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Abstract

This paper presents a new image-based virtual try-on
approach (Outfit-VITON) that helps visualize how a com-
position of clothing items selected from various reference
images form a cohesive outfit on a person in a query image.
Our algorithm has two distinctive properties. First, it is in-
expensive, as it simply requires a large set of single (non-
corresponding) images (both real and catalog) of people
wearing various garments without explicit 3D information.
The training phase requires only single images, eliminating
the need for manually creating image pairs, where one im-
age shows a person wearing a particular garment and the
other shows the same catalog garment alone. Secondly, it
can synthesize images of multiple garments composed into
a single, coherent outfit; and it enables control of the type
of garments rendered in the final outfit. Once trained, our
approach can then synthesize a cohesive outfit from multi-
ple images of clothed human models, while fitting the outfit
to the body shape and pose of the query person. An online
optimization step takes care of fine details such as intricate
textures and logos. Quantitative and qualitative evaluations
on an image dataset containing large shape and style vari-
ations demonstrate superior accuracy compared to exist-
ing state-of-the-art methods, especially when dealing with
highly detailed garments.

1. Introduction
In the US, the share of online apparel sales as a propor-

tion of total apparel and accessories sales is increasing at a
faster pace than any other e-commerce sector. Online ap-
parel shopping offers the convenience of shopping from the
comfort of one’s home, a large selection of items to choose
from, and access to the very latest products. However, on-
line shopping does not enable physical try-on, thereby lim-
iting customer understanding of how a garment will actu-
ally look on them. This critical limitation encouraged the
development of virtual fitting rooms, where images of a
customer wearing selected garments are generated synthet-
ically to help compare and choose the most desired look.
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Figure 1: Our O-VITON algorithm is built to synthesize images
that show how a person in a query image is expected to look
with garments selected from multiple reference images. The pro-
posed method generates natural looking boundaries between the
garments and is able to fill-in missing garments and body parts.

1.1. 3D methods

Conventional approaches for synthesizing realistic im-
ages of people wearing garments rely on detailed 3D mod-
els built from either depth cameras [28] or multiple 2D im-
ages [3]. 3D models enable realistic clothing simulation
under geometric and physical constraints, as well as precise
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control of the viewing direction, lighting, pose and texture.
However, they incur large costs in terms of data capture, an-
notation, computation and in some cases the need for spe-
cialized devices, such as 3D sensors. These large costs hin-
der scaling to millions of customers and garments.

1.2. Conditional image generation methods

Recently, more economical solutions suggest formulat-
ing the virtual try-on problem as a conditional image gen-
eration one. These methods generate realistic looking im-
ages of people wearing their selected garments from two
input images: one showing the person and one, referred to
as the in-shop garment, showing the garment alone. These
methods can be split into two main categories, depending on
the training data they use: (1) Paired-data, single-garment
approaches that use a training set of image pairs depicting
the same garment in multiple images. For example, im-
age pairs with and without a person wearing the garment
(e.g. [10, 30]), or pairs of images presenting a specific gar-
ment on the same human model in two different poses. (2)
Single-data, multiple-garment approaches (e.g. [25]) that
treat the entire outfit (a composition of multiple garments)
in the training data as a single entity. Both types of ap-
proaches have two main limitations: First, they do not al-
low customers to select multiple garments (e.g. shirt, skirt,
jacket and hat) and then compose them together to fit with
the customer’s body. Second, they are trained on data that
is nearly unfeasible to collect at scale. In the case of paired-
data, single-garment images, it is hard to collect several
pairs for each possible garment. In the case of single-data,
multiple-garment images it is hard to collect enough in-
stances that cover all possible garment combinations.

1.3. Novelty

In this paper, we present a new image-based virtual try-
on approach that: 1) Provides an inexpensive data collec-
tion and training process that includes using only single 2D
training images that are much easier to collect at scale than
pairs of training images or 3D data.
2) Provides an advanced virtual try-on experience by syn-
thesizing images of multiple garments composed into a sin-
gle, cohesive outfit (Fig.2) and enables the user to control
the type of garments rendered in the final outfit.
3) Introduces an online optimization capability for virtual
try-on that accurately synthesizes fine garment features like
textures, logos and embroidery.
We evaluate the proposed method on a set of images con-
taining large shape and style variations. Both quantitative
and qualitative results indicate that our method achieves
better results than previous methods.

2. Related Work

2.1. Generative Adversarial Networks

Generative adversarial networks (GANs) [7, 27] are gen-
erative models trained to synthesize realistic samples that
are indistinguishable from the original training data. GANs
have demonstrated promising results in image generation
[24, 17] and manipulation [16]. However, the original GAN
formulation lacks effective mechanisms to control the out-
put.

Conditional GANs (cGAN) [21] try to address this is-
sue by adding constraints on the generated examples. Con-
straints utilized in GANs can be in the form of class labels
[1], text [36], pose [19] and attributes [29] (e.g. mouth
open/closed, beard/no beard, glasses/no glasses, gender).
Isola et al. [13] suggested an image-to-image translation
network called pix2pix, that maps images from one domain
to another (e.g. sketches to photos, segmentation to photos).
Such cross-domain relations have demonstrated promising
results in image generation. Wang et al.’s pix2pixHD [31]
generates multiple high-definition outputs from a single
segmentation map. It achieves that by adding an auto-
encoder that learns feature maps that constrain the GAN and
enable a higher level of local control. Recently, [23] sug-
gested using a spatially-adaptive normalization layer that
encodes textures at the image-level rather than locally. In
addition, composition of images has been demonstrated us-
ing GANs [18, 35], where content from a foreground image
is transferred to the background image using a geometric
transformation that produces an image with natural appear-
ance. Fine-tuning a GAN during test phase has been re-
cently demonstrated [34] for facial reenactment.

2.2. Virtual try-on

The recent advances in deep neural networks have moti-
vated approaches that use only 2D images without any 3D
information. For example, the VITON [10] method uses
shape context [2] to determine how to warp a garment image
to fit the geometry of a query person using a compositional
stage followed by geometric warping. CP-VITON [30],
uses a convolutional geometric matcher [26] to determine
the geometric warping function. An extension of this work
is WUTON [14], which uses an adversarial loss for more
natural and detailed synthesis without the need for a compo-
sition stage. PIVTONS [4] extended [10] for pose-invariant
garments and MG-VTON [5] for multi-posed virtual try-on.

All the different variations of original VITON [10] re-
quire a training set of paired images, namely each garment
is captured both with and without a human model wearing
it. This limits the scale at which training data can be col-
lected since obtaining such paired images is highly labori-
ous. Also, during testing only catalog (in-shop) images of
the garments can be transferred to the person’s query im-
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Figure 2: Our O-VITON virtual try-on pipeline combines a query image with garments selected from reference images to generate a
cohesive outfit. The pipeline has three main steps. The first shape generation step generates a new segmentation map representing the
combined shape of the human body in the query image and the shape feature map of the selected garments, using a shape autoencoder.
The second appearance generation step feed-forwards an appearance feature map together with the segmentation result to generate an a
photo-realistic outfit. An online optimization step then refines the appearance of this output to create the final outfit.

age. In [32], a GAN is used to warp the reference garment
onto the query person image. No catalog garment images
are required, however it still requires corresponding pairs
of the same person wearing the same garment in multiple
poses. The works mentioned above deal only with the trans-
fer of top-body garments (except for [4], which applies to
shoes only). Sangwoo et al [22], apply segmentation masks
to allow control over generated shapes such as pants trans-
formed to skirts. However, in this case only the shape of the
translated garment is controlled. Furthermore, each shape
translation task requires its own dedicated network. The
recent work of [33] generates images of people wearing
multiple garments. However, the generated human model
is only controlled by pose rather than body shape or appear-
ance. Additionally, the algorithm requires a training set of
paired images of full outfits, which is especially difficult to
obtain at scale. The work of [25] (SwapNet) swaps entire
outfits between two query images using GANs. It has two
main stages. Initially it generates a warped segmentation
of the query person to the reference outfit and then over-
lays the outfit texture. This method uses self-supervision
to learn shape and texture transfer and does not require a
paired training set. However, it operates at the outfit-level
rather than the garment-level and therefore lacks compos-
ability. The recent works of [9, 12] also generate fashion
images in a two-stage process of shape and texture genera-
tion.

3. Outfit Virtual Try-on (O-VITON)
Our system uses multiple reference images of people

wearing garments varying in shape and style. A user can
select garments within these reference images to receive an

algorithm-generated outfit output showing a realistic image
of their personal image (query) dressed with these selected
garments.

Our approach to this challenging problem is inspired by
the success of the pix2pixHD approach [31] to image-to-
image translation tasks. Similar to this approach, our gener-
ator G is conditioned on a semantic segmentation map and
on an appearance map generated by an encoderE. The auto
encoder assigns to each semantic region in the segmenta-
tion map a low-dimensional feature vector representing the
region appearance. These appearance-based features enable
control over the appearance of the output image and address
the lack of diversity that is frequently seen with conditional
GANs that do not use them.

Our virtual try-on synthesis process (Fig.2) consists of
three main steps: (1) Generating a segmentation map that
consistently combines the silhouettes (shape) of the selected
reference garments with the segmentation map of the query
image. (2) Generating a photo-realistic image showing the
person in the query image dressed with the garments se-
lected from the reference images. (3) Online optimization
to refine the appearance of the final output image.

We describe our system in more detail: Sec.3.1 describes
the feed-forward synthesis pipeline with its inputs, compo-
nents and outputs. Sec.3.2 describes the training process
of both the shape and appearance networks and Sec.3.3 de-
scribes the online optimization used to fine-tune the output
image.



3.1. Feed-Forward Generation

3.1.1 System Inputs

The inputs to our system consist of a H×W RGB query
image x0 having a person wishing to try on various gar-
ments. These garments are represented by a set of M ad-
ditional reference RGB images (x1, x2, . . . xM ) containing
various garments in the same resolution as the query image
x0. Please note that these images can be either natural im-
ages of people wearing different clothing or catalog images
showing single clothing items. Additionally, the number
of reference garments M can vary. To obtain segmenta-
tion maps for fashion images, we trained a PSP [37] seman-
tic segmentation network S which outputs sm = S(xm)
of size H×W×Dc with each pixel in xm labeled as one
of Dc classes using a one-hot encoding. In other words,
s(i, j, c) = 1 means that pixel (i, j) is labeled as class c.
A class can be a body part such as face / right arm or a
garment type such as tops, pants, jacket or background. We
use our segmentation network S to calculate a segmentation
map s0 of the query image and sm segmentation maps for
the reference images (1 ≤ m ≤ M,). Similarly, a Dense-
Pose network [8] which captures the pose and body shape
of humans is applied to estimate a body model b = B(x0)
of size H×W×Db.

3.1.2 Shape Generation Network Components

The shape-generation network is responsible for the first
step described above: It combines the body model b of the
person in the query image x0 with the shapes of the selected
garments represented by {sm}Mm=1 (Fig. 2 green box). As
mentioned in Sec.3.1.1, the semantic segmentation map sm

assigns a one hot vector representation to every pixel in
xm. A W×H×1 slice of sm through the depth dimension
sm(·, ·, c) therefore provides a binary maskMm,c represent-
ing the region of the pixels that are mapped to class c in
image xm.

A shape autoencoder Eshape followed by a local pool-
ing step maps this mask to a shape feature slice esm,c =
Eshape(Mm,c) of 8×4×Ds dimensions. Each class c of the
Dc possible segmentation classes is represented by esm,c,
even if a garment of type c is not present in image m.
Namely, it will input a zero-valued maskMm,c intoEshape.

When the user wants to dress a person from the query
image with a garment of type c from a reference image m,
we just replace es0,c with the corresponding shape feature
slice of esm,c, regardless of whether garment c was present
in the query image or not. We incorporate the shape fea-
ture slices of all the garment types by concatenating them
along the depth dimension, which yields a coarse shape fea-
ture map ēs of 8×4×DsDc dimensions. We denote es as
the up-scaled version of ēs into H×W×DsDc dimensions.

Essentially, combining different garment types for the query
image is done just by replacing its corresponding shape fea-
tures slices with those of the reference images.

The shape feature map es and the body model b are fed
into the shape generator network Gshape to generate a new,
transformed segmentation map sy of the query person wear-
ing the selected reference garments sy = Gshape(b, e

s).

3.1.3 Appearance Generation Network Components

The first module in our appearance generation network
(Fig. 2 blue box) is inspired by [31] and takes RGB im-
ages and their corresponding segmentation maps (xm, sm)
and applies an appearance autoencoder Eapp(xm, sm). The
output of the appearance autoencoder is denoted as ētm
of H×W×Dt dimensions. By region-wise average pool-
ing according to the mask Mm,c we form a Dt dimen-
sional vector etm,c that describes the appearance of this re-
gion. Finally, the appearance feature map etm is obtained
by a region-wise broadcast of the appearance feature vec-
tors etm,c to their corresponding region marked by the mask
Mm,c. When the user selects a garment of type c from im-
age xm, it simply requires replacing the appearance vector
from the query image et0,c with the appearance vector of
the garment image etm,c before the region-wise broadcast-
ing which produce the appearance feature map et.

The appearance generator Gapp takes the segmentation
map sy generated by the preceding shape generation stage
as the input and the appearance feature map et as the condi-
tion and generates an output y representing the feed-forward
virtual try-on output y = Gapp(sy, et).

3.2. Train Phase

The Shape and Appearance Generation Networks are
trained independently (Fig.3) using the same training set of
single input images with people in various poses and cloth-
ing. In each training scheme the generator, discriminator
and autoencoder are jointly-trained.

3.2.1 Appearance Train phase

We use a conditional GAN (cGAN) approach that is simi-
lar to [31] for image-to-image translation tasks. In cGAN
frameworks, the training process aims to optimize a Min-
imax loss [7] that represents a game where a generator G
and a discriminator D are competing. Given a training
image x the generator receives a corresponding segmen-
tation map S(x) and an appearance feature map et(x) =
Eapp(x, S(x)) as a condition. Note that during the train
phase both the segmentation and the appearance feature
maps are extracted from the same input image x while
during test phase the segmentation and appearance fea-
ture maps are computed from multiple images. We de-
scribe this step in Sec.3.1. The generator aims to synthe-
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size Gapp(S(x), et(x)) that will confuse the discriminator
when it attempts to separate generated outputs from original
inputs such as x. The discriminator is also conditioned by
the segmentation map S(x). As in [31], the generator and
discriminator aim to minimize the LSGAN loss [20]. For
brevity we will omit the app subscript from the appearance
network components in the following equations.

min
G
LGAN (G) = Ex[(D(S(x), G(S(x), et(x))− 1)2]

min
D
LGAN (D) = Ex[(D(S(x), x)− 1)2] + Ex[(D(S(x), G(S(x), et(x)))2]

(1)
The architecture of the generator Gapp is similar to the
one used by [15, 31], which consists of convolution lay-
ers, residual blocks and transposed convolution layers for
up-sampling. The architecture of the discriminator Dapp is
a PatchGAN [13] network, which is applied to multiple im-
age scales as described in [31]. The multi-level structure
of the discriminator enables it to operate both at the coarse
scale with a large receptive field for a more global view, and
at a fine scale which measures subtle details. The architec-
ture of E is a standard convolutional autoencoder network.

In addition to the adversarial loss, [31] suggested an ad-
ditional feature matching loss to stabilize the training and
force it to follow natural images statistics at multiple scales.
In our implementation, we add a feature matching loss,
suggested by [15], that directly compares between gener-
ated and real images activations, computed using a pre-
trained perceptual network (VGG-19). Let φl be the vec-
tor form of the layer activation across channels with dimen-
sions Cl×Hl·Wl. We use a hyper-parameter λl to deter-
mine the contribution of layer l to the loss. This loss is
defined as:

LFM (G) = Ex

∑
l

λl||φl(G(S(x), et(x)))− φl(x)||2F

(2)
We combine these losses together to obtain the loss func-

tion for the Appearance Generation Network:

Ltrain(G,D) = LGAN (G,D) + LFM (G) (3)

3.2.2 Shape Train Phase

The data for training the shape generation network is iden-
tical to the training data used for the appearance generation
network and we use a similar conditional GAN loss for this
network as well. Similar to decoupling appearance from
shape, described in 3.2.1, we would like to decouple the
body shape and pose from the garment’s silhouette in or-
der to transfer garments from reference images to the query
image at test phase. We encourage this by applying a dis-
tinct spatial perturbation for each slice s(·, ·, c) of s = S(x)
using a random affine transformation. This is inspired by
the self-supervision described in SwapNet [25]. In addi-
tion, we apply an average-pooling to the output of Eshape

to map H×W×Ds dimensions, to 8×4×Ds dimensions.
This is done for the test phase, which requires a shape en-
coding that is invariant to both pose and body shape. The
loss functions forGshape and discriminatorDshape are sim-
ilar to (3) with the generator conditioned on the shape fea-
ture es(x) rather than the appearance feature map et of the
input image. The discriminator aims to separate s = S(x)
from sy = Gshape(S(x), es). The feature matching loss in
(2) is replaced by a cross-entropy loss LCE component that
compares the labels of the semantic segmentation maps.

3.3. Online Optimization

The feed-forward operation of appearance network (au-
toencoder and generator) has two main limitations. First,
less frequent garments with non-repetitive patterns are more
challenging due to both their irregular pattern and reduced
representation in the training set. Fig. 6 shows the frequency
of various textural attributes in our training set. The most
frequent pattern is solid (featureless texture). Other fre-
quent textures such as logo, stripes and floral are extremely
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diverse and the attribute distribution has a relatively long tail
of other less common non-repetitive patterns. This consti-
tutes a challenging learning task, where the neural network
aims to accurately generate patterns that are scarce in the
training set. Second, no matter how big the training set is, it
will never be sufficiently large to cover all possible garment
pattern and shape variations. We therefore propose an on-
line optimization method inspired by style transfer [6]. The
optimization fine-tunes the appearance network during the
test phase to synthesize a garment from a reference garment
to the query image. Initially, we use the parameters of the
feed-forward appearance network described in 3.1.3. Then,
we fine-tune the generator Gapp (for brevity denoted as G)
to better reconstruct a garment from reference image xm by
minimizing the reference loss. Formally, given a reference
garment we use its corresponding region binary maskMm,c

which is given by sm in order to localize the reference loss
(3):

Lref (G) =
∑
l

λl||φml (G(S(xm), etm))− φml (xm)||2F

+ (Dm(xm, G(S(xm), etm)))− 1)2 (4)

Where the superscript m denotes localizing the loss by
the spatial mask Mm,c. To improve generalization for the
query image, we compare the newly transformed query seg-
mentation map sy and its corresponding generated image y
using the GAN loss (1), denoted as query loss:

Lqu(G) = (Dm(sy, y)− 1)2 (5)

Our online loss therefore combines both the reference gar-

ment loss (4) and the query loss (5):

Lonline(G) = Lref (G) + Lqu(G) (6)

Note that the online optimization stage is applied for each
reference garment separately (see also Fig. 5). Since all
the regions in the query image are not spatially aligned, we
discard the corresponding values of the feature matching
loss (2).

4. Experiments
Our experiments are conducted on a dataset of people

(both males and females) in various outfits and poses, that
we scrapped from the Amazon catalog. The dataset is par-
titioned into a training set and a test set of 45K and 7K im-
ages respectively. All the images were resized to a fixed
512× 256 pixels. We conducted experiments for synthesiz-
ing single items (tops, pants, skirts, jackets and dresses) and
for synthesizing pairs of items together (i.e. top & pants).

4.1. Implementation Details

Settings: The architectures we use for the autoencoders
Eshape, Eapp, the generators Gshape, Gapp and discrimi-
nators Dshape, Dapp are similar to the corresponding com-
ponents in [31] with the following differences. First, the
autoencoders output have different dimensions. In our case
the output dimension is Ds = 10 for Eshape and Dt = 30
for Eapp. The number of classes in the segmentation map is
Dc = 20 andDb = 27 dimensions for the body model. Sec-
ond, we use single level generators Gshape, Gapp instead of
the two level generators G1 and G2 because we are using a
lower 512× 256 resolution. We train the shape and appear-
ance networks using ADAM optimizer for 40 and 80 epochs
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and batch sizes of 21 and 7 respectively. Other training pa-
rameters are lr = 0.0002, β1 = 0.5, β2 = 0.999. The
online loss (Sec.3.3) is also optimized with ADAM using
lr = 0.001, β1 = 0.5, β2 = 0.999. The optimization is ter-
minated when the online loss difference between two con-
secutive iterations is smaller than 0.5. In our experiments
we found that the process is terminated, on average, after
80 iterations.

Baselines: VITON [10] and CP-VITON [30] are the
state-of-the-art image-based virtual try-on methods that
have implementation available online. We focus mainly on
comparison with CP-VITON since it was shown (in [30])
to outperform the original VITON. Note that in addition to
the differences in evaluation reported below, the CP-VITON
(and VITON) methods are more limited than our proposed
method because they only support generation of tops trained
on a paired dataset.

Evaluation protocol: We adopt the same evaluation
protocol from previous virtual try-on approaches (i.e. [30,
25, 10] ) that use both quantitative metrics and human sub-
jective perceptual study. The quantitative metrics include:
(1) Fréchet Inception Distance (FID) [11], that measures the
distance between the Inception-v3 activation distributions
of the generated vs. the real images. (2) Inception score
(IS) [27] that measures the output statistics of a pre-trained
Inception-v3 Network (ImageNet) applied to generated im-
ages.

We also conducted a pairwise A/B test human evaluation
study (as in [30]) where 250 pairs of reference and query
images with their corresponding virtual try-on results (for
both compared methods) were shown to a human subject
(worker). Specifically, given a person’s image and a tar-
get clothing image, the worker is asked to select the image
that is more realistic and preserves more details of the target
clothes between two virtual try-on results.

The comparison (Table 1) is divided into 3 variants: (1)
synthesis of tops (2) synthesis of a single garment (e.g. tops,
jackets, pants and dresses) (3) simultaneous synthesis of
two garments from two different reference images (e.g. top
& pants, top & jacket).

4.2. Qualitative Evaluation

Fig. 4 (left) shows qualitative examples of our O-VITON
approach with and without the online optimization step
compared with CP-VITON. For fair comparison we only
include tops as CP-VITON was only trained to transfer
shirts. Note how the online optimization is able to bet-
ter preserve the fine texture details of prints, logos and
other non-repetitive patterns. In addition, the CP-VITON
strictly adheres to the silhouette of the original query outfit,
whereas our method is less sensitive to the original outfit
of the query person, generating a more natural look. Fig. 4
(right) shows synthesis results with/without the online op-
timization step for jackets, dresses and pants. Both meth-
ods use the same shape generation step. We can see that
our approach successfully completes occluded regions like
limbs or newly exposed skin of the query human model.
The online optimization step enables the model to adapt to
shape and garment textures that do not appear in the train-
ing dataset. Fig. 1 shows that the level of detail synthesis is
retained even if the suggested approach synthesized two or
three garments simultaneously.

Failure cases Fig.7 shows failure cases of our method
caused by infrequent poses, garments with unique silhou-
ettes and garments with complex non-repetitive textures,
which prove to be more challenging to the online optimiza-
tion step. We refer the reader to the supplementary material
for more examples of failure cases.

4.3. Quantitative Evaluation

Table 1 presents a comparison of our O-VITON results
with that of CP-VITON and a comparison of our results us-
ing feed-foward (FF) alone, versus FF + online optimiza-
tion (online for brevity). Compared to that of CP-VITON,
our online optimization FID error is decreased by approxi-
mately 17% and the IS score is improved by approximately
15%. (Note however that our FID error using feed-foward
alone is higher than that of CP-VITON). The human evalu-
ation study correlates well with both the FID and IS scores,
favoring our results over CP-VITON in 65% of the tests.



Tops Single Two
garment garments

CP-VITON 20.06 - -
FID ↓ O-VITON (FF) 25.68 21.37 29.71

O-VITON 16.63 20.47 28.52

CP-VITON 2.63±0.04 - -
IS ↑ O-VITON (FF) 2.89±0.08 3.33±0.07 3.47±0.11

O-VITON 3.02± 0.073.02± 0.073.02± 0.07 3.61± 0.093.61± 0.093.61± 0.09 3.51± 0.083.51± 0.083.51± 0.08

Human ↓ CP-VITON 65% ± 3% - -
O-VITON vs. O-VITON (FF) 94%±2% 78%±3% 76%±3%

Table 1: Two quantitative and one qualitative comparisons:
(1) presents the Fréchet Inception Distance (FID) [30] (2)
presents the Inception Score (IS) [27] and (3) presents a A/B
test human evaluation study of our O-VITON (uses online
optimization) results versus the CP-VITON and our feed-
forward O-VITON (FF) approach. These metrics are evalu-
ated on three datasets: Tops only garments, single garments
and two garments.

Ablation Study of the online optimization To justify
the additional computational costs of the online step, we
compare our method with (online) and without (FF) the on-
line optimization step (Sec.3.3). Similarly to the compar-
ison with CP-VITON, we use FID and IS scores as well
as human evaluation. As shown in Table 1 the online op-
timization step showed significant improvement in the FID
score for tops and comparable results on the one and two
garments. We attribute the improvement on tops to the fact
that tops usually have more intricate patterns (e.g. texture,
logo, embroidery) than pants, jackets and skirts. Please see
supplementary materials for more examples. The online op-
timization step also shows an advantage or comparable re-
sults for the IS score for all three scenarios. The human
evaluation clearly demonstrates the advantage for the on-
line vs feed-foward alone scheme, with 94% preference on
tops, 78% preference on one garment and 76% preference
on two garments.

Online loss as a measure for synthesis quality We
tested the relation between the quality of the synthesized
image and the minimized loss value (Eq. 6) of the online
optimization scheme 3.3. We computed FID and IS scores
on a subset of highly textured tops and measured a series
of loss values as the optimization progresses. Starting from
a high loss value of around 6.0 in fixed interval of 1.0 un-
til a loss value of 2.0. Fig. 6 shows the behaviors of the
FID error (red) with the IS score (blue). We see a clear de-
crease in the FID error and an increase in the IS score as the
loss value decreases. We argue that the online loss value is
highly correlated with the synthesis quality.

FI
D IS

Figure 6: (Left) Textural attributes distribution. Complicated tex-
tures are less common and therefore more challenging to generate
in a feed-forward operation. (Right) The online loss of the appear-
ance generation serves as a measure for success for both the FID
(dotted line) and IS (dashed line).

Reference 
garment

Query 
image

Result Reference 
garment

Query 
image

Result

Figure 7: (Left) Failure cases in generating shapes. (Right) Failure
cases in generating appearances.

5. Summary

We presented a novel algorithm (O-VITON) that enables
an improved virtual try-on experience where the user can
pick multiple garments to be composited together into a
realistic-looking outfit. O-VITON works directly with in-
dividual 2D training images, which are much easier to col-
lect and scale than pairs of training images. Our approach
generates a geometrically-correct segmentation map that al-
ters the shape of the selected reference garments to conform
to the target person. The algorithm accurately synthesizes
fine garment features such as textures, logos and embroi-
dery using an online optimization scheme that iteratively
fine-tunes the synthesized image. Quantitative and qualita-
tive evaluation demonstrate better accuracy and flexibility
than existing state-of-the art methods.

References
[1] C. Olah A. Odena and J. Shlens. Conditional image synthesis

with auxiliary classifier gans. In ICML, 2017. 2
[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape

matching and object recognition using shape contexts. IEEE
Transactions on Pattern Analysis & Machine Intelligence,
(4):509–522, 2002. 2



[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In European Conference on Computer Vision,
pages 561–578. Springer, 2016. 1

[4] Chao-Te Chou, Cheng-Han Lee, Kaipeng Zhang, Hu-Cheng
Lee, and Winston H Hsu. Pivtons: Pose invariant virtual try-
on shoe with conditional image completion. In Asian Con-
ference on Computer Vision, pages 654–668. Springer, 2018.
2, 3

[5] Haoye Dong, Xiaodan Liang, Bochao Wang, Hanjiang Lai,
Jia Zhu, and Jian Yin. Towards multi-pose guided virtual
try-on network. arXiv preprint arXiv:1902.11026, 2019. 2

[6] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2414–2423, 2016. 6

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014. 2, 4
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Generative visual manipulation on the natural image mani-
fold. In European Conference on Computer Vision, 2016.
2

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 2

[18] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman,
and Simon Lucey. St-gan: Spatial transformer generative
adversarial networks for image compositing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9455–9464, 2018. 2

[19] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-
laars, and Luc Van Gool. Pose guided person image genera-
tion. In Advances in Neural Information Processing Systems,
pages 406–416, 2017. 2

[20] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau,
Zhen Wang, and Stephen Paul Smolley. Least squares gen-
erative adversarial networks. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2813–2821,
2017. 5

[21] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[22] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Instagan:
Instance-aware image-to-image translation. arXiv preprint
arXiv:1812.10889, 2018. 3

[23] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. arXiv preprint arXiv:1903.07291, 2019. 2

[24] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 2

[25] Amit Raj, Patsorn Sangkloy, Huiwen Chang, Jingwan Lu,
Duygu Ceylan, and James Hays. Swapnet: Garment transfer
in single view images. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 666–682, 2018.
2, 3, 5, 7

[26] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-
lutional neural network architecture for geometric matching.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6148–6157, 2017. 2

[27] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in neural information pro-
cessing systems, pages 2234–2242, 2016. 2, 7, 8

[28] Masahiro Sekine, Kaoru Sugita, Frank Perbet, Björn Stenger,
and Masashi Nishiyama. Virtual fitting by single-shot body
shape estimation. In Int. Conf. on 3D Body Scanning Tech-
nologies, pages 406–413. Citeseer, 2014. 1

[29] Wei Shen and Rujie Liu. Learning residual images for face
attribute manipulation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4030–4038, 2017. 2

[30] Bochao Wang, Huabin Zheng, Xiaodan Liang, Yimin
Chen, Liang Lin, and Meng Yang. Toward characteristic-
preserving image-based virtual try-on network. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 589–604, 2018. 2, 6, 7, 8

[31] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In



Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 2, 3, 4, 5, 6

[32] Zhonghua Wu, Guosheng Lin, Qingyi Tao, and Jianfei Cai.
M2e-try on net: Fashion from model to everyone. arXiv
preprint arXiv:1811.08599, 2018. 3

[33] Gökhan Yildirim, Nikolay Jetchev, Roland Vollgraf, and
Urs Bergmann. Generating high-resolution fashion
model images wearing custom outfits. arXiv preprint
arXiv:1908.08847, 2019. 3

[34] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and
Victor Lempitsky. Few-shot adversarial learning of re-
alistic neural talking head models. arXiv preprint
arXiv:1905.08233, 2019. 2

[35] Fangneng Zhan, Hongyuan Zhu, and Shijian Lu. Spatial fu-
sion gan for image synthesis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3653–3662, 2019. 2

[36] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5907–
5915, 2017. 2

[37] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 4


