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Figure 1. We present FreeMix, a zero-shot approach for customized video editing. Given a source video, reference images, their text
prompts, and a target text prompt where the source video’s object name is replaced with that of the reference images, FreeMix generates a
synthesized video by replacing the object in the source video with the object in the reference images. The key innovation is to transfer the
low-frequency information from the source video and high-frequency information from the reference images to the synthesized video.

Abstract

Customized video editing aims at substituting the object in
a given source video with a target object from reference im-
ages (Fig. 1). Existing approaches often rely on fine-tuning
pre-trained models by learning the appearance of the ob-
jects in the reference images, as well as the temporal infor-
mation from the source video. These methods are however
not scalable as fine-tuning is required for each source video
and each object to be customized, incurring computational
overhead. More importantly, such individual customization
often leads to overfitting to a few given reference images.
In this paper, by leveraging the pre-trained Stable Diffusion
model, we propose FreeMix, a zero-shot customized video
editing approach. From careful empirical analysis of the
diffusion features, we observe that the motion information
of the moving object in the source video are captured by
the low-frequency high-level diffusion features, while high-
frequency low-level diffusion features encode more the ob-
ject’s appearance in the reference images. By exploiting this
observation, we achieve effective motion transfer from the
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source video and appearance transfer from reference im-
ages to synthesize the output video via simple feature trans-
fer in the diffusion model. To enhance temporal consistency
of the synthesized video, we apply optimal transport to low-
level diffusion features of consecutive source video frames,
establishing feature correspondences to guide video gener-
ation. We conduct comprehensive experiments, demonstrat-
ing that our approach surpasses both state-of-the-art cus-
tomized video editing methods that require fine-tuning and
general text-based video editing methods.

1. Introduction
Given a source video and a few reference images, cus-
tomized video editing (aka. subject-driven video editing,
or personalized video editing) aims to create a novel syn-
thesized video by modifying the main object in the source
video with the foreground object depicted in the reference
images. There are three key requirements (and challenges)
in implementing a satisfactory customized video editing
method: (i) accurate motion transfer, which means accu-
rately transfer the motion of the object from the source



video to the synthesized video, (ii) precise concept align-
ment, which aims to faithfully transfer the appearance of
the object in the reference images to the synthesized video,
and (iii) temporal consistency, which ensures smooth tran-
sitions across neighboring video frames.

A myriad of methods have been proposed to address
the motion transfer and temporal consistency challenges.
Tune-A-Video [46] adds temporal layers to the Stable Dif-
fusion (SD) model [34] and learns temporal information
from each source video, albeit incurring additional train-
ing efforts. AnimateDiff [14] trains the temporal layers to
capture video motion by training on large datasets. Mo-
tionDirector [54] and VideoSwap [13], utilize temporal
weights pre-trained on large datasets and fine-tune them for
each source video [8, 19, 21]. Flow-based methods, such
as FlowVid [24, 47] and TokenFlow [11], utilize optical
flow, or nearest-neighbor feature correspondences from the
source video to regularize the temporal information of the
synthesized video. The concept alignment challenge has
received increasing attention in recent years. Most exist-
ing methods [10, 12, 22, 35, 44, 54] typically train a cus-
tomized checkpoint or embedding for each subject. How-
ever, these approaches tend to overfit to the given reference
images [49], compromising the generalizability of the foun-
dational models. Additionally, they are not scalable, as they
demand extra computational resources and time for fine-
tuning each subject. The recent method VideoSwap [13]
leverages pre-trained personalization weights [12] for each
subject/concept but requires manual adjustment of key-
points to modify the shape of the target concept.

In this paper, we propose a novel method to address cus-
tomized video editing tasks without fine-tuning, leveraging
the diffusion features from the pre-trained SD model [34].
The example result in Fig. 1 shows the effectiveness of our
method. We have the following contributions:
• We perform a comprehensive analysis of the diffusion

features and observe that the low-frequency high-level
diffusion features capture video motion, while high-
frequency low-level diffusion features capture object ap-
pearance in images.

• We propose FreeMix, a zero-shot customized video edit-
ing approach that can take multiple reference images for
customized video editing.

• To enhance temporal consistency in the synthesized
video, we propose using optimal transport to establish
feature correspondences between consecutive frames in
the source video. We apply the feature correspondences
in generating the synthesized video to improve its tempo-
ral consistency.

• Our method outperforms State-Of-The-Art (SOTA) cus-
tomized video editing approaches that require fine-tuning
and surpasses general text-based video editing methods
as well.

2. Related Work
Diffusion-Based Video Editing. Recent advancements in
diffusion models [6, 17, 36, 37] have made it possible for
users to generate high-quality visual contents using just
simple text prompts [6, 34]. These models have been
adapted for text-to-video generation by expanding spatial
attention to spatio-temporal attention [18] and conducting
large-scale training on video datasets, leading to the devel-
opment of several foundational models for video genera-
tion [8, 19, 21]. Recently, several approaches have been
introduced to enable video editing using the Stable Diffu-
sion [7] model , such as Tune-A-Video [46], FateZero [32],
and so on. FateZero [32] and Video-P2P [26] extract cross-
and self-attention from the source video to control spatial
layout during video editing. Rerender-A-Video [47], Con-
trolVideo [52], and TokenFlow [11] extract and align optical
flow, depth/edge maps, and nearest-neighbor feature corre-
spondences from the source video, respectively, encourag-
ing temporal consistency of the synthesized video. StableV-
ideo [2] and CoDEF [30] learn the canonical space for edit-
ing following the Layered Neural Atlas or the deformation
field. Other approaches benefit from the pre-trained tem-
poral weights of video diffusion models and achieve video
editing with improved temporal consistency [48, 54].

Concept Customization. Concept customization [10,
35] refers to generating personalized or specific concepts,
enabling the creation of visual contents that closely match
the desired objects. Current methods can be categorized
into tuning-based approaches and tuning-free solutions.
Tuning-based approaches learn from multiple reference im-
ages to capture variations in concept appearance under dif-
ferent conditions, such as pose, viewing angle, and so
on. Typical methods are DreamBooth, Text Inversion, and
LoRA-based methods used in VideoSwap [13], ModionDi-
rector [54], etc. The Splice [39, 40] trains a generator to
disentangle structure and appearance for customized im-
age editing. However, these methods tend to overfit to
the given reference images [49]. Moreover, they require
additional computational resources to learn each concept,
limiting their scalabilities [3, 10, 12, 22, 35]. In contrast,
tuning-free solutions are computationally efficient but typ-
ically only accept one reference image to stick closely to
the spatial layout of the provided reference image, making
them inflexible to change to other spatial layouts. Among
these methods, PnP [41] and MasaCtrl [1] extract features
from the self-attention layers in diffusion models, use them
as plug-and-play components, and inject them into specific
layers of the Diffusion UNet for image generation. Simi-
larly, P2P [15] and P+ [44] leverage cross-attention features
to transfer the appearance from a reference image to a target
scene.

Temporal Consistency in Video Editing. Maintaining
proper temporal control is essential in video editing to en-
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Figure 2. Visualization of features of input images from differ-
ent Stable Diffusion UNet blocks. Shallow Block, Intermediate
Block, and Deep Block are UNet decoder blocks corresponding to
4×, 2×, and 1× downsampling of the latent features, respectively.
The Shallow Block encodes localized semantic information, e.g.,
the location of the car. The Deep Block captures fine-grained de-
tails, including car tire texture, bear shape and dog eyes.

sure consistency across frames. Some approaches use the
depth maps, canny edges, or poses as used in ControlNet
or ControlVideo to ensure the temporal consistency across
frames [9, 28, 47, 50, 52, 53]. However, a strong control
from a depth map or canny edge prevents shape changes be-
tween different objects. TokenFlow [11] propagates edited
features from key frames to other frames through a nearest-
neighbor approach to ensure smooth video frame transi-
tions. The FLATTEN [4] uses the optical flow to guide the
attention operation across frames to improve the temporal
consistency. However, relying on nearest-neighbor feature
similarities can easily cause misalignment, leading to flick-
ering between frames.

3. Method

3.1. Analysis of Stable Diffusion Features

Inspired by PnP [41], we conducted experiments to analyze
the information encoded in different layers of the SD model.
A key observation reveals that the attention layers in the SD
model encode significant information related to the overall
structure, layout, and content of the images. As illustrated
in Fig. 2, the diffusion features in the UNet decoder blocks
exhibit distinct characteristics: low-frequency information
is primarily contained in the shallow decoder blocks, while
high-frequency information is predominantly contained in
the deep decoder blocks of the UNet.

Attention. Each UNet block contains a self-attention
layer. In the self-attention layer, the input feature f is pro-
jected into queries Q = fWq , keys K = fWk, and val-
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Figure 3. Illustration of the attention layer in the Stable Diffusion
UNet decoder for different image synthesize processes.

ues V = fWv . The Attention [42] operation computes the
affinities between the d-dimensional projections Q, K, and
then multiplied by V to yield the output of the layer:

O = Attn(Q,K,V) = Softmax
(
QK⊺

√
d

)
V. (1)

The self-attention layer is illustrated in Fig. 3 (a).
Diffusion Features. In this work, we analyze diffusion

features
g(X) = {f ,Q,K,V,O}, (2)

from the self-attention layer of the UNet decoder, where
f and O are the input and output, respectively, Q, K and
V are queries, keys and values. To analyze the diffusion
features of an image or video frame, we first perform DDIM
Inversion [37] to get its initial noise. Then, we input the
initial noise to the UNet to denoise and get the features.

3.1.1. Shallow Features from the UNet Decoder
To understand what shallow features 1 from the UNet de-
coder capture, we perform a text-based image or video
frame editing experiment. A general approach [29] to
achieving this is to change the original text prompt to a new
text prompt, and the UNet starts the editing denoising pro-
cess from the DDIM inverted noise of the original image.
In this experiment, we overwrite the shallow features with
the corresponding features from the original video frame.
This overwriting operation is called feature injection [41],
detailed below.

Feature Injection. Features of the editing denoising
UNet can be overwritten with the corresponding features
from the source video frames or reference images at the
same UNet layer. Fig. 3 shows the injection operation in the
self-attention layer for different features. Fig. 3 (a) shows
the features in DDIM reconstruction of the source image
using the text prompt describing the source image. Fig. 3
(b) shows the features in editing the source image in Fig. 3
(a) based on a new text prompt, and thus the features are

1Note that the shallow and deep features mentioned throughout this
paper are extracted from the SD UNet decoder, and they are consistent
with the those introduced in [41].
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Figure 4. We conduct a text-based video frame editing experiment
to demonstrate that shallow features from the UNet decoder benefit
object motion transfer. (a) shows source video frames, (b) shows
frames edited using the prompt “a Porsche car is driving”, and
(c) shows frames generated using the same prompt in (b) but with
shallow features injected from the source video. In (b), the gen-
erated car appears in various orientations that differ significantly
from the source video. However, in (c), the synthesized car’s po-
sition and pose closely match those of the source video, demon-
strating that shallow features effectively preserve object motion.

changed accordingly. Fig. 3 (c) shows the features during
text-based image editing in Fig. 3 (b) but with {K̂, V̂} over-
written by {K,V} of the source image. Fig. 3 (d) shows the
input feature {f̂} is overwritten by {f} of the source image.
More formally, we define overwriting the keys K̂ and val-
ues V̂ with KS and VS from the source video in layer l
as

ψS(K̂, V̂; l) := {Q̂, K̂, V̂} → {Q̂,KS ,VS}. (3)

In this experiment, we use text prompts to edit a video.
The source video frames are shown in Fig. 4 (a). The cor-
responding text prompt is “a car is driving”. In Fig. 4 (b)

we use the text prompt “a Porsche car is driving” and start
from the DDIM inverted noise of the source video frames
to edit the source video frames. We observe that the car
appears in various orientations that differ significantly from
the source video. In Fig. 4 (c), we use the same text prompt
as used in (b) but with shallow features injected from the
source video. We observe that the position and pose of
the synthesized car correspond very well with the car in
the source video, indicating that the shallow features cor-
respond to low-frequency high-level features and preserve
the motion of the object. Note that a similar analysis of
the low-frequency high-level features has been conducted
in [41]. However, the role of these features in video frame
sequences during editing remains unexplored.

3.1.2. Deep Features from the UNet Decoder
Deep features from the UNet decoder correspond to high-
frequency low-level features. In Fig. 2, we observe that
these features reveal detailed visual properties of the ob-
ject, such as the texture of the tires, the shape of the bear,
and the eyes of the dog. This analysis is consistent with the
properties of the deep features discussed in [41]. We present
different feature injection strategies in Table 5 in the Sup-
plementary Material.

3.2. Proposed Method
Based on the properties of the shallow and deep diffu-
sion features, we propose FreeMix that achieves the cus-
tomized video editing in a zero-shot manner. The frame-
work of FreeMix is illustrated in Fig. 5. In this figure,
the Source, Target and Reference Branches are UNets of
the Stable Diffusion model with the same pre-trained and
frozen weights. In our framework, we first apply DDIM
Inversion to each frame of the source video and each ref-
erence image to get the initial noise. The noisy latents of
the source video and the reference images pass through the
Source Branch and the Reference Branch, respectively. The
Target Branch starts from the same DDIM inverted noise as
the Source Branch. In the denoising steps, shallow features
from the Source Branch, and deep features from the Ref-
erence Branch are injected into the corresponding layers in
the Target Branch. Finally, the Target Branch produces a
synthesized video. We will detail the motion transfer and
appearance transfer in the following sub-sections.

3.2.1. Motion Transfer
Our study in the previous subsection demonstrates that in-
corporating low-frequency high-level features from shal-
low decoder layers effectively transfers structure from each
frame of the source video. When viewed sequentially, this
process can be interpreted as motion transfer. Therefore, we
use the shallow features from the source video to achieve
object motion transfer in our method. In Fig. 5, during
the denoising steps, shallow features of each source video
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Figure 5. The framework of the proposed FreeMix. FreeMix requires text prompts describing the source video and the reference images,
as well as a target text prompt where the source video’s object name is replaced with that of the reference images. FreeMix enables zero-
shot customized video editing by transferring diffusion features g(XS) from the source video and g(Xr) from the reference images to
the Target Branch, which produces the final synthesized video. During each denoising step, the noisy latent x̂t passes through the UNet
to generate a denoised latent x̂t−1. The process involves two key feature transfers in the UNet decoder: in the shallow layers, features
from the source video g(XS) overwrite the Target Branch features to transfer object motion, while in the deeper layers, features from the
reference image g(Xr) overwrite the Target Branch features to transfer object appearance. Note that the denoising processes happen in the
latent space and the VAE [20] encoder and decoder are omitted in this figure.

frame from the Source Branch are injected into the corre-
sponding layer and frame of the Target Branch to transfer
the motion of object in the source video.

3.2.2. Appearance Transfer
As analyzed earlier, high-frequency low-level diffusion fea-
tures retain fine layout and preserve image details. Thus, we
use these features from deep UNet decoder layers to transfer
object appearance from reference images. Specifically, we
manipulate diffusion features in the Target Branch in Fig. 5
by injecting features from the reference images. Unlike pre-
vious tuning-free personalization methods that use only one
reference image, our approach supports multiple reference
images, yielding improved video quality. To focus feature
transfer on the object in the reference images and minimize
background influence, we apply masks to the reference im-
ages.

Suppose we have N reference images, let MriKri and
MriVribe the masked key and value, respectively, of the i-
th reference image, for i = 1, · · · , N . We denote by Kr the
concatenation along the rows of the keys from the masked
reference images, and by Vr the concatenation along the
rows of the values from the masked reference images:

Kr := [· · ·MriKri · · · ] , Vr := [· · ·MriVri · · · ] , (4)

for i = 1, · · · , N . We define overwriting the keys and val-
ues with {Kr,Vr} of the reference images as

ψr(K̂, V̂; l) := {Q̂, K̂, V̂} → {Q̂,Kr,Vr}. (5)

The attention layer after feature injection from the reference
images is computed as:

Softmax

(
Q̂(Kr)⊺√

d

)
Vr. (6)

3.2.3. Enhancing Temporal Consistency via OT
Injecting shallow UNet decoder features effectively trans-
fers motion from the source video but does not guarantee
temporal smoothness in the synthesized video. This is be-
cause injecting shallow features does not ensure smooth fea-
ture transitions in the deep UNet decoder layers across con-
secutive frames, which more directly affect the final syn-
thesized video. To address this, we apply regularization to
the deep decoder layer features across frames to enhance
temporal smoothness. A natural approach is to use feature
correspondences from the deep decoder layers of consec-
utive frames in the source video to enforce similar corre-
spondences in the Target Branch during synthesis. Token-
Flow [11] introduces the Nearest Neighbor (NN) feature
field between frames to find such correspondences. How-
ever, NN field cannot guarantee the global matching be-
tween two sets of features.

To overcome this, we apply Optimal Transport (OT) [5,
43] to the deep features of the source video frames to ob-
tain feature correspondences. OT is a powerful distribu-
tion matching technique that can find the global correspon-
dences between two sets of points, and has been shown ef-



fective in finding semantic correspondences between two
images [27].

Let O ∈ Rh×w×d be the deep diffusion features, and
MS ∈ Rh×w be the corresponding downsampled object
mask of a source video frame, where h × w is the spatial
dimension and d is the feature dimension. For each posi-
tion coordinate (y, x) within the mask, we construct a new
vector by concatenating (y, x) and the feature at (y, x), i.e.,
p = [y, x, λO(y, x)] ∈ Rd+2, where λ balances the impor-
tance between the coordinate and the feature. We denote
by Pf the collection all the constructed vectors within the
mask for frame f . To find the feature correspondences be-
tween frame f − 1 and f , we first compute the transport
cost matrix C ∈ Rm×n, between each pair of vectors from
Pf−1 and Pf , using the l2-norm distance, where m and n
are numbers of vectors in Pf−1 and Pf , respectively. Then
we solve the OT problem:

OT(Pf−1,Pf ) = min
γ∈Γ
⟨γ,C⟩+ reg · Ω(γ), (7)

where Γ = {γ ∈ Rm×n
+ |γ1n = 1/m · 1m, γ

⊺1m =
1/n · 1n}, 1 denotes the vector of all ones, γ is the trans-
port plan matrix, with γij representing the probability of
vector i in Pf−1 matching to vector j in Pf , and Ω is the
entropic regularization term. We denote by −→γ f the solu-
tion to OT(Pf−1,Pf ), and similarly, ←−γ f the solution to
OT(Pf+1,Pf ). −→γ f represents the feature correspondences
from frame f − 1 to frame f in the source video, and←−γ f

represents the feature correspondences from frame f +1 to
frame f . We apply these feature correspondences in gener-
ating the synthesized video:

Ôf =
1

2
−→γ f (M

S
f−1Ôf−1) +

1

2
←−γ f (M

S
f+1Ôf+1)

+ (1−MS
f )O

S
f

(8)

where MS
f−1, MS

f , and MS
f+1 are downsampled masks of

the source video frames f − 1, f and f + 1, respectively,
OS

f are source video features for frame f , Ôf−1 and Ôf+1

are features for frames f − 1 and f from the Target Branch
in Fig. 5, −→γ f (·), ←−γ f (·) denote the warping operations by
taking the argmax index of each column of −→γ f and←−γ f ,
respectively. The first two terms in Eq. 8 suggest we use the
foreground feature correspondences from the source video
to smooth frame f in generating the synthesized video. We
considered the feature smoothing from both forward and
backward directions. The last term in Eq. 8 means that we
use the background features from the source video. We per-
form this smoothing operation to the self-attention output of
the last layer of the UNet decoder, and denote the operation
by g(X̂)←− T (g(X̂)).

The whole process of our proposed method FreeMix is
summarized in Algorithm 1.

Algorithm 1 Zero-shot Customized Video Editing

Input:
Stable Diffusion encoder E , UNet ϵθ, and decoder D
Source video XS with F frames and its text prompt TS

Reference images Xr and text prompt Tr

Target text prompt T
Layers for source frame injection LS

Layers for reference image injection Lr

The stop time step for the feature injection tmax
Output: Synthesized video X̂

xS
0 , xr

0←− E(XS), E(Xr)
{xS

t }Tt=1, {xr
t}Tt=1 ←− DDIM-inv(xS

0 ), DDIM-inv(xr
0)

x̂T ←− xS
T ▷ copy source latents

for t = T · · · 1 do
▷ denoising of the source and reference latents
ϵSt−1, g(X

S)←− ϵθ(x
S
t ,TS , t)

ϵrt−1, g(X
r)←− ϵθ(x

r
t ,Tr, t)

if t > tmax then
ϵθ(x̂t,T, t) forwarding

ψS(g(X̂); l) for l ∈ LS ▷ inject features
ψr(g(X̂); l) for l ∈ Lr ▷ inject features
g(X̂)←− T (g(X̂)) ▷ temporal smoothing

output ϵ̂t−1

else
ϵ̂t−1 ←− ϵθ(x̂t,T, t)

end if
xS
t−1 ←− DDIM-samp(xS

t , ϵ
S
t−1)

xr
t−1 ←− DDIM-samp(xr

t , ϵ
r
t−1)

x̂t−1 ←− DDIM-samp(x̂t, ϵ̂t−1)
end for
X̂←− D(x̂0)

4. Experiments

We compare our method against the SOTA customized
video editing methods: VideoSwap [13], and MotionDi-
rector [54]. We also compare with text-based video
editing methods: FateZero [32], TokenFlow [11], Con-
trolVideo [52], and CCEdit [9], in terms of text align-
ment and temporal consistency. For the comparison with
VideoSwap and MotionDirector, we conduct experiments
on the 30 videos used by VideoSwap. To evaluate our
approach against other methods, we use 15 representative
videos from the DAVIS dataset [31] commonly used by
text-to-video generation methods.

4.1. Qualitative Results
The qualitative comparisons of our method with baseline
methods are shown in Figs. 6 and 7. Compared with text-
based video editing methods in Fig. 6, FreeMix produces
videos with clearer car appearances, more precise vehicle
shapes, higher quality backgrounds, and car poses that more
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Figure 6. Qualitative comparisons among different methods.

accurately align with the source video frames. In Fig. 7,
MotionDirector fails to transfer the cat’s head movements
from the source video. While VideoSwap generates the cat,
it generates the cat’s face much larger than the cat’s face
in the reference images and shows subtle head movements
that deviate significantly from the source video frames. In
contrast, FreeMix generates a cat that faithfully reproduces
both the appearance from the reference images and the head
movements from the source video frames.

Figure 8 provides diverse synthesized videos produced
by FreeMix. When provided with reference images,
FreeMix effectively captures the appearance from the ob-
ject, as well as the object’s motion from the source video,
as shown in Fig. 8 (left). Additionally, FreeMix can seam-
lessly incorporate pre-trained concept weights, the ED-
LoRA weights from VideoSwap. By integrating these
weights, FreeMix generates a video with the encoded con-
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Figure 7. Qualitative comparisons among different customized
video editing methods.

Table 1. Comparison among customized video editing methods.

Concept Alignment Text Alignment Temporal Consistency

VideoSwap [13] 79.87 26.87 95.93
MotionDirector [54] 73.94 32.14 97.49

FreeMix (ours) 80.34 32.19 97.53

Table 2. Comparison with text-based video editing methods.

Text Alignment Temporal Consistency

FateZero [32] 30.39 92.77
TokenFlow [11] 30.38 95.51

ControlVideo [52] 30.76 95.13
CCEdit [9] 27.68 94.25

FreeMix (ours) 30.98 95.71

cept while preserving the motion from the source video, as
shown in Fig. 8 (right). More qualitative results and videos
can be found in the Supplementary Material.

4.2. Quantitative Results
We measure the text alignment and the temporal consis-
tency of different methods, as well as the concept alignment
for customized video editing methods. Please refer to the
Supplementary Material for more details of each metric.

Table 1 presents a comparison between our method
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Figure 8. Sample results of FreeMix. (Left) By solely transferring diffusion features, FreeMix effectively transfers both appearance and
motion. (Right) FreeMix seamlessly leverages pre-trained concept weights from VideoSwap [13] to produce videos with encoded concepts,
while preserving the motion from the source video.

FreeMix and the customized video editing methods
VideoSwap and MotionDirector. Both require fine-tuning
on each source video and each customized object. Although
FreeMix does not require any fine-tuning, it is better than
VideoSwap and MotionDirector in all three metrics.

Table 2 compares our method with recent text-based
video editing methods, showing the superiority of our
method in both text alignment and temporal consistency.
Note that these methods are designed for general text-to-
video generation, with specific modules to improve tempo-
ral consistency, rather than for customized video editing.
Nonetheless, FreeMix achieves better temporal consistency,
demonstrating the effectiveness of our motion transfer and
OT techniques in enhancing video coherence.

Effectiveness of Optimal Transport. We evaluate the
effectiveness of OT in FreeMix for improving temporal
smoothness on the DAVIS dataset. The results are provided
in Table 3. As shown in the table, without OT in FreeMix,
the temporal consistency score is 93.76. By incorporating
OT, FreeMix improves the temporal consistency of the syn-
thesized videos by at least 1.5 points for λ ranging from 0 to
0.1. This demonstrates the effectiveness of OT in improving
temporal smoothness. When λ = 0.001, FreeMix achieves
the highest temporal consistency score of 95.71, suggest-
ing the necessity of including both coordinate and feature
information when computing feature correspondences.

Moreover, we evaluate the effectiveness of OT by replac-
ing it in FreeMix with an alternative regularization method:
the Nearest Neighbor (NN) approach from TokenFlow [11].
This replacement results in a decrease in the temporal con-

Table 3. Ablation study of without (w/o) OT or with (w/) OT at
different λ values for our method FreeMix in terms of temporal
consistency.

w/o OT w/ OT, λ = 0.1 0.01 0.001 0.0001 0

93.76 95.29 95.47 95.71 95.59 95.59

sistency score from 95.71 to 94.88. Furthermore, we assess
the effectiveness of OT by incorporating it into an existing
image editing framework, PnP [41], for video editing. Sim-
ilar to FreeMix, we integrate OT into the final layer of the
UNet in PnP across all frames. We compare with PnP that
edits each video frame independently. The application of
OT (λ = 0.001) significantly improves the temporal consis-
tency from 93.44 to 95.63, compared to the version without
OT.

5. Conclusion
This paper presents a zero-shot customized video editing
method using diffusion feature transfer. Through analyz-
ing diffusion model features, we find that injecting features
from specific layers effectively transfers motion from the
source video and appearance from reference images, en-
abling customized editing. To enhance temporal consis-
tency, we design OT to align feature correspondences. We
demonstrate the effectiveness of our approach through both
qualitative and quantitative results. Our method is built
upon UNet, which remains the dominant architecture in
video editing due to computational constraints. Extending
this approach to DiT will be explored in future work.
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beláez, Alexander Sorkine-Hornung, and Luc Van Gool.
The 2017 davis challenge on video object segmentation.
arXiv:1704.00675, 2017. 6

[32] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,
Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fus-
ing attentions for zero-shot text-based video editing. In
ICCV, pages 15932–15942, 2023. 2, 6, 7

[33] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
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Zero-shot Customized Video Editing with Diffusion Feature Transfer

Supplementary Material

In this supplementary material, we provide more experi-
mental setting details, and results.

6. Experimental Settings

Diffusion Feature Visualization. In Section 3, to visual-
ize those high-dimensional SD features and understand how
semantic spatial information is internally encoded within
diffusion features, we use Principal Component Analysis
(PCA) to interpret the dominant visual properties within
these high-dimensional features. Specifically, we select the
denoising step t = 401 and extract features O from each
block of the UNet decoder. We represent these features us-
ing the first three leading components from PCA, and visu-
alize them as RGB images.

Diffusion Feature Injection. The Target Branch in Fig. 5
starts from the same DDIM inverted noise as the Source
Branch. In the denoising steps, the shallow features from
the Shallow Block of the Source Branch, and the deep fea-
tures from the Intermediate Block and Deep Block of the
Reference Branch are injected into the Target Branch. We
inject features from both branches during the first 60% de-
noising steps, i.e., tmax = (1− 0.6)T , where T is the num-
ber of total denoising time steps. Finally, the Target Branch
produces a synthesized video.

Evaluation Metrics. We employ the adapted CLIP-
Score [16] to evaluate text alignment and temporal consis-
tency. Specifically, we calculate the CLIP similarity be-
tween each frame of the synthesized video and the target
text prompt, then report the average CLIP similarity across
all frames. For temporal consistency, we assess the CLIP
similarity between consecutive frames of the synthesized
video, and calculate the average value. To evaluate con-
cept alignment, we follow Custom Diffusion [22] to mea-
sure the CLIP similarity between each frame of the synthe-
sized video and all reference images, and report the average
score across all video frames.

Details of Masks. In our experiments, the DAVIS dataset
contains masks for each video. For videos without masks,
we use the TRACER [23] to extract masks. In practice,
any off-the-shelf segmentation tool, such as the Grounded-
SAM-2 [25, 33], can be used to produce image and video
masks.

Table 4. Human preferences.

Win Rate Motion fidelity Temporal consistency

Ours vs. MotionDirector 93% vs. 7% 69% vs. 31%
Ours vs. VideoSwap 56% vs. 44% 30% vs. 70%

7. Experiment Results

7.1. Human Preferences

We provide human evaluation results on synthesized videos
in Tab. 4. Specifically, we visually evaluate the temporal
consistency and motion fidelity of the videos generated by
different methods, where motion fidelity means whether the
motion of object in the synthesized video is the same as that
of the object in the source video. Tab. 4 presents the win
rates of our FreeMix against VideoSwap and MotionDirec-
tor. The results demonstrate that our method outperforms
both approaches in motion fidelity and exhibits higher tem-
poral consistency compared to MotionDirector.

7.2. Ablation Study

Different Feature Injection Combinations. We present
various feature injection strategies in Tab. 5. Specifically,
we evaluate various injection strategies by testing different
combinations of injecting source video or reference image
features into shallow or deep UNet blocks: (1) Injecting fea-
tures from the source video solely into either the Shallow
Block or Deep Block; (2) Injecting features from the ref-
erence images solely into either the Shallow Block or Deep
Block; (3) Injecting features from both the source video and
reference images into the Shallow Block; (4) Injecting fea-
tures from both the source video and reference images into
the Deep Block; (5) Injecting features from the source video
into the Deep Block, and injecting features from the refer-
ence images into the Shallow Block; (6) Injecting features
from the source video into the Shallow Block, and inject-
ing features from the reference images into the Deep Block.
The results align with our observations: injecting source
video features into shallow layers ensures good temporal
consistency, while injecting both source video and refer-
ence image features into shallow layers compromises tem-
poral consistency. Injecting reference image features into
either shallow or deep layers achieves good concept align-
ment, but mixing source video and reference image features
reduces concept alignment. Injecting source video features
into shallow layers and reference image features into deeper
layers, as configured in our paper, achieves both strong con-
cept alignment and temporal consistency.



Table 5. Different feature injection combinations.

Src(shallow) Src(deep) Ref(shallow) Ref(deep)

Concept Alignment 71.44 71.48 75.17 75.88
Temporal Consistency 95.67 90.71 87.53 90.28

Src(s) Ref(s) Src(d) Ref(d) Src(d) Ref(s) Src(s) Ref(d)

Concept Alignment 73.43 71.8 70.66 75.79
Temporal Consistency 92.77 92.1 91.37 95.71

Table 6. Number of reference images.

Number of References 1 2 3 4 5

Concept Alignment 74.97 74.78 75.17 75.92 75.79
Temporal Consistency 93.76 94.35 95.11 95.44 95.71

Table 7. Influence of timesteps.

tmax 0.2T 0.4T 0.6T 0.8T T

Concept Alignment 74.29 75.6 75.79 75.73 74.23
Temporal Consistency 93.63 93.87 95.71 94.73 94.41

Table 8. GPU memory consumption and running time.

FateZero CCEdit ControlVideo VideoSwap Ours

GPU (GB) 24 26 10 16 8
Time (s) 246 137 73 144 50

Number of Reference Images. Tab. 6 illustrates the im-
pact of the number of reference images on temporal consis-
tency and concept alignment. Using only 1-2 reference im-
ages results in lower scores, while using 4-5 reference im-
ages significantly improves both temporal consistency and
concept alignment. Based on our experiments, we use 5
reference images.

Influence of Timesteps. We compare different values of
tmax, the stopping timestep for feature injection, ranging
from 0.2T to T , where T denotes the total number of
timesteps. The results are shown in Tab. 7. Based on our
experiments, we select tmax = 0.6T , as it achieves the best
concept alignment and temporal consistency.

Computational Complexity. We present the GPU mem-
ory requirements and video generation times for different
methods in Tab. 8. Among all methods, our approach re-
quires the least memory and achieves the fastest speed. In
our implementation, OT is computed once for each video
and takes approximately 5 seconds.

Additional Evaluation Metrics. Tab. 9 extends the com-
parison with baseline methods using additional evaluation
metrics, complementing the primary results presented in
Tabs. 1 and 2. We evaluate image quality using three stan-
dard metrics. Peak Signal-to-Noise Ratio (PSNR) quanti-
fies reconstruction fidelity based on the pixel-wise mean
squared error. The Structural Similarity Index Measure

Table 9. Video quality and consistency with additional metrics.
PSNR, SSIM, LPIPS are metrics for video equality, Warp error is
the metric for temporal consistency.

PSNR ↑ SSIM ↑ LPIPS (AlexNet) ↓ LPIPS (Vgg) ↓ Warp Error ↓
FateZero 15.88 0.58 0.38 0.42 0.08

FLATTEN 16.23 0.53 0.28 0.36 0.11
TokenFlow 18.46 0.6 0.33 0.39 0.05

ControlVideo 9.7 0.24 0.74 0.73 0.33
CCEdit 13.94 0.32 0.52 0.56 0.12

FreeMix (ours) 19.87 0.68 0.19 0.28 0.03

Figure 9. Image quality vs. each frame
(SSIM) [45] provides a perceptually-motivated assessment
by comparing local patterns of luminance, contrast, and
structure. Finally, the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [51] leverages a pre-trained deep neural net-
work to compute the distance between image patches in
a feature space, which correlates closely with human per-
ceptual judgment. We also use warp error to quantify the
temporal consistency, which measures the geometric mis-
alignment between a point’s true position in a target image
and its predicted position after being transformed from a
source image by an estimated warp field. FreeMix outper-
forms baseline methods with better video quality and tem-
poral consistency.

Evaluate Image Quality Over Time. To assess temporal
quality consistency, we evaluate each video frame using the
pre-trained NIMA model [38], which predicts perceptual
image quality. As illustrated in Fig. 9, the per-frame analy-
sis demonstrates that FreeMix consistently outperforms all
baseline methods in terms of overall image quality.

7.3. Qualitative Results
We show more qualitative results of FreeMix in Figs 10-
13. As can be seen from those results, FreeMix successfully
transfers the motion of the object from the source video, and
the appearance of the object in the reference images, to the
synthesized video. It is worth noting that FreeMix is flexible
to deal with source video with different aspect ratios.
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Figure 10. Sample results of FreeMix.
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Figure 11. Sample results of FreeMix.
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Figure 12. Sample results of FreeMix.
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Figure 13. Sample results of FreeMix.
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