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Abstract
State-of-the-art automatic speech recognition (ASR) networks
use attention mechanism and optimize transducer loss on la-
beled acoustic data. Recently, Semi-Supervised Learning (SSL)
techniques that leverage large amount of unlabeled data have
become an active area of interest to improve the performance
of ASR networks. In this paper we approach SSL based on the
framework of consistency regularization, where data augmenta-
tion transforms are used to make ASR network predictions in-
variant to perturbations in the acoustic data. To increase data di-
versity we present a combination technique that randomly fuses
multiple waveform and feature transforms. For each unlabeled
acoustic waveform, two versions, i.e., a weakly augmented and
a strongly augmented version of the unaugmented input are gen-
erated. During training, a semi-supervised loss is assigned that
enforces consistent outputs between the weak and strong aug-
mentations of the unlabeled input. Moreover, we employ model
averaging technique to generate stable outputs over time. We
compare and demonstrate the benefits of the proposed approach
against standard SSL strategies like iterative self-labeling. We
leverage over 100000 hours of unlabeled data to train the ASR
network using streaming transducer loss and reach improve-
ments in the range of 8%-12% over self-labeling baseline.
Index Terms: Semi-Supervised Learning, Consistency Regu-
larization, Data Augmentation, Transducer Loss

1. Introduction
State-of-the-art ASR models typically comprise tens to hun-
dreds of millions of model parameters and are expressed as
large deep neural networks enhanced with attention mechanism.
ASR models inspired from Transformer [1] architecture, such
as, Conformers [2] capture the time varying nature of speech
using self attention mechanism to express the highly complex
mapping between the input acoustic sequence and the output
word sequence. These models are trained explicitly in End-
to-End (E2E) manner using either transducer loss [3] or auto-
regressive loss [4]. Unlike the dependence on external lexi-
con and finite state transducers in Hybrid ASR techniques [5],
E2E-ASR models do not require an external alignment model
for training [6]. However, the alignment free nature of these
models necessitates substantial amount of labeled data to train
these models effectively and to get the best performance out of
them [7, 8].

Manually transcribing large amounts of acoustic data for
every desired condition is both time consuming and expen-
sive. Moreover, to ensure end user privacy, imposes further
restrictions on availability of ever increasing labeled training
data. Recently, a lot of interest in ASR has focused on apply-
ing SSL [9, 10, 11]. SSL is halfway between supervised and
unsupervised learning, but similar to supervised learning, SSL
also estimates a mapping from feature space to label space and

it leverages large amount of unlabeled data to learn that map-
ping [12]. A prerequisite for applying SSL techniques is having
access to limited but sufficient amount of labeled data.

In self-labeling or self-training based SSL methods, la-
beled data is used for building initial seed models, which are
then used to iteratively decode large quantities of unlabeled
data and subsequently reliable hypotheses (machine-labeled
data) are selected based on confidence scores for ASR train-
ing [13, 14, 15, 16]. Self-labeling can introduce confirmation
bias, though data augmentation methods have been applied to
mitigate this bias. More recently, self-supervised representation
learning techniques that optimize predictive and contrastive loss
have been used to improve ASR performance [17, 18, 19, 20].

SSL based on knowledge distillation (KD) [21] from a
teacher model to a student model has become popular for ASR
model training [10, 22, 23]. In KD, the teacher model is of-
ten trained on labeled data alone, and subsequently this model
is used to generate pseudo labels on a much larger volume
of unlabeled data. Given a well-trained teacher model unla-
beled data can significantly improve the performance of the stu-
dent model. However, the KD approach incurs an additional
cost in training and inference due to an auxiliary and much
larger teacher model. In parallel with KD, SSL techniques
based on consistency regularization (CR) have become popular
in image domain [24, 25, 26]. Although relatively less stud-
ied, CR using data augmentation has recently been explored for
ASR [27, 28, 29].

CR relies on the principle that when a realistic perturbation
is applied to a model’s input then its prediction should not di-
verge. The success of CR is therefore related to the quality and
diversity of input perturbations. In this work, we have explored
multiple waveform and feature transforms to augment acoustic
data. In parallel we apply model averaging technique [30] to
improve quality of inferred pseudo labels. Inspired by work
in image domain [26], we adopt the simple strategy of ran-
domly combining multiple acoustic transforms to generate a
strong augmentation of unlabeled audio. Similar to [25], we in-
fer pseudo labels from weak augmentation of data and simulta-
neously enforce consistency with the corresponding strong aug-
mentation. We use state-of-the-art conformer [31] architecture
to validate our approach on both cross entropy (CE) pretrained
model and E2E model trained with transducer loss. Compared
to [27], this work does not depend on an auxiliary teacher model
to enforce consistency. In contrast to [27, 28], we do not limit
data augmentation to Spec Augment [32], but amplify acous-
tic diversity with multiple augmentation techniques. Also un-
like [27, 28, 29], this work applies model averaging to stabilize
the inferred pseudo labels.

The rest of paper is organized as follows. Section 2 presents
the approach used in this work for training CE and E2E ASR
networks using CR. Section 3 describes the details of E2E net-
work, experimental setup used in this study and results. Finally,



Section 4 concludes our work.

2. Consistency Regularization for ASR
In SSL the main assumption behind using unlabeled data to
improve classification is that the decision boundary between
classes lies in low density regions. Consistency regularization
exploits this idea by applying realistic perturbations to the un-
labeled input data. If we make the reasonable assumption that
unlabeled data is likely to have been sampled from high density
regions of input distribution and by SSL assumption is also far
from the decision boundary, then by applying a realistic pertur-
bation to the unlabeled data, the model prediction should not
diverge.

More formally, we assume a dataset of paired labeled exam-
ples DL = {(X1, Y1), ..., (XL, YL)}. For any (Xl, Yl) ∈ DL
we maximize the likelihood of ground-truth transcription Yl
given the input utteranceXl and the stochastic model F param-
eterized by θ. We also assume access to a dataset of unlabeled
examplesDU = {XL+1, ..., XL+U}. For unlabeled Xu ∈ DU
we transform it by applying data augmentation transform T to
create a perturbed version X̂u = T (Xu). In consistency regu-
larization, the unlabeled objective is to minimize the distanceD
between the two model outputs D(F (Xu; θ), F (X̂u; θ)). Su-
pervised log likelihood loss is combined with unsupervised con-
sistency loss by a weighting factor w to give the joint loss:

L =−
∑

(Xl,Yl)∈DL

logP (Yl|Xl, θ) + w
∑

Xu∈DU

D(F (Xu), F (X̂u))

(1)

A standard choice of distance function D is Kullback–Leibler
(KL) divergence between posterior distributions of unlabeled
data and its augmentation.

2.1. Proposed Approach

In this work, E2E ASR model is a sequence transducer consist-
ing of a Conformer encoder, a LSTM prediction network and a
joint network. The Conformer encoder F e encodes at time t,
each acoustic feature xt into a hidden representation ht. The
prediction network F p maps a output token into another hidden
representation gi, where i is the index of the output token la-
bels. The joint network F j fuses information from both speech
encoder and prediction network to compute the posterior proba-
bility of next token or blank. The E2E transducer loss is defined
as sum of posterior probabilities over all consistent input output
alignments.

Its natural to consider KL divergence, coming directly from
output of F j , as the distance function in (1). However, predic-
tion network tends to produce spiky posteriors and augmenta-
tion of input features, such as time warping, can cause these
posteriors to spike at different positions in the posterior lattice.
Instead, our approach is based on combining consistency regu-
larization with self labeling in a single framework. Our moti-
vation comes from success of applying similar strategy in com-
puter vision tasks [25]. The key idea is to simultaneously per-
form both inference and training on unlabeled data. First, we
infer pseudo labels on a weakly augmented version of the input
unlabeled example X̃u as follows:

Ỹu = argmax
Yu

logP (Yu|X̃u, θ) (2)

Similar to (1), we then enforce consistency by maximizing the
likelihood with respect to the inferred pseudo label Ỹu on a

strongly augmented version of the unlabeled example X̂u. The
overall loss is given as:

L = −
∑
Xl,Yl

logP (Yl|Xl, θ)− w
∑
Xu

logP (Ỹu|X̂u, θ) (3)

2.1.1. Model Averaging

In (2) and (3), the same model with parameters θ is used to
generate predictions for both weak and strong augmentations
of data. It is possible that during training the model will make
errors in those predictions for some unlabeled batches. Those
errors can in turn then get reinforced due to enforced consis-
tency. To overcome this we can use a separate model for in-
ferring the pseudo labels. In this work, we apply the mean
teacher method proposed in [30] for generating the pseudo la-
bels Ỹu. Two identical networks called teacher and student are
maintained throughout training. The parameters of the teacher
model θ′ are defined as the exponential moving average of the
parameters of the student model θ. At each training iteration τ
those parameters are updated as:

θ′τ = αθ′τ−1 + (1− α)θτ (4)

Instead of inferring Ỹu using student model θ, we now use
the mean teacher model θ′ at each training step τ to infer Ỹu:

Ỹu = argmax
Yu

logP (Yu|X̃u, θ′) (5)

The overall loss is till defined by (3), the only change is that we
infer more stable pseudo labels Ỹu using averaged model with
parameters θ′.

2.1.2. Data Augmentation

The data augmentation methods considered in this work are
summarized now:

• Pitch shift: The pitch of the raw audio waveform is raised
or lowered without affecting the tempo. We randomly
sample n ∈ [−6, 6] and randomly shift the pitch by n
semitones.

• Background Noise: We mixed background environmen-
tal noise from diverse sources such as, cafe, inside pub,
music, inside office and other domestic scenarios to the
input audio. A random SNR was sampled in range of 0
to 20 dB as target SNR for mixed audio.

• Reverberations: Audio is convolved with a randomly-
generated room impulse response (RIR). We sampled
RIRs from an inhouse database containing more than a
million of those with a T60 cutoff of 400ms.

• SpecAugment [32]: Time frequency masking is applied
to the spectrogram of the input audio. Similar to [32],
we randomly sample widths of time masks and fre-
quency masks, the number of time masks, and the num-
ber of frequency masks.

• Input Mixup [33]: This transform is also applied at fea-
ture level by creating a convex combination of a batch of
input features with a shuffled version of the same batch.
The mixing factor is sampled from a beta distribution
with shape α set to 0.3. In contrast to [33], we did not
apply mixup to the targets.



2.1.3. Method

We perform the training in two stages: in the first stage we add a
logit layer on top of the encoder and pretrain the encoder against
frame level targets. We follow the approach detailed in [34]
to generate frame level targets El,t for labeled data. For unla-
beled data we infer frame level pseudo labels Ẽu,t. During this
stage, the overall utterance level log likelihood is accumulated
across frame level cross entropy loss for both supervised and
consistency regularization terms in (3). Subsequently, we seed
the second stage with pretrained encoder and compute utterance
level E2E transducer loss from the output of joint network for
both labeled and unlabeled data. We denote the set of weak
augmentations by AW and the set of strong augmentations by
AS , the main difference between them is that AW and AS are
parameterized with different parameters. We also assign a fixed
selection probability pi ∈ [0, 1] for each transform Ti sampled
from AS . Summary of our approach is describe now:

* Pretraining Stage:

1. Sample TW ∼ AW
2. Compute frame level pseudo labels at time t for feature
Xu,t as Ẽu,t = argmaxF e(TW (Xu,t))

3. Sample k different augmentations T1, ..., Tk ∼ AS .

4. For i = 1...k, apply Ti such that,

Ti(X) =

{
X, if pi < qi ∼ U(0, 1)

Ti(X), otherwise

5. Compose strong augmentation X̂u = T1, ..., Tk(Xu)
6. Use cross-entropy loss and, frame level targets El,t and
Ẽu,t in (3), to pretrain the encoder by minimizing the
sum of supervised and consistency loss.

* E2E Stage:

7. Apply Step 1. above to get weakly augmented feature
X̃u.

8. Using X̃u perform beam search at the output of F j to
find the best pseudo label sequence Ỹu

9. Apply Step 3. to Step 5. above to get strongly augmented
feature X̂u

10. Use E2E transducer loss and, sequence labels Yl and Ỹu
in (3), to minimize the sum of supervised and consis-
tency loss.

3. Experiments
3.1. Model Architecture

In this work we have implemented a ASR architecture com-
posed of a CNN preprocessor, Conformer encoder, LSTM pre-
diction network and joint network that adds the outputs from the
encoder and prediction network. CNN preprocessor produces a
time-frequency embedding of input acoustic features and the
conformer encoder models the long term temporal dependence
in speech using self-attention mechanism. Conformer encoder
is stack of 14 conformer blocks, with each block composed of
several layers, such as: self-attention, depth-wise convolution,
batch normalization and feedforward layers. Throughout this
work we have used causal convolutions and self attention lim-
ited to left context to achieve streaming behavior. The architec-
tural details of the model are show in Table 1.

Table 1: Model architecture and setup

Feature representation 3 * 64 dimensional
LFBE Features

Label representation 4000 Word Pieces
(Plus Blank Symbol)

Feature Embedding

CNN:
Layers = 2, Kernel = 3x3,
Stride Layer 1= 2
Stride Layer 2 = 1

Encoder architecture

Conformer Block :
Layer = 14, Kernel = 15,
Attention Heads = 8,
Encoder Dim = 512,
FeedForward Dim = 1024

Decoder architecture
LSTM:
Unidirectional,
Layers = 2, Units = 1024

Labeled data 2000 hours
Unlabeled data ∼ 100000 hours

3.2. Experimental Details

3.2.1. Data selection

Experiments were performed using de-identifed data drawn
from Alexa family of devices. For our experiments utterances
were filtered out using criteria, such as confidence, wakeword
and we also cutoff utterances with common lexical content that
occurs with high frequency. Almost 100000 hours of unlabeled
and de-identifed data from British English locale was sampled
using this data selection technique. The labeled data used in
all our experiments is an in-house de-identifed British English
dataset of 2000 hours. For evaluation we used a test set with
20 hours of speech, containing both clean and noisy far field
conditions. We also included a rare words test set, that includes
words that occur very infrequently in the training set. We set
a cutoff of 10% for word frequency occurrence to compile the
rare words test set. We report results as relative Word Error Rate
Reduction (WERR) to compare the proposed method against
supervised baselines.

3.2.2. Experimental Setup

The input log Mel-filterbank energy (LFBE) features are nor-
malized using global mean-variance statistics of the training
pool and we employ a frame skipping approach where three
consecutive frames are stacked to obtain a 192 dimensional fea-
tures. We used byte pair encoding algorithm [35] to generate
4000 word-pieces (WP) as subword units. The frame level tar-
gets for CE pretraining were generated by force aligning WP
boundaries using the approach described in [34].

Distributed training was used to train both cross-entropy
(CE) pretrained and E2E models. The networks were initialized
with a learning rate of 4e−4 and Adam optimizer was used as
the Stochastic Gradient Descent (SGD) algorithm. The weight-
ing factor w in (3), is set to 1.0 during training, except for a
warm-up phase of first 5000 SGD steps where it is set to 0. In
the initial CE pretraining phase we added a logit layer to the
Conformer encoder. The seed model for E2E stage was then
initialized by stripping off the logit layer from the CE trained
encoder.



3.3. Results

We use iterative self-labeling as the baseline method for com-
parison to the proposed approach. We follow a training strat-
egy similar to that proposed in [15]. The seed model for self-
labeling is first pretrained using cross-entropy training followed
by end-to-end training using transducer loss on labeled data.
Following [15], we generate the pseudo labels on the unlabeled
data after every 10 epochs and augment the training set with
a mix of both labeled and unlabeled data to retrain the self-
labeling model. Data augmentation based on SpecAugment
(SA) is applied during training of the self-labeling baseline.

We compare the baseline against proposed CR methods de-
tailed in Section 2.1.3. Similar to unsupervised baseline, for
all CR models we used SA as the weak augmentation method.
The weak augmentation parameters were: number of frequency
masks nF = 2, number of time masks nT = 1 and frequency
width as 20% of the spectral range. The order of applied aug-
mentation is time-domain transforms techniques; Pitch-Shift,
Noise and Reverb; followed by feature augmentation methods.
For strongly augmented SA, we set nF = 2 and nT = 3 and
increased the width of frequency masks to 25%. In the random
combination approach we apply SA along with augmentation
techniques detailed in Section 2.1.2. Each augmentation tech-
nique is selected with equal probability and composed accord-
ing to Section 2.1.3

The pretrained supervised Conformer encoder is used as
seed to initialized the supervised baseline system trained with
transducer loss. Similarly, pretrained CR model is used as seed
to initialize E2E training with unlabeled data. Spec Augment
is applied to supervised model during training. During the pre-
training phase for random augmentation (RA) the probability of
selecting any base transform is set to 0.25. However, we am-
plify strong augmentation by increasing probability of selection
for each transform to 0.5 during the E2E stage. We give equal
weight to both labeleded and unlabeled loss and set the weight-
ing factor w to 1.0 In Table 2 we present the results of CE pre-

Table 2: WER reduction for CE pretrained models on 100000 hours of
unlabeled audio and 2000 hours of labeled audio. Compared to base-
line negative WERR means degradation in performance and Positive
WERR means improvement.

Method Labeled
Aug.

Unlabeled
Strong
Aug.

Test
WERR(%)

Supervised Baseline SA - 0.00
Vanilla CR SA SA 6.53

Random CR SA RA 8.60

training the conformer encoder. The second and third columns
of the table lists augmentation techniques applied to labeled and
unlabeled data. At the CE stage, we compare all the models
against supervised baseline trained with SA (first row). Apply-
ing SA for both labeled and unlabeled data in model (Vanilla
CR) we see improvement in performance due to CR. Finally,
the system trained by randomly combining multiple random
augmentation techniques (Random CR) shows the best relative
improvement on the evaluation test set. We present the results
of training the model with E2E transducer loss in Table 3. All
the systems are compared against self-labeling baseline. Unsur-
prisingly, we observe that the supervised system trained using
labeled data alone, degrades by almost 7% − 20% compared
to baseline. We also observe significant difference in perfor-
mance of the supervised model due to effects of CE pretraining.

Table 3: WER reduction for models E2E (transducer loss) trained on
100000 hours of unlabeled audio and 2000 hours of labeled audio.
Transforms applied in training include: 1.) No Augmentation (NA); 2.)
Spec Augment (SA); 3.) Randomly Combined Augmentation (RA). Were
applicable only SA was applied as weak augmentation. Random-MA
applies model averaging. All the models were CE pretrained, except
those indicated by (NP).

Method Labeled
Aug.

Unlabeled
Strong
Aug.

Test
WERR(%)

Rare Words
WERR(%)

Self-labeling SA - 0.00 0.00
Supervised (NP) SA - -28.27 -46.90

Supervised SA SA -7.22 -19.86
Vanilla CR SA SA 4.11 0.77

Random CR SA RA 8.53 8.26
Random-MA CR SA RA 9.16 12.32

Table 4: Comparing the difference in performance due to different
distance measures in CR: 1.) transducer loss computed from Pseudo
Labels (PL), 2.) L2 distance and 3.) Cosine distance.

Method Transducer (PL) MSE Cosine
Test (WERR %) 0.0 -6.29 -2.89
Rare Words (WERR %) 0.0 -8.89 -5.03

There is significant drop in performance of unpretrained super-
vised model compared to its pretrained counterpart. Comparing
baseline against Vanilla CR based on applying only SA as the
data augmentation method shows improvements of 4.77% on
the head test set and comparable performance on rare words
test set. By amplifying acoustic diversity using the proposed
random augmentation technique (Random CR) we improve sig-
nificantly by almost 8% on both the test sets. Finally Random-
MA trained by applying random augmentation on the input side
and model averaged mean teacher for pseudo label generation
shows the best overall performance.

In Table 4, we investigate the difference in performance of
CR when instead of inferring the pseudo labels and then ap-
plying transducer loss, we use alternative distance measure D
in equation (1). The labeled data is still optimized with trans-
duer loss, while L2 distance or cosine distance are computed
between the outputs of encoder when the proposed weak and
strong data augmentation is applied to unlabeled data. We ob-
serve significant drop in performance for both of L2 and cosine
distance measures, indicating that pseudo labels are more effec-
tive output representations for applying CR to E2E networks.

4. Conclusions
In this work we investigated the impact of consistency regu-
larization for improving E2E ASR models. In particular, we
demonstrated that stable pseudo labels inferred during train-
ing themselves are effective in enforcing the consistency be-
tween different augmented views of the acoustic data. This
makes our approach directly applicable to streaming ASR mod-
els trained with transducer loss. Furthermore, we explored
multiple waveform and feature augmentations and proposed a
method based on random combination of these augmentations.
We established that by leveraging unlabeled data at scale, pro-
posed method outperforms both self-labeled baseline, as well
as, CR method based on SpecAugment. We demonstrated these
improvements during both CE pretraining stage and E2E trans-
ducer loss training stage, obtaining WERR improvements in the
range of 8− 12%.
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