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Abstract

The growing demand for advanced Al necessitates the development of an intelligent
agent capable of perceiving, reasoning, acting, and communicating within an
embodied environment. We introduce SEAGULL, an interactive embodied agent
designed for the inaugural Alexa Prize SimBot Challenge, which can complete
complex tasks in the Arena simulation environment through dialog with users.
SEAGULL is engineered to be efficient, user-centric, and continuously improving.
To achieve these goals, we develop a modular system that combines neural and
symbolic components. Our natural language understanding module employs a
hierarchical pipeline to convert user utterances into logical symbolic representations
of their intentions and semantics. Meanwhile, a neural vision module detects
object classes, states, and spatial relations. These multi-sensory inputs are then
processed by a state tracker to update the agent’s beliefs regarding the world
state, user intentions, and task progress. A central policy interprets the neuro-
symbolic beliefs and selects one of several available skills, including navigation,
planning, and dialog. We place particular emphasis on optimizing dialog flow
and user experience, ensuring that users have a responsive, natural, informative,
and engaging interaction with our bot. Furthermore, we have developed tools
and pipelines to augment our vision and language data, continually enhancing our
system’s robustness and performance.

1 Introduction

We envision that the forthcoming generation of artificial intelligence (AI) will adopt an embodied
paradigm [1,19, 3/ |12]]: one that enables AI agents to operate in the physical realm, engage in object
manipulation, interpret and process multimodal inputs, and learn from situated communication with
humans. The potential impact of developing an efficacious embodied agent is tremendous, spanning
from robots that serve as waiters in restaurants and assist elderly individuals to complete household
chores, to the aspiration of artificial general intelligence (AGI). Recent advances in the field of
computer vision and natural language processing have reached a level of maturity that facilitates
the realization of embodied Al. The aim of the Alexa SimBot Challenge is to design a bot that
can perceive, reason, act, and communicate in Arena simulation environment [S]], while utilizing
voice-based interactions with Alexa users to collaboratively accomplish tasks. Compared to earlier
Alexa Prize challenges, the SimBot Challenge represents a crucial milestone in the integration of
visual perception, situated reasoning, and task-driven decision-making in a physical environment.

In Phase 1 of the SimBot Challenge, we developed the Deliberative Agent for following Natural
Language Instructions (DANLI) [13]], the state-of-the-art approach to the TEACh dataset [[11] that



integrated persistent world representations with tiered neuro-symbolic planning to solve long-horizon
tasks. For the second phase, building upon DANLI, we introduce the Situated and Embodied Agent
with GroUnded Language Learning (SEAGULL) agent. SEAGULL is similar in spirit to DANLI,
using a persistent world representation to reason over and execute Arena players’ requests. We
adapted several aspects of DANLI into streamlined, efficient, as well as continuously improvable,
and expandable modules.

In this report, we introduce the SEAGULL agent, an Al system designed to effectively respond
to verbal commands and accomplish tasks in the virtual Arena world. The primary objective of
SEAGULL is to develop strong baseline models for language understanding, multimodal perception
and reasoning, commonsense knowledge, and user-centered dialog policy.

1.1 Advantages and Key Innovations
The design of the SEAGULL system offers several advantages and introduces key innovations:

1. Modularity: The modular architecture permits easy addition, modification, and removal of skills
and policies, fostering system flexibility and adaptability.

2. Comprehensive Skill Set: The extensive skill library allows the system to tackle a broad array of
tasks and situations, improving its overall effectiveness.

3. Robust State Tracking: The state tracking module provides a rich understanding of the current
situation, leading to more informed and transparent decision-making.

4. Dynamic Policy Management: The policy controller enables the system to adapt its behavior
based on the current state, ensuring appropriate responses and actions across diverse situations.

5. Enhanced user Experience: The system is designed with user experience in mind, ensuring re-
sponsiveness, natural interaction, warmth, and informativeness for an optimized user experience.

In summary, the SEAGULL system represents an integrated Al solution designed for complex
virtual environments. Its modular architecture, comprehensive skill set, robust state tracking, and
dynamic policy management form the foundation for strong performance in language understanding,
multi-modal reasoning, commonsense knowledge, and user-centered dialog policy.

2 System Overview

2.1 Core Components

The architecture of SEAGULL is a modular system, consisting of four main components:

Skill Library. SEAGULL is equipped with an extensive skill library that encompasses natural
language understanding (NLU), vision, causal effect reasoning, navigation, planning, dialog, and
natural language generation (NLG) skills. These skills correspond to the specific capabilities of the
system, empowering it to parse user input, generate plans, and execute actions, all while providing
coherent and contextually appropriate responses.

State Tracking Module. This core component represents the agent’s complete understanding of
the current situation. It is updated based on the output of specific skills and offers situational context
for their optimal functionality. The state tracking module is composed of four types of states, namely
bot state, world state, interaction history, and task state.

Knowledge Module. The knowledge module supplies domain-specific knowledge for all the skills
and the state tracker. It integrates object affordances, probable object locations, and conventions
for naming and referring to rare objects, thereby enhancing the system’s overall understanding and
performance.

Policy Module. The modularized policy module is tasked with determining which skill to employ
based on the current state, in order to produce the most suitable response and actions. The system
implements various policies and utilizes a policy controller to dynamically switch between them,
adapting to a range of situations.
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Figure 1: The overall architectural design of the SEAGULL system. As a modulated Al system,
SEAGULL is composed of four main components: a skill library with various understanding,
reasoning, planning, and interaction skills; a state tracker that updates upon the outcomes of skills; a
policy module that determines which skill to employ; and a that provides domain-
specific knowledge.

Overall, the SEAGULL system offers a modular and versatile Al solution for effectively responding to
verbal commands and accomplishing tasks in virtual environments. The four main components—Skill
Library, State Tracking Module, Knowledge Module, and Policy Module—work synergistically to
provide a robust and adaptable system.

2.2 System Engineering

Agent State Persistence The SimBot challenge adopts a stateless backend design where users’
utterances in a game session come as separate HTTP requests. However, it is necessary to preserve
the state of the agent during a game because an embodied agent often relies on the context of a
session to understand user intents and execute actions. To bridge this gap, we implement an agent
state persistence mechanism where at the end of each request, the entire state of the agent for this
game (games are uniquely identified using session IDs) is serialized and saved to cache; at the
beginning of the next request of the same session, the agent is deserialized and restored so that its full
context is restored. The serialization and deserialization are cascading, meaning all fields in any child
skills, states, knowledge, and policies mentioned in Section@will be included. This system-level
design alleviates developers from the hassle of serialization and deserialization and thus enabling
developers to implement complex logic easily by storing any information they need as if the backend
is stateful. Specifically, we use Python packages attrs ﬁand cattrs E| for (de)serialization and
AWS ElasticCache for caching.

Game Session Persistence and Logging To enable easy debugging and continual improvement,
it is necessary to have a robust system of game session data persistence and logging. We use
AWS DynamoDB to store all game interaction data including game session ID, timestamp, user/bot
utterances, and bot actions. In addition, we connect our logging system to AWS CloudWatch to
store all execution logs. These setups prepare us well for quickly identifying user pain points and
continually improving system capabilities.

Canary Tests Sometimes a critical error or a rogue code push can cause system downtime or
significant regression. Our ratings are usually severely impacted under such circumstances. To avoid

"https://www.attrs.org
“https://catt.rs
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catastrophic situations like these, we implemented canary tests to emulate user requests. These canary
tests are run every 5 minutes and will notify us once anything abnormal happens. Canary tests have
saved us from several cases that could have caused severe issues to our system. We used AWS
CloudWatch Synthetic Canaries and AWS Simple Notification Service to implement this pipeline.

2.3 Development Pipeline

As described in[2] SEAGULL is a modular system with many components working in conjunction.
Therefore, the development effort has to be a team-wide effort with multiple team members making
changes to the system in parallel. At the same time, we need to ensure the correctness of the system
while preserving development speed and fast iteration time. Given these requirements, it is imperative
that we follow the best software engineering practices and establish a robust development pipeline
that supports continuous integration to the production environment.

Continuous Integration The main goal of our development pipeline is continuous integration to
the production environment to support rapid iteration. Once a new piece of code is merged into the
main branch, it is automatically deployed to the staging environment. When the team is ready to
make a deployment to the production environment, we create a tag on the repository, and the tagged
code is automatically deployed to the production environment. The tag naming convention is the
date of the deployment in order to quickly and accurately keep track of which code is running on the
production environment. The continuous integration pipeline is implemented using GitLab CI/C

Code Quality For every commit, we run a set of automated code quality tools to enforce a uniform
coding style. This includes autoformatting tools such as blaclﬂ as well as linters like ﬂakeSEl This
is to discourage bike-sheddinéﬂ and encourage discussions about substantive matters regarding the
system and code. These tools are run locally and as part of the continuous integration pipeline using
pre-commi

Type Annotations We require developers to use Python type annotations and run a static type
checker called mypyﬂ on every commit using pre-commit, both locally and on the continuous
integration pipeline. Python type annotations may not be as beneficial for small scripts for research
projects, but it is absolutely vital for a big, collaborative project like SEAGULL. It catches many small
mistakes and bugs early on, thereby greatly increasing the robustness of the system. Furthermore, it
serves as a secondary documentation, lowering the cost of information propagation within the team.

Testing We enforce that no piece of code can be merged to the main branch without passing a suite
of automated unit and integration tests. These tests range from simple input-output pairs for our NLU
module to heavy integration tests with Amazon DynamoDB. In an ideal world, all of our code should
have accompanying tests, but in the real world, we have to make trade-offs between writing tests
and development speed. As a result, we sometimes allow code to be merged into the main branch
without tests, but we make sure to pay off the tech debt incurred here at a later time by refactoring
the untested code to be more testable and adding appropriate tests. This effort is actually aided by
the fact that the rest of our code base is well-tested, as we can perform large refactors without the
fear of introducing regressions. Overall, the time spent writing testable code and adding tests is
well-compensated by the time saved from debugging.

Code Reviews Once a piece of code passes the suite of automated tests, it goes through a code
review process before it is merged into the main branch. Relevant code reviewers ensure that the
overall design of the code is sound and fits well with the rest of the system. Automated code quality
tools and tests play a crucial role here as they help reviewers focus on the substantive matter rather
than trivial matters like coding style. We use GitLab’s built-in code review tools to implement the
process.

*https://docs.gitlab.com/ee/ci/
*https://github.com/psf/black
*https://flake8.pycqa.org/

6https ://en.wikipedia.org/wiki/Law_of_triviality/
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Figure 2: The Natural Language Understanding (NLU) pipeline. NLU can combine the information
from dialog history, vision input, bot state, and object state to make predictions. The goal states are
inferred as a sequence of triples like X. IsPlacedTo(Y) that the agent needs to accomplish. In the
given scenario, the user intends to ask the agent to perform a series of actions: open the red door of the
time machine, repair the broken bowl the agent is holding, and subsequently take the fixed bowl to a
table located in the main office. However, the user ends up giving an utterance like “open the red door
to repair and bring it to the office table", which requires complex context modeling and commonsense
reasoning to accurately predict the intended goal state. Therefore, the NLU pipeline plays a vital
role in understanding such hard utterances and ensuring that the agent can comprehend and execute
the desired actions. The example user utterance used in this figure comes from a SEAGULL team
member’s interaction with the bot rather than from a real customer’s interaction.

Documentation Another challenge in managing large system development is the efficient dis-
tribution of information about different parts of the system. This is crucial in terms of not only
collaboration and development speed but also ensuring the overall correctness of the system. This
problem is especially acute in a system like SEAGULL which consists of specialized modules
developed by different members. Code review addresses this problem to a certain level, but it cannot
be the only solution due to its scalability (developers cannot review every single piece of code). To
address this issue, we encourage developers to document their code and use automated documentation
generation tools like Sphinx AutoAP]E] to keep the documentation up-to-date. Other important
processes are manually documented in the same documentation and tracked in the git repository
alongside the code.

3 Natural Language Understanding

Natural Language Understanding (NLU) is one of the crucial components of spoken dialogue
systems, which is responsible for analyzing and interpreting users’ inputs and extracting the relevant
information for downstream modules like the dialogue manager. Typically, NLU involves several
sub-tasks, including identifying the intent behind the user’s query, extracting named entities, and
parsing the syntax and semantics of the input. In our SimBot, we build a pipeline-based NLU
framework to understand and respond appropriately to user queries.

3.1 NLU pipelines

FigureZillustrates the pipeline in our SEAGULL NLU module, which consists of several sub-modules
executed sequentially to ensure an accurate understanding of user utterances.

https://sphinx-autoapi.readthedocs.io/
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Entity Extraction. Entity extraction is the process of identifying pertinent entity information within
the user’s input, such as objects, rooms, and object attributes (e.g., color and spatial location). For
instance, in Figure [2] the utterance "open the red door to repair and bring it to the office table"
is processed and delexicalized into "open the red 01 to repair and bring it to R1 02", where the
detected entities are 01=door, R1=office, and 02=table. This information is essential for parsing
the intricate semantic structures present in the sentence. The delexicalized utterance and the extracted
entities are then forwarded to the next submodule for further analysis.

Intent Detection. We have defined a hierarchical user intention taxonomy in our schema, consisting
of six main categories: Inform, Reply, Ask, Social, Profanity, and Others. Each category
contains several fine-grained user intent classes in the following. A comprehensive description can be

found in Appendix

* Informis a category in which the user informs some instructions or descriptions to the bot.
— Inform_Directive_Mani indicates a goal state the bot needs to complete.
— Inform_Directive_Navi indicates where the bot should navigate.
— Inform_Directive_CommonTask indicates a common task the bot should perform.
Inform_Task_Goal specifies the main goal of a task.
Inform_Object_Location provides the spatial location of an object.
— Inform_Object_State provides the current state of an object.
* Reply is a category in which the user replies to the bot’s previous message.
— Reply_No is a negative response.
— Reply_Yes is an affirmative response.
— Reply_Notsure is an uncertain response.
* Ask s a category in which the user asks a question.
— Ask_Agent_Location asks about the bot’s location.
— Ask_Agent_Inventory asks about the what’s holding in the agent.
— Ask_Agent_Capability asks what the bot can do in the challenge.
* Social is a category for social and chit-chat interactions.
e Profanity is a category for profane or inappropriate content.
* Others is a category for miscellaneous intents.

Given the last system dialog act and the current delexicalized user utterance as input, we employ a
regex parser to determine possible user intents. For instance, if the last system dialog act confirms
an action and the user responds with "yes," the parser will output an intent Reply_Yes. Our ex-
periments have shown that the most frequent user intents are Inform_Directive_Manipulation,
Inform_Directive_Navigation, and Inform_Directive_CommonTask, which are closely re-
lated to semantic parsing.

Semantic Parsing. Semantic parsing involves analyzing the syntax and semantics of the user’s
input to generate structured representations. This step typically involves converting the input text into
goal states, which are denoted as triples, such as X.IsPickUped(True) and X.IsPlacedTo(Y).
Additionally, there are triples that describe conditions that must be met when the planner
(sec. @) reaches the goal states, for example, the 02.IsInRoom(MainOffice) for the intent
Inform_Object_Location in Figure 2] which implies that the bot should attempt to place the
bowl onto a table in the main office.

Context Modeling Context modeling resolves ambiguities and maintains a stack coherently to
record the objects mentioned by the user or detected by vision models. The stack is then used to
update the extracted entities by previous sub-modules, as shown in Figure [}

* In the stack, we first add all mentioned objects in the dialogue history (e.g., the ’bow]’ in the
last turn) so that when a co-reference expression appears in the current sentence (e.g., ’it’) and
the parsed objects are insufficient for predicting goal states, we will systematically examine
mentioned objects to determine a suitable object to complete the goal states.

* To integrate visual information, we also add objects detected by the vision model to the stack to
address the vision-text co-reference issue. For example, in Figure 2] the utterance "open the red
door" actually refers to "open the time machine" because the time machine has a red door. A
goal state like Door. IsOpened (True) is not contextually coherent; thus, our NLU replaces the
original entity door with the detected object time machine.



* We consider the inventory information, i.e., the objects currently held by the bot, from the bot
state (ref to sec. b)) and add it to the stack for matching. If the current utterance cannot be parsed
into complete goal states.

* We also utilize information about the existing object state for mentioned objects from the world
state (ref to sec. [5), which helps filter out false positive predictions.

In this way, we can combine information from both visual and linguistic inputs to create a contextual-
ized understanding of human-robot conversations. Since there is no adequate amount of annotated
data to train robust neural models from scratch, the NLU module was implemented based on parsing
rules and achieved 98% overall semantic parsing accuracy in a small clean evaluation set (1,000
utterances) extracted from the noisy trajectory data provided by Amazon.

3.2 Data Augmentation

Data augmentation is a technique used to expand and diversify the training dataset, which can
improve the performance and generalizability of the dialogue system. In the context of NLU, data
augmentation can involve generating variations of existing data points or creating entirely new
instances to cover a wider range of possible user inputs.

Data Augmentation with LLMs Large Language Models (LLMs), such as GPT-3 [2] and Chat-
GPTFE], are used to generate synthetic data for augmenting the existing testing dataset. We first
manually generate the semantic labels such as Apple.IsPickedUp and the corresponding simulated
user utterances like “pick up the apple", then using the prompting technique to ask LLMs to generate
more diverse expressions. For reliability considerations, we leverage the additional data in a rule-
based manner, i.e., we continually improve the rules in our NLU parser by covering more unexpected
corner cases (around 3,000 utterances) provided by text-davinci-003 in the OpenAl playground. We
provide detailed templates and examples in Appendix After the improvement, NLU parser
performance is able to boost from 83% to 92% on the additional augmented dataset.

4 Visual Perception

Visual perception is another important component for the bot to understand the situation. In SEAG-
ULL, the vision skill of consists three models: a hierarchical object recognition model, an object state
detector, and a supporting relation detection model. The goal of these models is to process the raw
visual inputs and output symbolic object-centric representations to be used in downstream world state
tracking and planning.

4.1 Hierarchical Object Recognition

The hierarchical object recognition system allows SEAGULL to recognize objects with base cate-
gories, and subsequently distinguish finer-grained categories upon closer inspection or when viewed
from a better angle. For example, in the Arena environment, four different types of cartridges (mug,
hammer, action figure, and lever) can be used to 3D print specific objects. The bot may be able to
detect that an object is a cartridge from a distance, which is useful when searching for a cartridge in
the room. However, to determine the specific type of cartridge, the bot must examine the icon on the
cartridge, requiring a closer view or a better angle. The hierarchical object recognition algorithm
empowers the bot to take advantage of both coarse and fine-grained object categorization, adapting to
the available visual input and task requirements.

We train a Mask2Former model [4]] to detect objects with 96 distinct object classes (referred to as
the coarse object types). We first train the model on the vision dataset provided by the Alexa team,
which consists of 514,321 images collected by traversing the agent in the room to face various objects.
However, we find that the model trained on this data performs badly under the following scenarios: (1)
when there is a state change of the objects, such as a cake becomes frozen; (2) when the illumination
condition changes, such as the room light is turned off or the object is placed inside a container like a
microwave; (3) when the object is small (e.g. bread slice, floppy disk, etc).

"https://openai.com/blog/chatgpt
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To boost the performance, we developed a robust, high-performance pipeline that encompasses
a data collection engine, an effective training recipe, and a state-of-the-art detection architecture.
We collect a custom dataset as a complementary of the original vision dataset. We modify the
Arena CDF files to add objects with customized states into the scene and drive the agent to look at
them from different angles. To ensure data coverage, we enumerate all the possible state changes
according to the object affordance and manually identify objects that the vision model struggles to
detect. We iteratively update our model and data several times. The final dataset has 50,858 images
in total. To improve model training, we also applied a comprehensive set of data augmentation
techniques, including CopyPaste [6], PhotoMetricDistortion, and RandomCrop. We utilized the
per-class balancing algorithm from LVIS [7]] with an oversampling threshold of 0.015 to make the
data distribution less biased.

Based on the object detections of coarse categories, we train another classifier to further predict 219
fine-grained object classes, which can distinguish different types of objects of the same coarse type,
such as different cartridges. This model is based on ResNet-50 [8] with several layers of MLP layers
on top. We evaluate the fine-grained type classification model on the validation vision data provided
by the Alexa team. The model achieves an accuracy of 93.8% in identifying fine-grained object
classes.

4.2 Object State Estimation

Beyond object types, we also train another set of classifiers to predict essential object states from
observations, such as isBroken, isOpened, etc. Due to efficiency concerns, in practice, this model
was implemented as another 2 layers of MLP on top of the ResNet-50 backbone of the fine-grained
object-class classifier. Our model was able to correctly infer object state with an accuracy of
approximately 95%.

Besides the object’s physical state, we also designed a pixel-based color recognition algorithm to
identify object colors. Given an object bounding box, we compute the nearest neighbor of each pixel
in the box to a set of base colors, where the distance is computed as the Euclidean distance in the
Lab color space. We keep the colors that have a proportion of 15% or higher as the predicted object
colors.

4.3 Object Relation Detection

Finally, we identify spatial relationships between objects to enable SEAGULL to reason about object
positions and interactions. These relationships can be represented as object tuples (base-object,
supported-object), where the base-object supports the supported-object, like a table supporting a
cup.

Upon detecting object classes using the object recognition system, objects are filtered into two
categories: potential base-objects and potential supported-objects. The system then enumerates
all possible combinations within the detected objects and employs bounding box information to
determine if the relationship holds. To verify the relationship, simple yet robust heuristics are
used, such as ensuring the centroid of the supported-object lies within the base-object and that the
supported-object is positioned higher than the base-object.

S State Tracking

The state tracking module serves as the core component of the SEAGULL system, representing
the bot’s comprehensive understanding of the current situation. This understanding is crucial for
the policy module, as it leverages this information to determine the next actions. The state is
updated based on the output of various skills, such as the parsing result from the natural language
understanding (NLU) skill and the object detection and state estimation result from the vision skill.
Additionally, the state tracking module provides situational context, allowing these skills to function
more effectively. The module comprises four distinct types of states:

* Bot State: The bot state encompasses various aspects of the bot’s current status, including its
pose, location, the room it is in, and its inventory (items held by the bot). This information



enables the system to maintain an accurate representation of the bot’s position and capabilities in
the virtual environment.

» World State: The world state captures the bot’s beliefs about all objects, their physical states
(e.g., a Bowl has isBroken=True), and their relationships (e.g., Plate.isPlacedTo(Table)).
These beliefs can be updated from multiple information sources, such as the bot’s visual obser-
vations, the user’s language descriptions or the causal effects of actions. This comprehensive
representation of the environment provides a rich context for the bot to make informed decisions.

¢ Interaction History: The interaction history records all exchanges between the bot and the user.
Coreference resolution, the process of identifying which noun phrases refer to the same entity, is
essential for accurately interpreting user input based on the interaction history. For example, if a
user says "pick it up" after the bot approaches an apple, "it" refers to the apple. By maintaining a
complete interaction history, the bot can better understand user intentions, especially when the
instructions are partially specified.

» Task State: The task state corresponds to the current progress of a task. As tasks can be complex
and comprise multiple sub-goals, tracking progress is vital for understanding the situation and
deciding on the next steps. This state allows the bot to effectively manage tasks by breaking them
down into manageable sub-goals and updating its progress as it proceeds.

The state tracking module, with its four types of states, enables the SEAGULL system to maintain an
accurate and dynamic understanding of the bot’s status, the environment, the interaction history, and
the progress of tasks. This comprehensive representation empowers the system to make informed
decisions, adapt to various situations, and provide contextually appropriate responses, contributing to
the overall effectiveness and adaptability of the SEAGULL system.

5.1 Belief Update from Multiple Sources

Estimating the belief state is of paramount importance for decision-making within SEAGULL. A
comprehensive and accurate belief state enables the bot to make informed decisions, react appropri-
ately to user commands, and adapt to changes in the environment. In SEAGULL, the belief state
is updated from multiple sources, including visual observations, natural language descriptions, and
action causal effects. This section elaborates on the approaches used in SEAGULL to update the
belief state and the benefits of such design.

Belief Update from Visual Observations. In SEAGULL, the belief state is updated based on
the bot’s visual observations. When an object is detected, it is added to the belief state along with
its estimated physical state. This approach ensures that the belief state continuously incorporates
new information as the bot navigates the environment, enhancing its decision-making capabilities.
For example, if the bot observes a bowl of milk on a table, it will update its belief state with this
information, allowing it to respond accurately to user commands involving the bowl.

Belief Update from Natural Language Descriptions. The belief state is also updated using
information obtained from natural language descriptions provided by the user. When the user
mentions specific details about the environment, such as the presence of an apple in the fridge, the
system incorporates this fact into the belief state. This feature allows the bot to integrate user-provided
knowledge and more effectively address the task.

Belief Update from Action Causal Effects. SEAGULL maintains a human-constructed knowledge
base about action cause-effects. Given an action, SEAGULL updates its belief about objects’ physical
states using cause-effect knowledge. This method enables the bot to maintain an up-to-date belief
state that accurately reflects the consequences of its actions. For instance, if the bot opens a fridge,
the belief state will be updated to indicate that the fridge is now open (Fridge.isOpened=True).
This awareness of the causal effects of actions reduces the uncertainty of object state estimations
from noisy vision and NLU outputs, which significantly improves the accuracy of the bot’s belief.

The final belief state is a combination of beliefs derived from these three sources. The integration of
information from visual observations, natural language descriptions, and action causal effects enables
the SEAGULL system to maintain a comprehensive and dynamic belief state. Whenever there is
uncertainty, especially a conflict from multiple sources of information, the policy module would take
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Figure 3: Diagram of the finite state machine for SEAGULL’s instruction following policy. Different
types of actions (i.e. dialog actions, manipulative actions and navigation actions) are added to the
bot’s execution queue as a consequence of state transitions.

the initiative to ask for clarification and confirmation from users. This design promotes more proper
decision-making, improved responsiveness to user commands, and increased adaptability to various
situations. For example, if a user asks the bot to find an apple in the fridge, and the bot has previously
observed a closed fridge, it can utilize its belief state to deduce that it must first open the fridge
to locate the apple. This multi-source belief update approach ensures that the bot can effectively
combine and utilize all available information, resulting in a more robust and efficient system.

6 Policy

The policy module in SEAGULL is designed to handle various types of user interactions and decide
an appropriate course of action based on the current situation. The module consists of a policy
controller and three distinct policies: an instruction-following policy, an error-handling policy, and a
question-answering policy.

6.1 Policy Controller

The policy controller is the central component responsible for determining which policy should be
used and managing the transitions between different policies. It examines the current state, user input,
and interaction history to decide the most suitable policy to handle the given situation. The policy
controller ensures that the bot can dynamically adapt to the user’s commands and seamlessly switch
between policies as needed.

6.2 User-Engaged Instruction Following

As instruction following is the core of the Arena games, the instruction following policy is the crucial
component of the SEAGULL system. This policy will be activated when a user provides a directive to
the bot. This policy is implemented as a state machine, as illustrated in Figure[3] The policy consists
of several interconnected states, designed to handle different types of goals in a flexible and efficient
manner.

In the User Input Processing state, the user’s input utterance is processed by the NLU module
(Section [3.1)) and transformed into a sequence of goal states representing the user’s directive. Based
on the identified user intentions, the policy proceeds to the Assigning state, where it routes the goal
request to an appropriate subsequent state to handle different types of goals.

For example, the Object-Free Navigation sub-policy is employed for simple navigation commands
that do not involve object interaction, such as "move forward" or "go to the robotics lab." In these
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cases, the bot focuses on navigating through the environment without the need for grounding or
object manipulation.

On the other hand, the Object Interaction sub-policy is activated for goals involving object manipu-
lation, which encompasses locating objects, moving close enough to render them interactable, and
executing actions upon them. Consequently, most directives necessitate the bot’s interaction with at
least one object, while some high-level goals may demand interactions with multiple objects (e.g.,
"fix the bowl" requires locating and picking up the bowl, finding a time machine, placing the bowl
into the time machine, and turning it on). Since performing actions necessitates fulfilling certain
preconditions (e.g., opening the door of the time machine before placing an object inside), it is crucial
for the bot to plan its actions. The planning algorithm we employed will be discussed in greater detail
in Section

The Task Confirmation and Task Resumption sub-policies come into play when handling high-level
task goals that require multiple actions to complete. These sub-policies enable the bot to divide
complex tasks into smaller, manageable steps by asking the user whether they wish to continue or not.
For example, if the user requests the bot to "repair the bowl," the bot may first confirm if the user
wants to proceed with the repair, and then execute the necessary actions in a step-by-step manner.

In situations where the bot identifies an unachievable goal, the Unachievable Goal Feedback sub-
policy is triggered. This sub-policy leverages the bot’s built-in domain knowledge to identify and
reject goals that are not feasible due to mismatched object affordances and required actions. For
instance, the bot will recognize that it cannot "pick up a refrigerator” as it is too heavy to be lifted.

Lastly, the Incomplete Goal Feedback sub-policy enables the bot to detect incomplete directives,
such as when an action is identified without a specified target object. In such cases, the bot may ask
the user for clarification before proceeding.

In summary, the instruction following policy combines these states and sub-policies to create a
versatile and adaptive approach to handling user directives. By covering a wide range of goal types
and addressing various scenarios, the policy ensures that the SEAGULL system effectively follows
user instructions while maintaining a seamless and interactive user experience.

6.2.1 PDDL-Based Action Planning

Users sometimes provide multi-step, high-level goals, such as "make me a cup of coffee". This type
of goal is not necessarily easily handled by one predetermined series of actions; for example, in some
cases the bot may need to empty a coffee mug before using it, or in some cases the coffee mug isn’t
visible and needs to be found. In fact, there is a large number of cases for this one high-level goal
that would be tedious to explicitly account for in a decision tree. In these cases, it is useful to have
a way to specify goals without specifying how they should be solved, and to let an optimizer solve
them for us. We employ PDDL [[10] planning to accomplish this.

PDDL is a planning language that lets us specify a set of objects, associated predicates, and possible
actions as a domain. PDDL planners are heuristic-based search algorithms that use these domains,
along with specified goals and their relevant objects (called problems) to come up with optimal-length
trajectories of symbolic actions to take. PDDL is a good fit for the Arena setting since Arena actions
and object states are designed symbolically. Since PDDL lets us specify arbitrary actions as pairs of
preconditions and post-conditions, we can specify both low-level actions that coincide with Arena-
compatible actions and high-level actions that encode more complex goals. We continually update
our PDDL domain’s action set based on interaction data from users.

The PDDL planner is incorporated into our instruction following policy. Because PDDL planning
cannot handle epistemic uncertainty particularly well and requires full observability, we do not
rely entirely on it for execution: if the PDDL planner is able to produce a solution based on our
specification, we execute its plan. If not, we execute our one-step reactive execution policy, where
we apply heuristics to predict executable actions given the current state. During the execution of the
planned sequence of actions, if the action fails or there is a mismatch in the expected state, we make
use of our error-handling policy, as described below.
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6.2.2 User-Engaged Action Execution

To enhance user experience, the instruction following policy also incorporates user-engaged action
execution. This feature ensures that the bot keeps the user informed about the current goal, upcoming
actions, and progress throughout the execution process. Maintaining transparent communication with
the user is crucial for building trust and enhancing user satisfaction. For example, while executing
a high-level task such as repairing the bowl, the bot will first acknowledge the goal to the user by
saying "Okay, I will repair the bowl". Then at each step, it will report the upcoming action by stating
"I am now going to the time machine." or "I am placing the bowl to the time machine" etc. Finally,
after the bowl is repaired, the bot will inform the user about the completion of the task by saying
"The bowl has been fixed!" and ask about the next step. This level of communication allows the user
to have a clear understanding of the bot’s actions and progress, ultimately improving the overall user
experience.

6.3 Next-Step-Suggestion Policy

To further boost user experience, we develop a next-step-suggestion policy that can automatically
suggest the next possible action based on the last physical action taken by the bot and the knowledge
about object affordance. For example, if the user asks the bot to navigate to a pickable object
without giving further instructions, the bot will suggest if the user wants to pick up that object.
Therefore, the user can simply say "yes" instead of giving a full command to make the bot perform
the pick-up action. We implement such suggestions based on object affordance, which means the bot
will never suggest anything that is not doable in Arena. Besides suggesting low-lever actions, we
also implement several high-level tasks that will be triggered when interacting with certain special
objects. For example, when something is placed on a color changer, our bot will ask the user whether
they want to change the color of that object, and mention all the options (red, green, and blue) that
can be chosen from. We observe from the user feedback that many users are impressed by the
next-step-suggestion policy, which is said to greatly improve the game experience.

6.4 Error Handling Policy

The error handling policy is invoked when an action execution error occurs. In such cases, the error
handling policy informs the user about the error and assists them in addressing the problem. For
instance, if the bot tries to turn on the robot arm that is not powered up, the error handling policy
will notify the user of the issue and may suggest turning on the power by saying "Alexa, turn on the
power" before attempting to operate the robot arm on again.

6.5 Question-Answering Policy

As the user may not always give direct commands to SEAGULL, the question-answering (QA) policy
is activated when the user asks a question or tries to chat with the bot. This policy is designed to
answer user inquiries about the Arena game and bot capabilities, and also give thoughtful responses
for general chit-chat from the user. For example, if the user asks, "What does the time machine
do?" where the target object is a rare artifact, the policy will provide a description of the artifact and
propose to find one or point one out if in view. If a user inquires about the bot’s capabilities, the policy
will describe SEAGULL’s capabilities by informing the user how to communicate with it. Similarly,
if the user asks how to play or what to do next, the policy will provide a quick game overview or a
thoughtful suggestion, e.g., to read the next subgoal or a sticky note. This policy also enables the
bot to respond to general chit-chat from the user to greet the user, thank the user, and more while
directing their focus back to the task at hand. For example, when the user thanks SEAGULL, it may
respond "You’re welcome! What should I do next?". Note that the QA policy does not directly output
an utterance, but only determines the system dialog act to take. The realization of the dialog act,
i.e. the translation from a system dialog act to the system response in the natural language form, is
conducted in our Natural Language Generation module which will be introduced in the next section.

7 Natural Language Generation

Natural language generation (NLG) enables SEAGULL to communicate with users. As reliability
and speed are important when interacting with users in an online setting, our NLG module is
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@ Disappointed Emotion (SSML)

| can’t find the bowl anywhere. Maybe it’s in
3

. Template Arg
another room, or stored away somewhere?

Could you guide me step by step to find it?

I'll follow your lead!
® Excited Emotion (SSML)

Figure 4: Components of an utterance generated by SEAGULL’s NLG module, which consists of
templates, one for each dialog act in the utterance, filled with one or more arguments, e.g., objects
(the bowl) or activities (find it). Each dialog act can provide additional special tips to provide extra
information and/or guide the user’s response, and Speech Synthesis Markup Language (SSML) is
used to add emotional tones to templates to make them sound more natural.

entirely template-based. Its flexibility and easy modification enables developers to easily add dialog
communication within policies and skills, and add to and refine SEAGULL’s utterances where needed.

7.1 System Utterance Components

As illustrated in Figure[d when SEAGULL says an utterance, it consists of several components which
have been defined by us, and can be easily expanded and modified based on user needs or different
application areas.

7.1.1 Dialog Acts

System dialog acts (DAs) are the base unit of communicative intents SEAGULL may use to interact
with the user. It currently has 112 possible DAs to communicate with the user throughE] and these
are used in 148 contexts throughout SEAGULL’s policies and skills to enable communication with
the user. Thanks to the NLG module’s flexible design, it is simple to add new system DAs where new
user needs emerge, requiring only a few lines of code.

DAs are organized through a three-tier system by their intent, context, and optionally a sub-context.
There are 9 DA intents, each of which represent a high-level communicative goal toward one of
several possible contexts and/or sub-contexts.

AskWh intents are used to ask the user a wh-question to gather information or complete its understand-
ing of their command, such as where is something, what actions should be applied to which objects,
or what is the user’s current goal. AskSelect DAs are used to ask a user to choose between several
options. In some cases, there may be multiple possibilities for SEAGULL to address their request,
and we may need to ask them choose. In Arena, such DAs can be interleaved with visual cues, e.g.,
highlighting an object in front of the user, to improve the clarity of communication. Confirm DAs
are used to ask the user to confirm some information provided. These DAs are used when SEAGULL
has an idea of what to do next, but would like to confirm in case the system has interpreted the user’s
request incorrectly. Inform DAs are used to provide information to the user. Propose DAs are used
for SEAGULL to take initiative and propose what to do next, either by proposing commands the user
can say to SEAGULL, or actions that SEAGULL suggests to take next. Reply DAs can offer a quick
response to a user’s request to answer a question, or indicate that the request has been understood,
begun, or completed. Fallback DAs are used when SEAGULL fails to successfully execute a user’s
request. In these cases, SEAGULL may ask the user to repeat themselves, rephrase their request,
or try something else, or inform them it has misheard their request or missed part of it. Social
DAs are used in traditional social and colloquial dialog, e.g., greetings, thanks, encouragements, and
interjections; these make its utterances sound more natural and warm to the user. Others DAs cover
other intents, primarily to indicate the user’s request is out of domain.

''System DAs and example templates listed in full in Appendix
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7.1.2 Templates

Each DA has several possible femplates, which are manually added and maintained in SEAGULL. All
templates for a specific DA should have about the same meaning, but phrased in different ways. For
example, for the DA Social_Interjection_Apologetic, which is used when SEAGULL encoun-
ters an error or makes a mistake, templates include utterances like “Oops,” “Whoops,” and “Oh dear.”
For another example, in the DA Inform_0bject_Room, templates include “I think {object_type}
is in {room},” “I remember {object_type} is in {room},” and “{object_type}’s in {room},”
where template arguments (described below in more detail) are surrounded by curly brackets.

To enhance the user experience, we focused on creating templates that were natural, diverse, warm,
and informative. We achieved this by manually testing each utterance with Alexa’s voice and tone,
and adding Speech Synthesis Markup Language (SSMLPZI to convey emotions such as excitement
and disappointment. Further, we commonly used feedback from users to fine-tune our templates, e.g.,
in cases where users found the bot too excited or it was talking too much. The streamlined design of
NLG makes it easy for anyone on the research team to add or modify templates, and our thorough
tests ensure templates are properly formed and convey the expected information before deployment.

7.1.3 Arguments

Some templates require one or more string arguments to form complete utterances. For example, in
the templates listed above for Inform_0bject_Room, we require object type (e.g., the bowl) and
room (e.g., the break room) arguments to fill the template. Based on the Arena environment and
SEAGULL’s system DA, there are currently 15 types of arguments supported in the NLG templates,
including but not limited to object type, object instance (e.g., “the bowl on the left”), object property
(e.g., “broken”), location description (e.g., “in the time machine”), action type (e.g., “grab”), activity
description (e.g., “find the time machine”), and room (e.g., “break room”). We use a mapping process,
described in Section|7.2] to convert symbolic information from SEAGULL'’s tracked world state into
strings to fill these template arguments. While these template argument types are specifically geared
toward the Arena environment, it is simple to add or remove argument types to adapt to other tasks.

7.1.4 Tips

Based on our understanding of the situation and interaction history with the user, we can also append
or prepend tips to SEAGULL’s utterances to provide extra context as needed or guide the user’s
response. SEAGULL currently supports three types of tips stored along with template data for each
DA.

Pre-tips are prepended before an utterance for a specific DA to provide some extra context. For
example, when SEAGULL fails to find an object (e.g., “I can’t seem to find the bowl here.”), we may
prepend a pre-tip to tell the user why that may be: “Sorry, I'm still learning my way around here.”

Second, post-tips give some followup guidance on how to respond to an utterance for a specific DA.
For example, SEAGULL often proposes actions it could perform next, e.g., interacting with the color
changer: “Shall I change the color of the bowl?” In this case, we may append a post-tip to give the
user an idea how to respond to SEAGULL’s proposal: “We can choose from red, blue, or green.”

Lastly, newbie-tips are written specifically for users who may be new to the game. For example, when
SEAGULL mentions the Arena game’s subgoals, we may want to provide information on where to
find them.

These tips can be manually written for each DA, or instead point to another DA to avoid redundant
writing of tips. If other types of informative dialog are needed, it is straightforward to add more types
of tips into the NLG template data.

7.2 System Utterance Generation

In order to generate an utterance from these components, we use an NLG request, which contains the
target DA for the utterance and relevant information to inform the filling of its template arguments.
We then perform an automatic many-to-many mapping from the information in the request to the

Zhttps://developer.amazon.com/en-US/docs/alexa/custom-skills/
speech-synthesis-markup-language-ssml-reference.html
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Figure 5: Overview of how SEAGULL’s natural language generation (NLG) module generates
an utterance, e.g., for Inform_0Object_State. A consumer skill or policy will call an NLG API
function, passing in tracked state information or other relevant details to generate the utterance. This
information will be used to create an NLG request, which is used to randomly select a template (and
tips, if needed) and fill its arguments with strings.

template arguments, then select a random template to fill for the target DA. This mapping can be
triggered through a user-friendly, automatically generated API.

7.2.1 NLG Requests and Mapping

Within an NLG request, several types of information may be provided to map into template arguments.
Object-related template arguments can be mapped from object types, specific object instances, object
predicates (i.e., physical states), or manually specified strings. Action-related template arguments
can be mapped from action types, fully-specified actions (i.e., action type with direct and/or indirect
objects), one of several common task classes (e.g., find object or fire the laser), a goal state (i.e.,
to mention the action that could achieve that state), or manually specified strings. Room-related
template arguments are mapped from a set of room names in the Arena environment.

To convert object, action, and room classes into strings, we use manually defined names for each class,
and generate comma-delimited lists of these names when template arguments require a list of them.
When SEAGULL needs to describe a list of objects, it must distinguish them to avoid ambiguity.
This is done by identifying a unique feature of each object: an object’s type, relative position in the
visual frame, or physical state predicates can be used to identify it.

7.2.2 NLG API

To enable easy generation of utterances from policies or skills, we automatically generate a user-
friendly API from the template data described in Section[7.1] Within each API function, we define
the required request parameters to generate an utterance for each possible DA, with all possible data
types and thorough documentation. API functions return special class objects for utterances which
can be automatically concatenated to each other, and track the mentioned objects, states, actions,
directions, rooms, and subgoals within utterances. This enables developers to easily call the NLG
API from other different policies and skills to build SEAGULL’s engaging dialog communications.
In turn, this helps streamline the development of new features for SEAGULL to continually improve
its capabilities.

8 Evaluation

The evaluation for SimBot is a complex task. While traditional embodied Al tasks usually adopt
automatic and non-interactive evaluation pipelines that focus on task success rate, SimBot uses inter-
active, human-in-the-loop evaluation that focuses more on the holistic user experience. Specifically,
after each SimBot session, the user rates the experience from 1.0 to 5.0. This rating, although not
perfect, is a direct and holistic reflection of the user’s impression as a system need to be capable,
stable, responsive, natural, and smart to win user satisfaction. Below, we share a quantitative analysis
of the overall user rating, an evaluation of task success rate in the offline environment and qualitative
observations made from user feedback.

8.1 Quantitative Analysis on User Ratings

Figure [6a] gives an overall trend of ratings we received from users. We observe an overall increasing
but fluctuating trend. There are many factors contributing to the fluctuating scores. We share some
observations in the section below. Figure [6c]and [6d|show the distribution of conversation duration
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Figure 6: Rating distribution from October 31, 2022 to March 20, 2023.

and ratings. As we can see, most users end the conversation between 100 to 300 seconds and many
gave 4.0 to 5.0. From Figure [6busers who gave 5.0 tend to have shorter and quicker conversations,
suggesting finishing the game quickly is a favorable behavior. For users who gave 1.0, the lowest
score, the median duration is 193 seconds, shorter than user conversations of 5.0 sessions, but
exhibiting larger variance, suggesting that users may be frustrated early in the game and just want
to quit, or have been stuck for very long and eventually give up unhappily. The sessions received
3.5s are also interesting: They have the longest duration of 622 seconds - more than 10 minutes of
interactions. This usually happens when users use primitive commands (likely because higher-level
commands like find failed) to control the bot to complete long-horizon tasks - they are still able to
complete the task but the experience is not great.

8.2 Trends Observed from User Feedback

Here are some hypotheses we qualitatively summarized from reading users’ textual feedback.

e Users tend to speak highly about bot’s capability of completing the task fast and stable.

 Users tend to give high ratings when our bot was able to understand every command.

e Users appreciated the more natural and fun tones we added using Alexa SSML.

 Users appreciated that our bot gave hints on how to get unstuck.

» Users seem to get frustrated when they were unable to make progress on the game and were not
provided useful hints to move forward.

» Users seem to get frustrated when some seemingly simple tasks, e.g. toggling a light switch
when the switch is right in front of the bot, were unable to be fulfilled.

» Users noticed when our bot carried a long latency and appreciated shortened latency.
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Method MSR (%)

Neural-Symbolic [5] 18.19%
VL Model [5] 22.80%

SEAGULL 30.98%

Table 1: Experimental results of offline instruction following the validation split. MSR stands for
mission success rate.

8.3 Offline Instruction Following Success Rates

Table (1| displays SEAGULL'’s offline instruction-following performance on the validation split of the
Arena benchmark™| SEAGULL achieves a mission success rate of 30.98%, which is 8.18% higher
than the baseline VL. model from [5]].

To better understand the performance, we make a closer examination of the model predictions and
identified several typical failure cases. First, our bot performs poorly in distinguishing between objects
of the same type, which poses challenges when the bot needs to deliver an item to a specific desk
or locate something within a particular cabinet. It also struggles in understanding object references
with fine-grained spatial indicators, such as "the desk by the door". Secondly, our bot has some
problems detecting and finding small objects, where it misses some key object to complete the task.
Thirdly, there is a domain gap between online interaction which SEAGULL is designed for, and the
instruction-following formulation in the offline evaluation. For example, sometimes our bot will
pause and ask the user whether to proceed, which cannot be provided during offline evaluation.

Our analysis has highlighted the need to enhance SEAGULL’s object reference understanding
capabilities and keep improving the vision model, in order to improve its overall performance. As
part of our future work, we will focus on refining the natural language and vision models, addressing
the issues identified in our evaluation, and working towards a more robust and accurate system for
instruction-following tasks in the Arena benchmark.

9 Conclusions

In summary, SEAGULL takes a step towards embodied Al with Arena by building and integrating
several substantial components:

1. Speech-to-symbol natural language understanding (NLU) pipeline from ASR preprocessing to
entity extraction, intent detection, context modeling, and semantic parsing.

2. Data augmentation processes powered by large language models, enriching the language diversity
in training data.

3. Multi-faceted, persistent state tracking to enable SEAGULL to remember important details of
the interaction history, task progress, and current states of the agent and objects, continuously
updated as the agent performs actions, observes the world visually, and communicates with the
user through language.

4. Robust policies for instruction following, error handling, and questions answering to control the
agent’s execution and dialog, allowing continuous improvement and augmentation with new skill
development.

5. Scalable and versatile template-based natural language generation (NLG) database and user-
friendly API enabling diverse yet controllable language communication.

The Amazon Simbot Challenge provided us a unique, collaborative, and engaging experience to
develop SEAGULL - an embodied Al agent that strives to listen, talk, perceive, reason, plan, and
act in the environment. SEAGULL connects lower-level perception and action with rich symbolic
structures at various levels of processing. Such transparency plays an important role in bringing

3We use the new Arena built to run the evaluation since SEAGULL requires correct depth information in its
perception skill.
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humans and the agent to a common understanding of tasks, goals, and situations. SEAGULL will
serve as an infrastructure for our future work that explores continual learning and adaptation for
embodied human-AlI collaboration and communication.
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A Appendix

A.1 Full Description of User Dialog Acts

e Informis a category in which the user informs some instructions or descriptions to the bot.
— Inform_Directive_Mani indicates a goal state the bot needs to complete.
— Inform_Directive_Navi indicates where the bot should navigate.
— Inform_Directive_CommonTask indicates a common task the bot should perform.

18



Inform_Task_Goal specifies the main goal of a task.

Inform_Task_Subgoal specifies a subgoal within a larger task.

Inform_Task_Done informs that a specific task has been completed.
Inform_Task_Notdone informs that a specific task has not been completed.
Inform_Task_Numsg specifies the number of messages related to a task.
Inform_Task_Numsgdone specifies the number of messages related to a task that have been
completed.

Inform_Task_Numsgleft specifies the number of messages related to a task that are left to
complete.

Inform_Task_Tool provides information about a tool needed for a task.
Inform_Object_Location provides the spatial location of an object.

Inform_Object_State provides the current state of an object.

Inform_Object_Reference provides a reference to an object.

Inform_Object_Type provides the predefined type of an object.

* Reply is a category in which the user replies to the bot’s previous message.

Reply_No is a negative response.

Reply_Yes is an affirmative response.

Reply_Notsure is an uncertain response.

Reply_Select is a selection from given options.
Reply_None indicates none of the options apply.
Reply_Deny is a denial or contradiction.
Reply_Acknowledge acknowledges a statement or action.

* Ask is a category in which the user asks a question.

Ask_Agent_Location asks about the bot’s location.
Ask_Agent_Inventory asks about the bot’s inventory.
Ask_Agent_Capability asks what the bot can do in the challenge.
Ask_Current_Task asks about the current task the bot is performing.
Ask_Check_Objectstate asks the bot to check the state of an object.
Ask_Object_Location asks about the location of an object.
Ask_How_Task asks how a specific task should be completed.
Ask_Knowledge_Object asks for information about a specific object.
Ask_Prompt asks the bot to provide a prompt or suggestion.

* Social is a category for social and chit-chat interactions.

Social_Greeting_Opening is an opening greeting.
Social_Greeting_Closing is a closing greeting.
Social_Thanks_Initiate is an expression of gratitude.
Social_Thanks_Response is a response to an expression of gratitude.
Social_Apology_Initiate is an expression of apology.
Social_Apology_Response is a response to an expression of apology.
Social_Praise is an expression of praise or compliment.
Social_Complaint is an expression of dissatisfaction or complaint.

* Profinity is a category for profane or inappropriate content.

Profinity_Sentive is for sensitive content.

Profinity_OutOfDomain is for out-of-domain content.

Profinity_Olffensive is for offensive content.

Profinity_EndOfGame is for content signaling the end of the game or interaction.
Profinity_HarmfulToBot is for content that may be harmful to the bot.

* Others is a category for miscellaneous intents.

Request_Repeat asks the bot to repeat a previous message.

Incomplete indicates an incomplete message or thought.

Nonsense indicates a message that doesn’t make sense or is unrelated.
Others is a catch-all for other intents not covered by the previous categories.

A.2 Full Description of System Dialog Acts

Below we list all system dialog acts (DAs) and example utterances for each, excluding SSML tags.
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AskWh: DAs used to ask the customer a wh-question to gather information or complete its
understanding of their command, such as where is something, what actions should be applied to
which objects, or what is the customer’s current goal.

e AskWh_Object_Receptacle: "Where can I find {object_type}?"

* AskWh_Object_Room: "In which room can I find {object_type}?"

e AskWh_Action_Target: "{action_type} what?"

e AskWh_Action_Receptacle: "Where should I {action_type} {object_type}?"

e AskWh_Action_Tool: "What can I use to {action}?"

e AskWh_Action_TurnDirection: "Which direction should I turn?"

e AskWh_Action_TurnDirectionTowardObject: "Which direction should I turn to find
{object_type}?"

* AskWh_Object_Type: "What do you want me to do with {object_type}?"

e AskWh_Navigation_Target: "Where did you want me to go?"

e AskWh_Task_Goal: "What is our mission goal?"

e AskWh_Task_FirstSubgoal: "What is our first subgoal?"

* AskWh_Task_NextSubgoal: "What is our next subgoal?"

e AskWh_Task_FirstStep: "What’s the first step?"”

* AskWh_Task_FirstStepTowardGoal: "What is the first step to {action}?"

e AskWh_Task_NextStep: "What should I do next?"

* AskWh_Task_NextStepTowardGoal: "What is the next step to {action}?"

e AskWh_Task_StepByStep: "<prosody rate="115

* AskWh_Task_AlternatePlan: "Any other ideas?"

* AskWh_Task_NumSubgoals: "How many subgoals do we have to complete?"

e AskWh_Task_NumSubgoalsDone: "How many subgoals have we completed?"

* AskWh_StickyNote_Text: "What does the sticky note say?"

AskSelect: DAs used to ask a customer to choose between several options. In some cases, there
may be multiple possibilities for SEAGULL to address their request, and we may need to ask them
choose. In Arena, such DAs can be interleaved with visual cues, e.g., highlighting an object in front
of the customer, to improve the clarity of communication.

e AskSelect_0bject: "Do you mean {objects}?"

* AskSelect_Object_Receptacle: "Is {object_type} {receptacle_objects}?"

* AskSelect_0bject_Room: "Is {object_type} in {rooms}, or somewhere else?"

e AskSelect_Room: "Do you mean {rooms}?"

* AskSelect_Action_Target: "Should I {action_type} {objects}?"

* AskSelect_Action_Receptacle: "Should I {action_type} it {receptacle_objects}?"
e AskSelect_Action_TurnDirection: "Should I turn {directions}?"

* AskSelect_action_type: "Should I {action_types} {object_type}?"

* AskSelect_Task_Ongoing: "Are we working on {subgoals}?"

Confirm: DAs used to ask the customer to confirm some information provided. These DAs are
used when SEAGULL has an idea of what to do next, but would like to confirm in case the system
has interpreted the customer’s request incorrectly.

* Confirm_Object: "Do you mean {object_type}?"

e Confirm_Object_State: "Is {object_type} {object_predicate}?"

e Confirm_Object_Room: "Is {object_type} in {room}?"

e Confirm_Object_Type: "Is this {object_type}?"

e Confirm_Action: "Did you want me to {action}?"

e Confirm_Action_Target: "Is this the right {object_type} to {action_type}?"
* Confirm_Action_Receptacle: "Should I {action_type} it {receptacle_object}?"
e Confirm_Task_Goal: "Let me double check, you asked me to {action} - right?"

* Confirm_Task_NextStep: "Is the next step to {action}?"

* Confirm_Task_GoalUnchanged: "We're still trying to {action}, right?"

e Confirm_Task_GoalDone: "Is our mission goal marked as complete?"

e Confirm_Task_SubgoalDone: "Is {subgoal} marked as complete?"

Inform: DAs used to provide information to the customer.
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e Inform_CurrentRoom: "I think we’re in {room}."

e Inform_Inventory_Object: "I'm holding {object_type}."

e Inform_Inventory_Empty: "I'm not holding anything."

e Inform_Object_Type: "That’s {object_type}."

* Inform_0Object_Receptacle: "I think {object_type} is {receptacle_object}."

e Inform_0Object_Room: "I think {object_type} isin {room}."

* Inform_0Object_State: "I think {object_type} is {object_predicate}."

e Inform_0Object_Purpose: "{object_type} isused to {action}."

* Inform_Navigation_Room: "Heading to {room}."

e Inform_Navigation_SearchTarget: "Let me go and find {object_type}."

* Inform_Navigation_SearchUpdate: "Checking over here!"

e Inform_Navigation_SearchSuccess: "There itis!"

* Inform_Navigation_SearchFailure: "I can’t seem to find {object_type}."

e Inform_Task_Ongoing: "l am {action}."

e Inform_Task_Done: "We {action}."

e Inform_Task_Plan: "I will {actions}."

e Inform_Task_PlanNotFound: "I’m not sure how to {action}."

e Inform_Action_Incapable: "Looks like I'm not able to {action}."

e Inform_Exception_UnsupportedAction: "I’m not able to do that."

e Inform_Exception_UnsupportedNavigation: "I can’t move that way."

e Inform_Exception_AlreadyHoldingObject: "I can only hold one thing at a time."

* Inform_Exception_OutOfRange: "I can’t reach {object_type}."

e Inform_Exception_0Out0fSight: "I can’t see {object_type} now."

e Inform_Exception_KilledByHazard: "We should keep an eye out for dangerous hazards
like that."

e Inform_Exception_Other: "That didn’t work."

e Inform_GameInfo_Goal: "The mission goal can be found in the first line of the upper left
corner."

e Inform_GameInfo_Subgoal: "The subgoals are listed in the upper left corner, under the
mission goal."

e Inform_GameInfo_GoalStatus: "You can see the status of a goal or subgoal by looking at the
checkbox next to it."

e Inform_GameInfo_MiniMap: "There is a mini-map of the lab in the upper right corner of the
screen."

* Inform_GameInfo_StickyNote: "Just say: Alexa, read the sticky note."

e Inform_GameInfo_RoomName: "You can see the names of rooms on the minimap."

e Inform_GameInfo_Score: "Pay attention to the game score under your mini-map."

e Inform_GameInfo_Background: "<prosody rate="115

e Inform_Game_Success: "Yay! We completed the mission. Great job."

e Inform_Game_Failure: "Bummer. We couldn’t complete the mission. Let’s try again soon."

e Inform_Tutorial_Communicate: "<prosody rate="110

e Inform_Tutorial_StickyNote: "To find other sticky notes, look for shining green dots on
themini-map in the upper right."

e Inform_Tutorial_Hazard: "By the way, some parts of this lab are dangerous. Please help me
avoid any hazards so I don’t get hurt."

Propose: DAs used for SEAGULL to take initiative and propose what to do next.

* Propose_Action: "Shall we {action}?"

* Propose_NextStep: "Do you want me to {action}?"

* Propose_NextStep_FindObject: "<prosody rate="100

* Propose_NextStep_0OperateColorChanger: "Wanna change the color of {object_type}?"
* Propose_Command: "Just say: Alexa, {actions}."

* Propose_ReadSubgoal: "You can always try to tell me one of the subgoals in the upper left."
* Propose_Tutorial_Communicate: "<prosody rate="115

* Propose_NextGame: "I think we’re hitting a wall here. Wanna try another task?"

Reply: DAs that can offer a quick response to a customer’s request to answer a question, or indicate
that the request has been understood, begun, or completed.
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* Reply_Yes: "Yes!"

* Reply_No: "No."

* Reply_NotSure: "Not sure."

* Reply_Acknowledge: "Gotit-"

* Reply_Doing: "I'mon it!"

* Reply_NotDoing: "We won’t do that."
* Reply_Done: "Done!"

* Reply_Going: "On my way!"

Fallback: DAs used when SEAGULL fails to successfully execute a user’s request. In these cases,
SEAGULL may ask the customer to repeat themselves, rephrase their request, or try something else,
or inform them it has misheard their request or missed part of it.

e Fallback_AskRepeat: "Could you repeat that?"

e Fallback_NotUnderstand: "I don’t get it."

* Fallback_AskRephrase: "Could you say that in a different way?"

e Fallback_TrySomethingElse: "Maybe we can try something else."
e Fallback_Mishear: "I missed that."

e Fallback_PartialMishear: "I missed something."

Social: DAs used in traditional social and colloquial dialog. Such utterances are important when
interacting with humans, and can help the customer better trust SEAGULL. SEAGULL can make
social utterances for greetings, thanks, apologies, pausing its speech (e.g., “Umm...”), encouragement
(i.e., to praise the customer when successes occur), or more colloquial interjections (e.g., “Wow!”) to
make its utterances sound more natural to the customer.

* Social_Greeting_Opening: "Hello!"

* Social_Greeting_Closing: "Goodbye."

* Social_Thanks_Initiate: "Thanks!"

* Social_Thanks_Response: "You're welcome!"
* Social_Apology_Initiate: "I'm sorry."

* Social_Apology_Response: "That’s okay."

* Social_SpeechPause: "Umm..."

* Social_Encourage: "Great job!"

* Social_Interjection_Apologetic: "Oops!"
* Social_Interjection_Confused: "Hmm - "

* Social_Interjection_Informative: "Hey - "
* Social_Interjection_Hurt: "Ouch-"

* Social_Interjection_Excited: "Awesome!"
* Social_Interjection_Operating: "Here we go!"
* Social_Interjection_Attention: "Hey - "

Others: DAs for other intents, primarily to indicate the customer’s request is out of domain.

* Others_Sensitive_Response: "I don’t understand."

* Others_QOutOfDomain_Response: "I don’t understand."

e Others_0Offensive_Response: "l don’t understand. Please try something else."
e Others_EndOfGame_Response: "Thanks for your help!"

e Others_HarmfulToBot_Response: "I don’t understand."

A.3 Full Description of LLM Augmentation
We use a prompt template as follows to collect synthetic user instructions from large language models.

You are collaborating with a robot to complete a task. Your goal is to
instruct the robot to [GOAL STATE] with natural language commands. Write
[NUMBER] other possible commands of the same purpose without introducing
additional context. Use various forms of sentences and everyday spoken
language. An example command is "[EXAMPLE]".

Some examples towards a goal state Apple.IsPickedUp are presented as follows:
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Can you pick up the apple, please?

Please pick up the apple for me.

The apple needs to be picked up. Can you do it?

Pick up the apple and bring it here.

To complete this task, please pick up the apple.

I need you to pick up the apple for me.

The apple must be picked up. Can you help me?

Pick the apple up and place it on the table.

If you don’t mind, please pick up the apple.

Could you please pick up the apple and give it to me?
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