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Abstract

Vision Language Models (VLMs) have
achieved significant advancements in complex
visual understanding tasks. However, VLMs
are prone to hallucinations—generating out-
puts that lack alignment with visual content.
This paper addresses hallucination detection in
VLMs by leveraging the visual grounding infor-
mation encoded in transformer attention maps.
We identify three primary challenges in this
approach: the elective nature of visual ground-
ing for certain tokens, the high-dimensional
and noisy nature of attention maps, and the dy-
namic sequence length of attention on previous
tokens. To address these, we propose VADE,
a novel sequence modelling approach to effec-
tively learn complex sequential patterns from
high-dimensional and noisy attention maps for
fine-grained hallucination detection and mitiga-
tion. VADE achieves an average PR-AUC of
80% in hallucination detection on M-HalDetect
across four different model architectures and an
∼5% improvement in hallucination mitigation
on MSCOCO.

1 Introduction

Large Vision-Language Models (VLMs) have ush-
ered in a new era of image comprehension, achiev-
ing near-human performance on intricate tasks such
as image captioning and visual question answering.
This breakthrough was pioneered by the seminal
work on CLIP (Radford et al., 2021), paving the
way for several instruction-tuned VLM architec-
tures (Alayrac et al., 2022; Touvron et al., 2023;
Dai et al., 2023; Liu et al., 2024a) that seamlessly
integrate visual and textual information. However,
akin to their large language model (LLM) coun-
terparts, VLMs exhibit a concerning tendency for
hallucination, generating coherent yet unsubstanti-
ated outputs that lack grounding in the actual visual
data. Hallucinations in VLMs majorly occur due
to: (a) Distributional Shift, when they encounter
data distributions different from their training data
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Figure 1: Illustration of the correlation between the
aggregated visual attention weights and the token hallu-
cinations.
(b) Data Biases, where they learn and reflect biases
present in their training data (c) Lack of Ground-
ing, where insufficient grounding to the visual input
data leads to fabricated content, specifically when
the LLM’s language prior is stronger than the vi-
sual grounding.

This work focuses on detecting hallucinations in
VLMs by analyzing the visual grounding of their
outputs with respect to the input images. We lever-
age transformer’s attention maps to assess visual
grounding in VLMs, as they provide interpretabil-
ity and a fine-grained view without requiring addi-
tional reference data, tools, or knowledge. Figure 1
illustrates the relationship between visual ground-
ing signal and hallucinations for the generated im-
age caption. The visual grounding signal used here
is the aggregated attention weights pertaining to the
input image tokens across all layers and heads for
each generated text token. We clearly observe that
the aggregated visual attention scores tend to be
higher for accurately grounded tokens and drop sig-
nificantly for hallucinated tokens. To empirically
investigate this behavior, we conducted tests on
four VLMs within the context of image describing
tasks on 1000 samples from M-HalDetect dataset
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Figure 2: (a) Proportion of hallucinated tokens with low
visual attention scores versus all hallucinated tokens in
the dataset. (b) Distribution of tokens with low visual
attention scores among true positives (hallucinations)
and false positives (suffix tokens, punctuation, etc.).

(Gunjal et al., 2024) containing fine-grained hallu-
cination labels. As shown in Figure 2a, we noticed
a substantial proportion of hallucinated tokens had
low visual attention scores (i.e., below the 20th per-
centile of all visual attention scores).

However, there are three major challenges in
leveraging attention map based scores in detecting
hallucinations:

(i) Grounding is optional for some tokens: In
generated text, not all tokens require visual ground-
ing, as VLMs learn to attend differently to various
parts of speech. Content words like nouns, verbs,
adjectives, and adverbs typically need grounding to
convey semantic information about the depicted ob-
jects, actions, and attributes. However, functional
and linguistic elements such as suffixes, preposi-
tions, conjunctions, and punctuations may not ne-
cessitate direct visual grounding. Empirical evi-
dence in Figure 2b shows that among tokens with
low visual attention scores, approximately 30-40%
belong to these non-grounded functional elements,
potentially impacting the precision of hallucination
detection methods using such measures.

(ii) Noisy High-Dimensional Maze: Raw atten-
tion maps from multiple heads and layers are intri-
cate and cluttered with noise, a challenge further ex-
acerbated by the presence of attention sinks (Xiao
et al., 2024). Like CNN filters, attention heads
specialize in capturing different input aspects, but
only a subset correlates with visual grounding for
accurate text generation in vision-language models.
Directly aggregating these complex and noisy at-
tention maps would result in information loss and
suboptimal performance.

(iii) Dynamic Sequence Length: Attention
maps are inherently dynamic in nature, with the
sequence length expanding progressively as new
tokens are generated during the decoding process.
This continuous growth of the sequence length

presents a challenge for conventional models, as
they may struggle to effectively manage and pro-
cess the evolving context. To address this, it is cru-
cial to design a mechanism capable of efficiently
handling sequences that increase in size over time.

To tackle these challenges, we introduce our ap-
proach called Visual Attention Guided Hallucina-
tion Detection and Elimination (VADE), a novel se-
quence learning paradigm to leverage the sequence
of raw attention-maps corresponding to input/pre-
vious tokens for hallucination detection. Specifi-
cally, at each time step, VADE extracts attention
weights from all layers and heads corresponding
to the input image tokens, prompt tokens, and pre-
viously generated tokens. These attention weights
are then used to construct a structured sequence
of attention maps. Remarkably, with access to a
small amount of annotated data, VADE can learn
intricate patterns present in the attention maps, en-
abling it to distinguish between hallucinated and
accurate segments. By formulating the task as a
sequence learning problem, VADE can leverage
fine-grained temporal information across the previ-
ous tokens from their attention maps without any
lossy aggregation operations, thereby reducing the
impact of noise and sinks. We can further integrate
the VADE detector during decoding using rejec-
tion sampling strategy to mitigate hallucinations.
The proposed method is architecture-independent,
functioning across cross-attention and autoregres-
sive architectures, applicable for diverse VLMs.
Through extensive experiments on hallucination
benchmarks, along with detailed ablation studies,
we demonstrate that VADE achieves superior and
generalized hallucination detection and mitigation
performance across various VLMs.

2 Related Work

Previous approaches have focused on analyzing to-
ken probabilities, logits, and entropy (Guerreiro
et al., 2023; Geng et al., 2024) or using prob-
ing classifiers with hidden states (Belinkov, 2021;
Azaria and Mitchell, 2023). These methods often
struggle to detect complex hallucinations. Recent
studies (Gunjal et al., 2024; Yan et al., 2024) pro-
pose detection schemes through VLM fine-tuning
with custom classification heads, but these lack
cross-domain generalizability. Hallucination miti-
gation strategies involve integrating detection into
VLM sampling (Gunjal et al., 2024; Chuang et al.,
2024) or decoding processes (van der Poel et al.,



2022; Favero et al., 2024; Leng et al., 2023) to
improve candidate selection and probability cali-
bration.

Some recent studies (Chuang et al., 2024; Huang
et al., 2024; Liu et al., 2024b; Zhu et al., 2024) have
explored leveraging attention weights for halluci-
nation detection and mitigation. Lookback Lens
(Chuang et al., 2024) handcraft a simple feature
vector from aggregated attention weights and train
a logistic regression classifier to detect contextual
hallucinations for text summarization task in LLMs.
OPERA (Huang et al., 2024), proposes to detect
the knowledge aggregation patterns in VLM’s self-
attention maps (i.e. attention sinks) to detect the
onset of hallucinated continuations. PAI (Liu et al.,
2024b) and IBD (Zhu et al., 2024), propose to am-
plifying the attention weights assigned to image
tokens to enhance visual grounding during infer-
ence for hallucination mitigation. These methods
depending upon handcrafted features and manually
identified emerging patterns have limited effective-
ness and generalizability to detect complex and
intricate cases. Differing from existing works, our
proposed method (VADE), leverages the attention
maps in their raw form to learn complex sequential
patterns to determine visual grounding for VLMs
using small annotated data. VADE, proves effec-
tive in distinguishing visual grounding signal from
noise in attention maps caused by the presence out-
liers, sinks and null attentions.

3 Method

3.1 Task Definition

Recent generative VLMs typically consist of a vi-
sion encoder for visual perception, a large language
model for causal text generation and a modality
connector to glue the two modalities. Depending
on the choice of the modality connector, VLMs
can belong to: i) fully autoregressive architecture
(Dai et al., 2023; Liu et al., 2023; Laurençon et al.,
2024), that utilizes a learnable projector that maps
the vision hidden space to the text hidden space,
post which the visual tokens and text tokens are
concatenated as input to the language model, ii)
cross-attention architecture (Alayrac et al., 2022;
Laurençon et al., 2023; Bai et al., 2023b), uses
learnable cross-attention blocks that are interleaved
within the language model, allowing the text tokens
to cross-attend to the image tokens.

Let a VLM M , containing L decoder layers
with H attention heads each, take input visual im-

age (V ) and a input text prompt (P ) to generate
text (y). The visual input tokens can be denoted
as xV = {x1, . . . , xv, . . . , xV }, prompt tokens as
xP = {x1, . . . , xp, . . . , xP } and generated tokens
as y = {y1, . . . , yt, . . . , yT }. VLM takes the in-
put embeddings and uses attention mechanisms
to process and understand the contextual relation-
ships within the inputs. It then generates output
tokens autoregressively, predicting the most prob-
able next token by leveraging the model’s learned
representations and the previously generated tokens
as context:

zL = M(xV , xP )

P (yt|y<t, x
V , xP ) = SoftMax

[
h(zL)

]
V

(1)

where zL is the output hidden states of the last
layer, h is a linear head that projects the hid-
den states zL to obtain logits over the text vo-
cabulary V and y<t represents the generated to-
ken sequence up to time step t − 1. For hallu-
cination detection, the task is to predict whether
the generated text (y) is hallucinated or not. For-
mally, given a multi-modal hallucination detection
dataset D =

{
(vi, pi, yi, y

h
i )
}N

i=1
, containing N

image-prompt-response-label quadruplets, where
yhi ∈ {0, 1} is the ground-truth hallucination la-
bel (1 hallucinated, 0 not), the task is to predict
the hallucination likelihood (ŷhi ) for the generated
text. The granularity of the detection can be at
token, phrase/segment or sentence levels. For hal-
lucination mitigation, given an input text prompt
and image, the task is to generate accurate con-
tinuations grounded to the visual information and
object hallucinations are measured with respect to
ground truth objects in the image.

3.2 VADE
Formally, the attention mechanism is defined by the
attention equation, which computes the attention
scores between a query (Q) and key (K) :

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (2)

In cross-attention architecture, Q represents the
previous set of text tokens, and K represents the
visual tokens. The interaction between these two
components determines how the model assigns im-
portance to image tokens while generating text to-
kens. While in fully autoregressive architecture,
both K and Q are represented by concatenating
the visual and text tokens and the self attention
takes care of computing the dependency between
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Figure 3: The architecture diagram leveraging a pre-trained VLM alongside the proposed Hallucination Detection
(VADE) Components. The visual and text attention vectors are extracted separately and concatenated across all
layers and heads. The visual attention is computed from the cross attention module in case of the cross-attention
architecture and from the attention on image tokens for the fully autoregressive architecture.

the two modalities. We represent the two archi-
tectures in Figure 3 and explicitly demarcate the
overall attention into visual and textual based on
the weights emphasised on the respective tokens
within the attention mechanism. We highlight how
both the visual and text attention are separately ex-
tracted from all heads and layers and concatenated
to create a comprehensive representation.

Specifically, at a particular time step t, as illus-
trated in Figure 4, we concatenate the attention
weights on a particular image token xv and text
token xp across all layers and heads and represent
them as Av and Ap.

Av =
[
A(l1,h1)

v , . . . , A(lL,hH)
v

]
∈ R1×LH , (3)

Ap =
[
A(l1,h1)

p , . . . , A(lL,hH)
p

]
∈ R1×LH , (4)

where A
(l,h)
v and A

(l,h)
p represent a scalar attention

weight of the current token on the image token
xv and text token xp respectively for each head h
in layer l at the time step t. Note that, in VLMs
that use interleaved cross-attention blocks (Alayrac
et al., 2022), we mask the values of Av for the
remaining layers to denote missing features.

Then, we construct a structured sequence of at-
tention weight vectors pertaining to all input visual
tokens and previous text tokens at time step t:

A(t) =
[
Av1 , .., AvV , Ap1 , .., ApP

]
∈ R(V+P )×LH

(5)
where V is the number of visual tokens and P is
the number of text tokens (i.e. P = t − 1). A(t)
encapsulates the nuanced interaction between the
modalities at each decision point.

The length of the sequence (i.e., V + P ) grows
dynamically with each newly generated token.
Consequently, converting these sequences into

Figure 4: Illustration of how the visual and text attention
vector are computed and aggregated before being pro-
cessed by the sequence classifier to make the prediction
for hallucination at step t.

fixed-length feature vectors suitable for feature-
based classifiers becomes challenging without em-
ploying techniques such as aggregators, padding,
truncation, or fixed local windows. To address
this limitation, we propose a sequence modelling
approach to effectively capturing long-range depen-
dencies and temporal relationships within the input
sequences.

We input the sequence A(t) into a sequence clas-
sifier fθ (parameterized by θ) to learn patterns that
distinguish grounded representations from halluci-
nated ones, enabling the classifier to predict hallu-
cination likelihood ŷh(t) for each generated token
at each time step t.

ŷh(t) = fθ(A(t)) (6)

The overall training objective would be to mini-
mize a loss function L, such as binary cross-entropy
if hallucination detection is framed as a binary clas-
sification task:



L =−
∑
t

(
yh(t) log(ŷh(t))

+ (1− yh(t)) log(1− ŷh(t))
) (7)

where yh(t) represents the ground-truth label
for hallucination at time step t. This setup allows
the classifier to learn attention patterns that are
indicative of hallucinations, thus enabling reliable
predictions at each time step.

The innovative approach we propose for han-
dling the structured sequence of raw attention maps
addresses the challenges outlined (in Section 1)
and overcomes limitations in existing formulations
(detailed in Appendix C). By employing a se-
quence classifier, VADE can seamlessly process
fine-grained raw attention information across pre-
ceding tokens without resorting to any lossy ag-
gregation techniques, enabling it to differentiate
between visual grounding signals and noise caused
by outliers and sinks. This design allows VADE
to identify common and complex patterns within
attention maps, facilitating the distinction between
hallucinated and accurate segments using minimal
annotated data while achieving generalizable per-
formance on out-of-distribution (OOD) datasets.

For hallucination mitigation task, we employ
our hallucination detector (VADE) trained at seg-
ment level into the decoding process to select can-
didate segments with less likely hallucinations. Let
{S1, ..., Sk} be the k candidate segments of a fixed
length (ts) generated at time step t, we select the
candidate with least hallucination likelihood (S∗):

S∗ = argmins∈{S1,...,Sk}fθ(A(t+ ts)) (8)

4 Experiment

4.1 Setup
Models and Datasets: We conduct our experi-
ments on four VLMs: Idefics-v1-9b-instruct (Lau-
rençon et al., 2023), QwenVL-9b (Bai et al.,
2023b), LLAVA-v1.5-7b (Liu et al., 2024a) and
Idefics-v2-8b (Laurençon et al., 2024). Idefics-v1
and QwenVL adopt the cross-attention architec-
ture, while LLAVA-v1.5 and Idefics-v2 leverage
the fully-autoregressive architecture. We evaluate
our proposed methods on two multi-modal hallu-
cination detection datasets (M-HalDetect (Gunjal
et al., 2024) and ViGoR (Yan et al., 2024)) with
fine-grained annotations for hallucinated segments
in detailed image descriptions. For learning based

methods, we train the models on M-HalDetect’s
train set and evaluate on its validation set. For
cross-dataset transfer evaluation, we evaluate the
models on ViGoR validation set. We measure the
area under the Precision-Recall (PR) curve (PR-
AUC) to evaluate hallucination detection methods.
For more details on the datasets and models, refer
to Appendix A and Appendix B.

Baselines: As baseline methods for hallucination
detection, we consider proven methods from un-
certainty and hallucination literature from CV and
NLP domains. We introduce them briefly below
and explain them in detail in Appendix C.

Token Probability / Entropy (Guerreiro et al.,
2023; Geng et al., 2024; Huang et al., 2023), meth-
ods based on the hypothesis that VLMs often hal-
lucinate when showing high uncertainty in genera-
tion. We implement mean and maximum calcula-
tions of token probabilities and entropy as indica-
tors of hallucination risk.

Aggregated Attention Scores, measure visual
grounding by averaging attention weights across
image tokens, layers, and heads. Similarly, textual
attention scores are computed based on attention
weights across previous text tokens. These aggre-
gated scores help quantify visual-textual alignment
in generated text.

Attention Sinks (Xiao et al., 2024)(Huang et al.,
2024), represent patterns where intermediate to-
kens aggregate knowledge from prior tokens and
are often linked to hallucination. We implement a
metric identifying these patterns within local win-
dows to evaluate knowledge aggregation.

Probing Classifiers (Gunjal et al., 2024; Yan
et al., 2024; Azaria and Mitchell, 2023), involve
learning a classifier on model intermediate repre-
sentations to predict hallucination likelihood. Fea-
tures from hidden states across layers inform this
classifier, enabling layer-wise detection.

Attention Map-based Detectors (Chuang et al.,
2024), train a classifier on multi-head attention
maps to identify patterns linked to hallucination.
Averaged attention weights from input image,
prompt, and previous tokens are concatenated to
form a feature vector. Detectors focus on image
tokens alone (VisAttnDet) or a combination of all
tokens (VisTexAttnDet).

Implementation Details: We use the attention
weights before the softmax operation, as we found
it to be more effective for hallucination detection
than the softmaxed version. In VADE, we use a



single layer transformer based encoder with 8 at-
tention heads for the sequence model, followed by
a linear classification head (details in Appendix D).
For segment-level task, for each sample we set
target labels at segment-end tokens while mask-
ing other indices, and optimize using cross-entropy
loss. For remaining classifiers, we use a single
layer neural network with a hidden dimension of
1024. All classifiers are trained with a batch size
of 8 for 2 epochs. We use Adam optimizer with
a learning rate of 2 × 10−4 and weight decay of
10−2. We performed all experiments on NVIDIA
Tesla A10 GPUs.

4.2 Main Results
Table 1 reports the hallucination detection perfor-
mance for baselines and VADE on M-HalDetect
and ViGoR validation sets. Entropy-based methods
(MeanEnt & MaxEnt) perform slightly better than
probability-based scores (MeanProb & MaxProb).
Aggregated attention scores (VisAttnAgg & Vis-
TexAttnAgg) show a 10-15% improvement over
the best uncertainty-based metric, indicating that
visual grounding information from naive attention
weight aggregation helps in hallucination detection.
Attention sink-based detectors with local window
set to current segment or current + previous seg-
ment perform poorly, often worse than random,
for Idefics-v1 and Qwen-VL, while showing lim-
ited detection ability for LLaVA-v1 and Idefics-v2.
In cross-attention models, sink occurrence in self-
attention maps may not limit the model’s focus on
vision tokens due to the cross-attention mechanism
allowing text tokens to attend to image tokens.

Probing Classifiers significantly outperform the
uncertainty and attention based metrics, across all
models. Specifically, probe classifier with Idefics-
v2 achieves 90% gain over VisTexAttnAgg met-
ric, highlighting the effectiveness of learning based
methods. Among the probing classifier variants,
we observe across models that use hidden states
from multiple layers or all layers did not bring con-
siderable gains over using only the last layer. Atten-
tion map based detectors (VisAttnDet & VisTexAt-
tnDet) further boost the detection performance and
achieve a relative improvement of about 15% over
probing classifiers. The VisTexAttnDet model out-
performs the VisAttnDet model, highlighting the
significance of leveraging both visual and textual
attention mechanisms to detect fabricated segments.
Our proposed method VADE, shows superior per-
formance amongst attention map based detectors,

proving the potential of learning complex sequen-
tial patterns from high-dimensional and noisy at-
tention maps for effecting hallucination detection.
We show qualitative results in Appendix E.

Transferability Performance. From Table 1,
probing classifiers leveraging hidden states suffer
a significant 35% performance drop when trans-
ferred from M-HalDetect (training) to ViGoR (out-
of-distribution). This supports the hypothesis that
hidden states optimized for next-token prediction
tasks are less effective for hallucination detection
on out-of-distribution data, being overly special-
ized to the training dataset and limiting their utility
in unseen contexts. Attention map-based detectors
(VisAttnDet, VisTexAttnDet and VADE), on the
other hand, show a relatively smaller performance
decline (14%) in the transfer setting. The ability of
these models to leverage both visual and textual at-
tention maps makes them more adaptable to unseen
data, as they are less sensitive to the idiosyncrasies
of specific datasets. Within these detectors, VADE
exhibits the best absolute performance and the least
degradation (11%) in the transfer setting. VADE’s
ability to process sequence of raw attention maps
without any lossy operators needed to convert to
fixed size vectors, allows it effectively discern vi-
sual grounding signal from noisy attention maps
and learn transferable patterns for hallucination
detection across different datasets.

4.3 Ablation Study

Impact of Aggregation Operator. For attention
score aggregation, we found that computing me-
dian over the attention values across layers and
heads performs marginally better than mean ag-
gregator due to the presence of outlier values as
reported in Table 2. While using minimum, quar-
tile and maximum operators resulted in very poor
performance. We conjecture that presence of ex-
tremum values in uninformative heads (Vig and
Belinkov, 2019) and knowledge aggregation pat-
ters (Xiao et al., 2024; Huang et al., 2024) causes
this sensitivity.

Effect of Attention Head Selection. The rele-
vance of a particular head in a layer can be quan-
titatively assessed by studying the distribution of
attention weights on image tokens, A(l,h)

v , for each
output token yt in an unsupervised manner on a
small set of hold out images and prompts. Given
the image and the input instruction prompt (e.g.
Describe the image briefly), we generate captions



M-HalDetect (Source) ViGoR (Target)

Method Idefics QwenVL LLaVA Idefics Idefics QwenVL LLaVA Idefics
v1 v1 v1.5 v2 v1 v1 v1.5 v2

Random 23.7 23.7 23.7 23.7 25.2 25.2 25.2 25.2

Token Probability / Entropy
MeanProb 21.2 26.7 27.2 30.1 21.5 24.2 25.5 27.2
MaxProb 22.4 26.9 28.4 25.6 23.7 25.6 26.9 26.5
MeanEnt 25.1 32.1 30.2 29.5 26.8 28.9 29.4 25.6
MaxEnt 27.9 31.6 29.4 27.4 27.6 30.7 28.1 28.4

Aggregated Attention Scores
VisAttnAgg 27.4 31.4 32.8 33.1 35.5 33.6 33.4 35.2
VisTexAttnAgg 30.1 37.6 35.4 34.9 38.4 39.7 36.7 39.8

Attention Sink
AttnSink (k=curr) 18.4 21.4 27.6 28.7 20.1 24.4 34.9 33.8
AttnSink (k=prev+curr) 19.1 19.6 30.1 30.4 22.3 25.6 32.8 35.4
*Probing Classifiers
Last Layer 63.5 67.1 66.4 64.8 44.2 49.4 50.4 52.4
Last Four Layers 62.1 62.8 68.2 68.2 41.9 47.5 49.6 54.2
All Layers 60.9 69.4 70.4 66.4 43.1 47.2 45.8 52.8
*Attention Map based Detectors
VisAttnDet 67.5 70.2 75.1 74.4 58.1 60.4 62.1 66.4
VisTexAttnDet 70.1 70.9 77.5 79.7 60.7 64.1 63.8 67.5
VADE 74.9 73.7 81.5 84.7 66.8 69.4 67.1 72.5

Table 1: PR-AUC for Hallucination Detection on M-HalDetect and ViGoR datasets. *For learning based methods
we operate in a cross dataset setup where we train on M-HalDetect and evaluate on ViGoR.

Method Setting Idefics-v1 LLaVA-v1.5

VisAttnAgg Mean 27.4 32.8
VisAttnAgg Median 28.5 33.3
VisAttnAgg Min 24.1 27.4
VisAttnAgg q(75) 25.5 28.1
VisAttnAgg Max 21.6 22.8

VisAttnAgg k=10 33.2 35.2
VisAttnAgg k=50 30.5 34.3
VisAttnAgg k=100 27.1 33.5
VisAttnAgg k=All 27.4 33.1

VADE k=10 55.5 63.2
VADE k=50 62.1 64.7
VADE k=100 65.9 69.9
VADE k=All 74.9 81.5

Table 2: Ablation Study on different settings and hyper-
parameters.

and aim to analyze the token-level visual attention
weights for each layer and head. We introduce the
concept of Attention Head Selection, where the
variance in softmax-normalized attention weights
on image tokens is used as a criterion for selecting
the most impactful layers and heads. We define the
importance score Sl,h for a given layer l and head
h as:

S(l,h) = Var(l,h)α =
1

N

N∑
i=1

(
αi

(l,h) − µ(l,h)
α

)2
,

where α(l,h)
i is the softmax-normalization of the vi-

sual attention weights A(l,h)
i and µ

(l,h)
α is the mean

of α(l,h)
i across N generated tokens.

Figure 5a illustrates the heat map of layer-head
importance scores extracted from above discussed
attention head selection logic and Figure 5b shows
the importance scores derived from coefficients of
the classifier used in VisAttnDet, with both meth-
ods identifying layer 7 and head 2 as the most im-
portant. The strong correlation between the impor-
tance scores (Figure 5c) qualitatively emphasizes
the reliability of statistical head selection method,
especially in data-scarce scenarios. We futher ob-
serve that several layers and heads attend to image
tokens with similar weights (low variance) across
all tokens, thereby not contributing to the model’s
ability to selectively capture visual features.

By focusing on heads with higher variance, we
can identify components that effectively ground
generated text in visual content. To validate this,
we selected top-k layer-heads using attention head
selection logic discussed above on 1000 random
images from M-HalDetect train set and show the
results for VisAttnAgg and VADE methods for dif-
ferent k in Table 2. We notice that for VisAttnAgg,
the detection performance drops as more layer-head
combinations are selected, likely due to noise from
less informative layers and heads. On the contrary,
in VADE, adding more heads steadily improves
the performance. The analysis reveals that atten-



(a) Attention Head Selection (b) VisAttnDet Classifier
(c) Correlation b/w AS and AC im-
portance scores

Figure 5: (a)(b) Visualization of Layer-Head importance scores derived from Attention Head Selection logic and
VisAttnDet Classifier coefficients. We see a strong correlation between both methods in identifying informative
layers and heads. The former found layers={0, 7, 5, 4} as Top-4 important layers, while the later identified them
to be {3, 5, 4, 6}. (c) Layer-Head importance scores from Attention Head Selection against VisAttnDet Classifier
coefficients. We see that for all layers (except layer 6), there is a positive correlation. Pearson’s correlation coefficient
between the importance scores from two methods was found to be +0.3.

tion layer heads exhibit distinct receptive fields,
with learning-based methods more adept at detect-
ing complex patterns than statistical approaches.
However, this advantage is tempered by limited
access to high-quality hallucination labels and chal-
lenges in cross-dataset transferability, underscoring
the need for large-scale multi-modal hallucination
datasets. For additional results, ablations and dis-
cussions on ternary classification setting, sentence-
level detection, sequence model architecture and
computational efficiency refer to Appendix E.

4.4 Performance on Hallucination Mitigation

Method CHAIRi ↓ CHAIRs ↓ Recall ↑

Greedy Decoding 14.5 44.0 53.1
Beam Search 13.9 48.8 55.4
PMI 7.6 28.4 50.2
M3ID 8.1 29.2 52.7
OPERA 12.8 42.6 55.1
PAI 6.6 20.7 49.4
VisTexAttnAgg 7.8 28.5 51.1
VADE 6.3 19.9 50.2

Table 3: Performance comparison of hallucination mit-
igation methods on MS COCO validation set with
LLaVA-v1.5.

We evaluate VADE’s hallucination reduction for
detailed image description on MS COCO 2014 val
set using rejection sampling (as in (Gunjal et al.,
2024; Chuang et al., 2024)), selecting candidates
with least hallucination likelihood in a best-of-K
setting via Beam Search. We assess using CHAIR
metrics (Rohrbach et al., 2018) on 500 random im-
ages, prompting models with “Please describe this
image in detail.” with max_new_tokens = 512.
From Table 3, mutual information-based decoding
techniques like PMI (van der Poel et al., 2022) and

M3ID (Favero et al., 2024) demonstrate substantial
hallucination reduction. Among existing methods
that leverage attention map-based, OPERA (Huang
et al., 2024) shows modest improvements, while
PAI (Liu et al., 2024b) achieves significant halluci-
nation mitigation. Compared with baseline meth-
ods, we can observe our VADE attains the high-
est performance among these mitigation strategies,
albeit with marginal gains over PAI. Refer to Ap-
pendix F for evaluation details and more results.

5 Conclusion

In this work, we conducted a comprehensive anal-
ysis of the properties of multi-head and multi-
layered visual attention patterns, evaluating their
effectiveness in detecting hallucinations in VLMs.
Our findings revealed that statistical measures, ag-
gregation schemes, and feature selection strategies
used to derive visual grounding signals from at-
tention maps are suboptimal for detecting hallu-
cinations. Unlike conventional methods that rely
on handcrafted features or attention aggregation,
our proposed method VADE learns complex se-
quential patterns from high-dimensional and noisy
attention maps using a limited amount of annotated
data. Our extensive experiments across multiple
VLMs and datasets demonstrate the superiority of
VADE over existing techniques, achieving state-of-
the-art performance in both hallucination detection
and mitigation tasks. Furthermore, VADE exhibits
strong generalization capabilities, with minimal
performance degradation when transferred to out-
of-distribution datasets, highlighting its potential
for real-world applications.



Limitations

Despite its promising performance, VADE has
certain limitations, including its reliance on high-
quality hallucination annotations, lack of explicit
cross-modal modeling, computational overhead in
processing attention maps, and potential perfor-
mance degradation on domain-shifted or adver-
sarial data. Additionally, VADE’s hallucination
mitigation strategy is limited by the samples gen-
erated by the base VLM and cannot correct the
hallucinations in the samples. Addressing these
challenges through advanced modeling techniques,
efficient computation strategies, and robust training
methods could further enhance the reliability and
scalability of VADE for real-world applications.

Ethics Statement

In this work, we used publicly available datasets
and open-sourced models in accordance to their
intended usage terms and licenses. Our method
discusses and addresses the problem of halluci-
nations in Vision-Language Models (VLMs) and
aims to reduce the inherent data bias and factual
errors, enhancing the reliability and trustworthiness
of VLMs in real-world applications. When imple-
mented, our method still inherits the challenges
associated with visual language models. Conse-
quently, there remains a potential risk that the VLM
may generate output that is biased, harmful, or of-
fensive in nature.
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class and report the dataset stats in Table 4. We
experiment with two settings, namely, binary clas-
sification (Accurate, Inaccurate), by further merg-
ing Analysis category into Accurate category and
ternary classification (Accurate, Analysis, Inaccu-
rate).

Splits Samples Segments
Accurate Analysis Inaccurate

Train 12800 40209 17289 18129
Val 3200 11770 5207 5115

Table 4: M-HalDetect dataset statistics

ViGoR The dataset comprises of 7200 images
from MS COCO 2017 train set (Yan et al., 2024).
We consider the entire set for our validation in
transfer setting. Each image is queried with diverse
input prompts related to image description and cor-
responding detailed responses comprising multiple
sentences are collected, totaling 15400 samples.
Unlike M-HalDetect, expert annotations are only
available at sentence level and has following label
form {Accurate: Yes/No, Creative: Yes/No} per
sentence. We transform these labels with the la-
bel definition used in M-HalDetect for consistency
using the rubric in Table 5 and report the dataset
statistics in Table 6.

Accurate Creative Final Label

Yes No Accurate
Yes Yes Analysis
No Yes/No Inaccurate

Table 5: Rubric for converting ViGoR labels into M-
HalDetect’s label definition

Splits Samples Sentences
Accurate Analysis Inaccurate

Val 7200 36253 15306 20362

Table 6: ViGoR dataset statistics

B Models

IDEFICS-v1 (Laurençon et al., 2023) is an open-
source state-of-the-art VLM based on the Flamingo
architecture (Alayrac et al., 2022). It combines a
CLIP ViT H14 (Radford et al., 2021) vision en-
coder and an LLaMA-7B (Touvron et al., 2023)
language model. It uses a Perceiver Resampler (Jae-
gle et al., 2021) to convert variable image features

to 64 visual tokens, connecting the vision encoder
to the frozen language model. Learnable cross-
attention transformer blocks (Vaswani et al., 2023)
are interleaved with the pre-trained LM layers for
visual conditioning during text generation. The 9B
instruction-finetuned model has 8 cross-attention
layers with 32 heads each and 32 self-attention
blocks with 32 heads each. Visual attention maps
are from the cross-attention layers, and textual at-
tention maps are from the self-attention heads.

QwenVL (Bai et al., 2023b), uses the Qwen-7B
(Bai et al., 2023a) as the LLM backbone and Open-
clip’s ViT-bigG (Radford et al., 2021) as the vision
encoder. Similar to IDEFICS-v1, they use a Per-
ceiver Resampler (Jaegle et al., 2021) to connect
the vision encoder to the frozen language model
that compresses the visual feature sequence to a
fixed length of 256. The model has 32 layers, the
embedding dimension is 4096, and the number of
attention heads is 32. We use the 9B instruction
fine-tuned version for our experiments.

LLaVA-v1.5 (Liu et al., 2024a) utilizes the
Vicuna-7B (Bai et al., 2023a) as its LLM back-
bone, and the CLIP-ViT-L-336px (Radford et al.,
2021) as the vision encoder. An MLP cross-modal
connector is employed to project the visual tokens
(576 in number) into the word embedding space of
the language model. The input sequence fed into
the language model is the concatenation of these
visual tokens and the text tokens. The model ar-
chitecture comprises 32 layers, 32 attention heads,
and a hidden dimension of 4096.

IDEFICS-v2 (Laurençon et al., 2024) employs
Mistral-7B (Jiang et al., 2023) as the language
model backbone and SigLIP-SO400M (Zhai et al.,
2023) from Google as the vision encoder backbone.
It utilizes a fully-autoregressive architecture where
the vision encoder’s output is concatenated with
text embeddings, and the entire sequence is fed into
the language model. The visual token sequence is
pooled to a shorter length (64) for computational ef-
ficiency. The 8B model has 32 layers, 32 attention
heads, and uses 4096-dimensional embeddings.

C Baselines: Implementation Details

C.1 Token Probability / Entropy

These methods are motivated by the hypothesis that
VLMs often tend to hallucinate when they exhibit
high uncertainty during generation. Previous works



for LLMs (Guerreiro et al., 2023; Geng et al., 2024;
Huang et al., 2023) used aggregated output token
probabilities or entropy as a measure for hallucina-
tion detection. We implement two most common
methods calculating the mean and maximum of
these scores on the generated text segment:

MeanProb =
1

S

S∑
t=1

P (yt|y<t, x
v, xp) (9)

MaxProb = max
t∈S

P (yt|y<t, x
v, xp) (10)

MeanEnt =
1

S

S∑
t=1

Ht (11)

MaxEnt = max
t∈S

Ht (12)

where S is the length of the generated text seg-
ment and Ht is the entropy of the generative distri-
bution at time step t.

C.2 Aggregated Attention Scores
These methods are based on the hypothesis that low
visual grounding can lead to hallucinated content
and leverage the transformer attention weights to
measure the visual groundedness of the generated
text with respect to the input image. The aggre-
gated visual attention metric AV

avg(t) for the token
at t is computed as the average attention weight
across the V image tokens, L layers, and H heads:

AV
avg(t) =

1

L×H × V

L∑
l=1

H∑
h=1

V∑
v=1

A(l,h)
v (13)

where A
(l,h)
v is the attention weight of the token at

t on the vth image token in head h and layer l.
Similarly, the aggregated textual attention metric

AP
avg(t) for the token at t is computed as the aver-

age attention weight across the t− 1 previous text
tokens, L layers, and H heads:

AP
avg(t) =

1

L×H × t− 1

L∑
l=1

H∑
h=1

t−1∑
t=1

A(l,h)
p

(14)
Finally, for the text segment of interest, the above

aggregated attention values are averaged:

VisAttnAgg =
1

S

S∑
t=s

AV
avg(t) (15)

VisTexAttnAgg =
1

S

S∑
t=s

AV
avg(t)

AP
avg(t)

(16)

C.3 Attention Sinks

Attention sinks are (Xiao et al., 2024) are columnar
attention patterns in self-attention maps that aggre-
gate knowledge from previous tokens. Prior studies
(Huang et al., 2024) show hallucinated content of-
ten follows tokens with this pattern. We implement
a metric to detect knowledge aggregation patterns
within a local window as detailed in (Huang et al.,
2024) and evaluate its effectiveness for hallucina-
tion detection. Let W ∈ Rk2 be the local window
self-attention map of the last layer with max pooled
attention values across multi-heads, where k is the
window size. We conduct column-wise multiplica-
tion on the lower triangle of the attention matrix
and obtain a vector of column-wise scores. The
maximum value of this vector is the characteristic
of knowledge aggregation patterns. Formally,

W k
t−1 = {wi}t−1

i=t−k, s.t. wi = {ωi,j}ij=t−k,
(17)

ϕ(ω<t) =
t−1∏
i=c

σωi,c, s.t. c = argmax
t−k≤j≤t−1

t−1∏
i=j

σωi,j .

(18)
where ωi,j means the attention weight assigned by
the jth token to the ith token and σ is a configurable
scaling factor. For the token concluding each seg-
ment, we take the previous and current segment
span as the local window, to detect the presence of
hallucinated content in current segment.

C.4 Probing Classifiers

These methods resort to learning a classifier on
model’s intermediate representations (zlt) from a
specific VLM layer l for the generated token t to
predict the likelihood of hallucination (Gunjal et al.,
2024; Yan et al., 2024; Azaria and Mitchell, 2023).
Similar to previous works, we implement a classi-
fication head with input features from the hidden
states of the VLM’s decoder from last, multiple or
all layers. For instance, the classifier that uses the
hidden states from last four layers can be formal-
ized as:

z̄t =
[
z
lL−3

t , z
lL−2

t , z
lL−1

t , zlLt

]
(19)

ŷh = fθ (z̄t) (20)

In segment-level task, for each sample we set tar-
get labels at segment-end tokens while masking
other indices, and optimize using cross-entropy
loss. Given the hidden dimension of 4096 for the



models under consideration, concatenating the fea-
tures from the last 4 layers would yield a high-
dimensional 16384-dim feature vector. While uti-
lizing the hidden states from all layers was also
explored, concatenating them would lead to an ex-
tremely large feature vector, significantly slowing
down the classifier training process. Consequently,
to obtain input feature vectors of a manageable size
(4096-dim) for the classifier, an average pooling
operation was performed across the features from
different layers.

C.5 Attention Map based Detectors
These detectors involve training a classifier on
model’s multi-head attention maps from several
layers for the read or generated token t to learn and
detect attention patterns leading to hallucination
(Chuang et al., 2024). For each time step t, aver-
aged attention weights pertaining to input image
tokens and previously read/generated text tokens
are fetched for every head h in layer l and their ab-
solute values/ratios are concatenated to form single
vector Āt.

AV
(l,h) =

1

V

V∑
v=1

A(l,h)
v (21)

AP
(l,h) =

1

t− 1

t−1∑
p=1

A(l,h)
p (22)

A(t) =
[
AV

(l1,h1)
, . . . , AV

(lL,hH),

AP
(l1,h1)

, . . . , AP
(lL,hH)

] (23)

Ā(t) =
1

S

S∑
t=s

A(t)

ŷh(t) = fθ
(
Ā(t)

) (24)

We refer the detector that takes only image tokens[
AV

]
as inputs as VisAttnDet and a combination of

all tokens
[
AV , AP

]
as VisTexAttnDet respectively.

D VADE: Implementation Details

In VADE, we employ a single-layer transformer
encoder with 8 attention heads for the sequence
model, followed by a linear classification head for
binary/ternary classification tasks. The model’s em-
bedding dimension is set to 1024 (i.e. L×H from
Equation 5). In the position-wise feed-forward sub-
layer, we use an intermediate size of 2048 and
the SiLU non-linear activation function. Layer

normalization is performed using RMSNorm with
ϵ = 1e−6. A dropout probability of 0.2 is applied
to all dropout layers for regularization. Addition-
ally, we incorporate rotatory positional embeddings
to encode positional information in the input em-
beddings.

E Additional Results

E.1 Ternary Classification Setting

While the Table 1 in the main paper reports the
results for binary classification settting, Table 7
presents the performance of the methods in the
ternary classification task. For learning based meth-
ods, we train the models on M-HalDetect’s train set
for the ternary classification task and evaluate on its
validation set. For cross-dataset transfer evaluation,
we evaluate the models on ViGoR validation set.
For each individual class, the precision-recall curve
is computed, and subsequently, these curves are av-
eraged to yield a single metric that encapsulates
the model’s overall performance across the three
classes. The task is relatively difficult, since the
separated "Analysis" class contains portions of text
that are subjective and not visually grounded, but
are not inaccurate. From the table, we observe sim-
ilar performance trends both among baselines and
VADE shows improvement across multiple models
in both source and target validation datasets.

E.2 Sentence-level Hallucination Detection

We consolidate M-HalDetect’s labeled sub-
sentence segments into sentence-level segments,
labeling each sentence as inaccurate if any sub-
segment is inaccurate, as analysis if any sub-
segment is analysis (and none are inaccurate), and
as accurate if any sub-segment is accurate (and
none are inaccurate or analysis). ViGoR already
contains sentence-level labels and hence requires
no change. We train the models on the sentence-
level labels on M-HalDetect train set and evaluate
on validation sets of M-HalDetect and ViGoR as
before. Table 8 reports the results of the detection
in binary and ternary setting for sentence level la-
bels. We see that, transfer performance of probing
classifier is much better when trained on sentence
level labels, as the source and target tasks are simi-
lar. The drop in performance between source and
target validation sets has narrowed to about 15%
compared to 35% in Table 1. Attention based detec-
tors, specifically VADE, shows robust performance
in this setting and also maintain their transfer capa-



M-HalDetect (Source) ViGoR (Target)

Method Idefics QwenVL LLaVA Idefics Idefics QwenVL LLaVA Idefics
v1 v1 v1.5 v2 v1 v1 v1.5 v2

Random 21.3 21.3 21.3 21.3 22.7 22.7 22.7 22.7

Token Probability / Entropy
MeanProb 19.1 24.0 24.5 27.1 19.4 21.8 23.0 24.5
MaxProb 20.2 24.2 25.6 23.0 21.3 23.0 24.2 23.9
MeanEnt 25.6 28.9 27.2 26.6 24.1 28.0 26.5 23.0
MaxEnt 25.1 28.4 26.5 24.7 24.8 27.6 25.3 25.6

Aggregated Attention Scores
VisAttnAgg 24.7 28.3 29.5 29.8 32.0 30.2 30.1 31.7
VisTexAttnAgg 27.1 33.8 31.9 31.4 34.6 35.7 33.0 35.8

Attention Sink
AttnSink (k=curr) 16.6 19.3 24.8 25.8 18.1 22.0 31.4 30.4
AttnSink (k=prev+curr) 17.2 17.6 27.1 27.4 20.1 23.0 29.5 31.9
*Probing Classifiers
Last Layer 57.2 60.4 59.8 58.3 39.8 44.5 45.4 49.2
Last Four Layers 59.9 56.5 61.4 61.4 37.7 42.8 44.6 48.8
All Layers 54.8 62.5 63.4 62.8 38.8 42.5 41.2 47.5
*Attention Map based Detectors
VisAttnDet 60.8 63.2 67.6 67.0 52.3 54.4 55.9 59.8
VisTexAttnDet 63.1 63.8 74.4 71.7 54.6 57.7 59.4 60.8
VADE 67.4 66.3 73.4 76.2 60.1 62.5 60.4 65.3

Table 7: PR-AUC for hallucination detection on M-HalDetect and ViGoR datasets in ternary classification setting.
*For learning based methods, we operate in a cross dataset setup where we train on M-HalDetect and evaluate on
ViGoR.

bility across datasets.

E.3 Ablation on Sequence Model Architecture

Table 9 reports the effect of adding more attention
blocks in the sequence encoder. We see that as we
increase the network depth, the model tends to over-
fit to the training distribution and shows deteriora-
tion on the validation sets. This is clearly evident
when we look at the performance on the transfer
validation dataset (ViGoR), where the model with
L = 1 and H = 8 shows superior results. Table 10
compares the model parameter counts and FLOPS
per token between the baseline methods and VADE
using the method introduced in previous work (Ka-
plan et al., 2020). VADE requires slightly higher
computational resources than baseline methods but
delivers better hallucination detection results.

E.4 Qualitative Analysis

We show qualitative example from M-HalDetect
in Table 11 to illustrate how VADE improves hal-
lucination detection performance over competitive
baselines. Firstly, the aggregated attention scores
in VisTexAttnAgg method fails to detect much of
the hallucinated segments. Probe Classifier (us-
ing the hidden states from the last layer), identifies

all of the hallucinated segments but also contains
many false positive detections. VADE, with the
sequential classifier over the attention maps, ef-
fectively detects most hallucinated segments with
better precision.

F Hallucination Mitigation

Metrics. We measure object hallucinations us-
ing the CHAIR (Captioning Hallucination Assess-
ment with Image Relevance) metrics (Rohrbach
et al., 2018), that use ground truth annotations to
calculate the proportion of objects that appear in
the model generated text but absent in the image.
CHAIRi measures the fraction of hallucinated ob-
jects among the generated text and CHAIRs com-
putes the fraction of captions with at least one ob-
ject hallucination. Additionally, Recall measures
the fraction of correctly predicted objects compared
to ground truth.

CHAIRi =
|{hallucinated objects}|
|{generated objects}|

CHAIRs =
|{captions with hallucinated objects}|

|{all captions}|

Recall =
|{correctly predicted objects}|

|{ground truth objects}|



M-HalDetect (Source) ViGoR (Target)

Method Idefics QwenVL LLaVA Idefics Idefics QwenVL LLaVA Idefics
v1 v1 v1.5 v2 v1 v1 v1.5 v2

Binary Classification Setting
Probing Classifiers (Last Layer) 55.8 59.4 60.8 54.1 47.2 46.5 49.1 48.2
VisAttnDet 58.2 61.7 62.5 56.9 52.3 54.4 55.9 59.8
VisTexAttnDet 60.3 62.8 63.1 59.2 54.6 57.7 59.4 60.8
VADE 65.1 64.3 63.9 76.2 59.8 63.1 64.7 63.9

Ternary Classification Setting
Probing Classifiers (Last Layer) 47.4 50.5 51.7 46.0 40.1 39.5 41.7 41.0
VisAttnDet 49.5 52.4 53.1 48.4 44.5 46.2 47.5 50.8
VisTexAttnDet 51.3 55.4 54.3 50.3 46.4 49.0 50.5 51.7
VADE 55.3 53.7 54.3 54.8 50.8 53.6 52.0 54.3

Table 8: PR-AUC for hallucination detection at sentence level on M-HalDetect and ViGoR datasets.

M-HalDetect (Source) ViGoR (Target)

Method Layers Heads Idefics-v1 LLaVA-1.5 Idefics-v1 LLaVA-1.5

VADE 1 1 72.1 79.4 65.1 65.9
VADE 1 8 74.9 81.5 66.8 67.1
VADE 3 8 75.5 82.1 66.2 66.8
VADE 5 8 73.9 80.8 63.1 59.2

Table 9: Ablation on different model sizes for the sequence model.

Method #Parameter #FLOPS
(M) (M)

Probing Classifiers
Last Layer 4.2 8.3
Last Four Layers 16.7 33.5
All Layers 4.2 8.4

Attention Map based Detectors
VisAttnDet 1.1 2.1
VisTexAttnDet 2.1 4.2
VADE (L=1, H=8) 6.2 12.7

Table 10: Comparison of model parameter counts and
FLOPS (Floating-Point Operations) per token.

Baselines. Greedy Decoding, selects the token
with the highest probability from the output distri-
bution. Beam Search Decoding, maintains multi-
ple candidate hypotheses or "beams" to explore a
broader range of possibilities and ultimately select
the best hypothesis from the set.

Mutual Information-based Decoding (PMI
(van der Poel et al., 2022), M3ID (Favero et al.,
2024)) aim to maximize the mutual information
between generated tokens and the input image, for-
mulated as:

yt =argmax
y∈V

(
P (yt|y<t, x

v, xp)

− µ1 [Ht ≥ τ ] logP (yt|y<t, x
p)
) (25)

where, µ is the calibration strength factor, Ht de-
notes the Shannon entropy, τ is entropy threshold

and P (yt|y<t, x
p) is the predictive probability dis-

tribution unconditioned on the input image at time
t. The above formulation ensures the predictive
distribution is calibrated when the model exhibits
uncertainty to reduce the language bias.

OPERA (Huang et al., 2024) employs a penalty
term on the model logits during beam search de-
coding to address over-trust on the summary to-
kens, along with a rollback strategy that checks
for summary tokens in previously generated tokens
and re-allocates token selection if needed. PAI
(Liu et al., 2024b) adaptively adjusts and ampli-
fies the attention weights assigned to image tokens,
giving greater prominence to visual elements and
leveraged mutual information-based decoding to
eliminate the language prior.

VADE. We employ the our hallucination detector
(VADE) trained at segment level into the decod-
ing process to select candidate segments with less
likely hallucinations. Let {S1, ..., Sk} be the k can-
didate segments of a fixed length (ts) generated
at time step t, we select the candidate with least
hallucination likelihood (S∗):

S∗ = argmins∈{S1,...,Sk}fθ(A(t+ ts)) (26)

We used a segment size of 20 tokens with 8 can-
didates for each step. The hyperparameters for
baselines and VADE are selected using standard
grid search on a held out set.



Hallucination Detection Example

Prompt Describe the following image in detail.

Groundtruth The image features a large cake decorated to resemble a tree stump with bears sitting around it. The cake
is placed on a table, and there are several teddy bears scattered around the scene. The bears are positioned
in different areas of the table, some closer to the center of the cake, while others are more towards the
edges. There are two handbags placed on the table, one near the left edge and the other near the right edge.

VisTexAttnAgg The image features a large cake decorated to resemble a tree stump with bears sitting around it. The cake
is placed on a table, and there are several teddy bears scattered around the scene. The bears are positioned
in different areas of the table, some closer to the center of the cake, while others are more towards the
edges. There are two handbags placed on the table, one near the left edge and the other near the right edge.

Probe Classifier The image features a large cake decorated to resemble a tree stump with bears sitting around it. The cake
is placed on a table, and there are several teddy bears scattered around the scene. The bears are positioned
in different areas of the table, some closer to the center of the cake, while others are more towards the
edges. There are two handbags placed on the table, one near the left edge and the other near the right edge.

VADE The image features a large cake decorated to resemble a tree stump with bears sitting around it. The cake
is placed on a table, and there are several teddy bears scattered around the scene. The bears are positioned
in different areas of the table, some closer to the center of the cake, while others are more towards the
edges. There are two handbags placed on the table, one near the left edge and the other near the right edge.

Table 11: Illustration of hallucination detection methods on M-HalDetect validation sample ( ID: 260808).
Groundtruth and predicted hallucination segments are highlighted in red.

Idefics-v1 QwenVL-v1 Idefics-v2

Method CHAIRi ↓ CHAIRs ↓ Recall ↑ CHAIRi ↓ CHAIRs ↓ Recall ↑ CHAIRi ↓ CHAIRs ↓ Recall ↑

Greedy Decoding 16.7 50.6 45.1 13.6 41.1 56.8 12.8 37.4 60.1
Beam Search 15.2 56.1 47.1 13.0 45.8 59.2 11.8 43.9 63.7
PMI 8.7 32.7 42.7 7.1 26.2 53.7 6.8 24.1 57.7
M3ID 9.3 33.6 44.8 7.5 27.5 56.4 6.9 26.3 60.6
OPERA 14.7 49.0 46.8 11.8 39.2 58.9 11.5 36.2 63.4
PAI 7.1 21.8 42.0 6.2 19.5 52.7 5.6 18.6 56.8
VisTexAttnAgg 9.0 32.8 43.4 7.3 26.7 54.5 6.6 25.7 58.8
VADE 7.2 22.9 42.7 5.9 18.7 53.7 5.6 17.9 57.7

Table 12: Performance comparison of hallucination mitigation methods on MS COCO (Lin et al., 2015) validation
set.

Results. Table 12 reports the extended results to
other VLM models on 500 randomly sampled im-
ages from MS COCO dataset. VADE performs sig-
nificantly better than most of the baselines includ-
ing VisTexAttnAgg across models, while achieving
marginal improvement over PAI. Table 13 shows
a case where VADE proves its ability to eliminate
hallucinations.

https://cocodataset.org/#explore?id=260808


Hallucination Mitigation Example

Prompt Please describe this image in detail.

BeamSearch The image features a white teddy bear sitting on a red desk, surrounded by various items. The teddy bear
is wearing glasses and appears to be holding a cell phone. A computer keyboard is placed on the desk,
along with a mouse nearby. There is also a remote control on the desk, and a book can be seen close to
the teddy bear. The scene creates a playful and cozy atmosphere, as if the teddy bear is a part of a home
office setup.

VADE The image features a white teddy bear sitting on a red desk, surrounded by various items. The teddy bear
is wearing glasses and is listening to an ipod. A computer keyboard and a microphone are placed on the
desk. The scene creates a playful and cozy atmosphere, as if the teddy bear is a part of a home office
setup.

Table 13: VADE’s performance on reducing hallucinations ( ID: 42889). Hallucination segments are highlighted in
red.

Hallucination Mitigation Example

Prompt Please describe this image in detail.

BeamSearch The image shows a pack of Huggies baby wipes. The packaging is yellow and red with a picture of a baby
on it. The wipes are in a roll and are folded. The wipes are white and have a blue stripe on them. The
wipes are made by Kimberly-Clark.

VADE The image shows a MamyPoko pants-style diapers package containing 26 diapers. The packaging is
yellow and red with a picture of a baby on it. The package is placed on a brown table.

Table 14: VADE’s performance on reducing hallucinations ( ID: 42889). Hallucination segments are highlighted in
red.

https://cocodataset.org/#explore?id=42889
https://cocodataset.org/#explore?id=42889
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