N=15 but
increasing to $0.81-0.93 at N=30. For BIRD, RASL costs $1.85 per
100 queries versus $1.32-1.78 for baselines at N=15, but baselines
increase substantially to $2.68-3.22 at N=30. This constant cost scal-
ing, combined with superior accuracy performance, makes RASL
particularly attractive for enterprise deployments where database
catalogs continue to grow over time.

We believe further optimizations could provide additional cost
benefits. Prompt reduction techniques could minimize the fixed
prompt overhead ($0.39-0.41 per 100 queries), while evaluations of
lighter-weight models for table prediction (e.g., using Claude Haiku
instead of Sonnet) represent promising avenues for cost reduction
that warrant investigation. These optimizations represent impor-
tant directions for future work to enhance RASL’s cost-effectiveness
in resource-constrained environments.
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Method Spider (per 100 queries) BIRD (per 100 queries)
Schema Retrieval Prompt Total Schema Retrieval Prompt Total
(N=15/30) (N=15/30) (N=15/30) (N=15/30)

BM25 $0.39/0.80 $0.00 $0.10 $0.49/0.90 $1.22/2.57 $0.00 $0.11 $1.32/2.68
SXFMR $0.35/0.71 $0.00 $0.10 $0.45/0.81 $1.50/2.70 $0.00 $0.11 $1.60/2.80
CRUSH_BM25 $0.42/0.83 $0.00 $0.10 $0.52/0.93 $1.54/2.99 $0.00 $0.11 $1.65/3.10
CRUSH_SXFMR $0.41/0.82 $0.00 $0.10 $0.51/0.92 $1.68/3.12 $0.00 $0.11 $1.78/3.22
RASL_full $0.38/0.38 $0.03 $0.39 $0.80/0.80 $1.41/1.41 $0.03 $0.41 $1.85/1.85
Table 8: Cost breakdown per 100 queries (USD) showing schema, retrieval, and prompt costs.
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