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Abstract

Large Language Models (LLMs) often suffer
from mode collapse, repeatedly generating
the same few completions even when many
valid answers exist, limiting their diversity
across a wide range of tasks. We intro-
duce Group-Aware Policy Optimiza-
tion (GAPO), a simple extension of the re-
cent and popular Group Relative Policy Op-
timization (GRPO) that computes rewards
over the group as a whole. GAPO enables
learning from the group-level properties
such as diversity and coverage. We demon-
strate GAPO using a frequency-aware re-
ward function that encourages uniform sam-
pling over valid LLM completions, and
show that GAPO-trained models produce
valid and more diverse model responses.
Beyond this setup, GAPO generalizes to
open-ended prompts and improves response
diversity without compromising accuracy
on standard LLM benchmarks (GSMB8K,
MATH, HumanEval, MMLU-Pro). Our
code will be made publicly available.

1 Introduction

Large Language Models (LLMs), particularly
instruction-following systems such as Chat-
GPT, Claude, Gemini, Qwen, and DeepSeek,
are increasingly deployed in real-world appli-
cations (Ouyang et al., 2022; Anil et al., 2023;
Yang et al., 2024; Guo et al., 2025). While
reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) improves factu-
ality and alignment, it often reduces output
diversity (Kirk et al., 2023). This limitation
is especially problematic in creative or open-
ended tasks, where multiple distinct comple-
tions may be equally valid.

This reduction in diversity is often presented
as mode collapse (O’Mahony et al., 2024),
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Figure 1: GAPO with a frequency-aware reward
promotes output uniformity and diversity. GAPO
mitigates over-representation of frequent comple-
tions and encourages more balanced generation,
both in list selection tasks and open-ended prompts.

where the model repeatedly generates the same
few responses. For example, when prompted
with “tell me a joke”, models like ChatGPT-
40 and Claude Sonnet 3.5 frequently respond
with: “Why don’t scientists trust atoms? Be-
cause they make up everything!” (Jentzsch and
Kersting, 2023). Although aligned and fluent,
such repetition illustrates an overconcentration
of probability mass on a small subset of com-
pletions, limiting the model’s expressiveness.

Recent work has identified this behavior
as a consequence of the training pipeline.
Both supervised fine-tuning (SFT) and RLHF
have been shown to push models toward high-
probability completions, leading to repeated
outputs even when many valid alternatives ex-
ist (O’Mahony et al., 2024; Kirk et al., 2023).
While decoding strategies such as tempera-
ture scaling (Ackley et al., 1985), top-k sam-
pling (Fan et al., 2018), or nucleus (top-p)
sampling (Holtzman et al., 2020) can partially



mitigate this effect, they do not address the
underlying issue in the model’s probability dis-
tribution.

In this work, we take a direct approach to
improving output diversity by modifying the
model’s training objective rather than its de-
coding strategy. Specifically, we fine-tune a
fully trained instruction model using LoRA (Hu
et al., 2022) with a reward function that pro-
motes balanced sampling across valid outputs.

To implement this, we build on Group Rela-
tive Policy Optimization (GRPO) (Shao et al.,
2024), a reinforcement learning method that
compares completions within a group to com-
pute relative advantages. While GRPO as-
signs fixed, per-sample rewards, we extend the
framework by computing rewards at the group
level, allowing the model to learn distributional
properties such as uniform coverage over valid
outputs. We refer to this extension as Group-
Aware Policy Optimization (GAPO).

We begin by evaluating GAPO on a clean
and insightful task: sampling a single item
from a list of equally valid options (Eicher
and Irgoli¢, 2024). Existing LLMs exhibit
strong selection biases in this setting, while
GAPO-trained models learn to sample nearly
uniformly (Figure 1). On open-ended prompts
such as “name a city”, “suggest a food”, or
“name a celebrity”, GAPO generates signifi-
cantly more diverse responses, even in cate-
gories unseen during training.

Finally, we demonstrate that GAPO en-
hances diversity in creative writing tasks such
as poetry, storytelling, and dialogue while pre-
serving coherence, as measured by accuracy on
the GSM8K, MATH, HumanEval and MMLU-
Pro datasets.

Our contributions are as follows:

e We introduce Group-Aware Policy Op-
timization (GAPO), an extension of
GRPO that defines rewards over a group of
completions, enabling learning from group-
level properties such as output diversity
and coverage.

e We design a frequency-aware reward
function that encourages uniform sam-
pling over valid completions, directly ad-
dressing mode collapse without changing

the model architecture or decoding strat-
egy.

e We show that GAPO-trained models
achieve near-uniform sampling when
prompted to select items from lists, and
generate substantially more diverse out-
puts in open-ended prompts.

¢ We demonstrate that GAPO improves di-
versity in creative writing tasks while
maintaining coherence, as validated by per-
formance on standard benchmarks.

2 Motivation - Case Study

To investigate distributional biases in current
large language models (LLMs), we evaluated
ChatGPT 4o, Claude Sonnet 3.5, and Gem-
ini 2.5 by repeatedly prompting them with
prompts such as: “Sample one item out of
[Canada, Mexico, ..., Spain/” and recording
the output distribution.

In Figure 2a, under Instruction Variant 1,
“Please select one of the items”, ChatGPT 4o
and Claude favor “Japan” (75%, 87%), while
Gemini prefers “Germany” (82%). Switching
to Instruction Variant 2, “Sample one item out
of...”, we observe that Claude changes their
dominant choice, suggesting the presence of
contextual bias.

In Figure 2b, we probe positional bias by
shuffling the list while keeping the instruc-
tion fixed. ChatGPT 4o continues to favor
“Japan” (73%) regardless of position, suggest-
ing item-specific bias. Claude still prefers
“Japan” (69%), while Gemini’s bias towards
“Germany” diminishes (48%). Index-wise dis-
tributions show that ChatGPT favors the first
item (33%), Claude avoids it, and Gemini
prefers mid-list positions, demonstrating a level
of positional bias. These results illustrate that
modern LLMs exhibit item-specific, positional
and contextual biases, and often collapsing onto
a small subset of valid responses.

Motivated by these findings, we developed
GAPO, a reinforcement learning method that,
when coupled with a frequency-aware reward,
encourages balanced sampling across valid com-
pletions. As shown in our experiments, GAPO
mitigates these biases thereby improving diver-
sity in both structured tasks and open-ended
generation.
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Figure 2: Bias Analysis. (a) Using the same list of countries, we prompt each model 100 times with
each of the two instruction prompts. (b) We prompt each model 100 times with the same instruction
prompt, each time the list of countries is randomly shuffled. For each model the largest and second-largest

probabilities are shown.

3 Related Work

Neural text degeneration, where models pro-
duce repetitive and low-diversity outputs, was
first identified by Holtzman et al. (2020). To
address it, researchers proposed stochastic de-
coding methods like top-k, top-p, and min-p
sampling (Fan et al., 2018; Holtzman et al.,
2020; Nguyen et al., 2025), often paired with
temperature scaling (Ackley et al., 1985) to bal-
ance diversity and precision. However, these
are inference time fixes that do not alter the
model’s distribution.

Reinforcement learning is widely used to
align language models with human preferences
(Ziegler et al., 2019), but often reduces out-
put diversity (Kirk et al., 2023). To counter
this, Welleck et al. (Welleck et al., 2019) pro-
posed unlikelihood training, while Bowman et
al. (Bowman et al., 2015) used mutual infor-
mation to encourage diversity.

Entropy regularization has recently gained
attention for improving diversity in supervised
and RL settings. Approaches include entropy-
regularized RL (Tiapkin et al., 2024), diversity-
aware DPO variants (Rafailov et al., 2023;
Slocum et al., 2025), entropy-regularized fine-
tuning (Li et al., 2024), and GDPO (Kwon
et al., 2024), which uses generative flow net-
works to promote diversity. In contrast, our
approach promotes diversity by directly encour-
aging uniform probability over correct answers.

4 Preliminaries

Group Relative Policy Optimization In
Shao et al. (2024) the authors presented the
Group Relative Policy Optimization (GRPO)
framework for optimizing language models for
math and coding challenges. GRPO optimizes
LLMs policies by estimating advantages in a
group-relative manner, without relying on a
value function. Below, we summarize the as-
pects of GRPO relevant to our work, following
Shao et al. (2024) notations.

Sampling and Rollouts Optimization be-
gins by sampling a query ¢ from the data
distribution P(Q), and generating a group of
G rollouts {0;}$, using the old policy mg,,,
as in (Schulman et al., 2015). Each rollout
0; = (0i1,..,0i0,) is a sequence of tokens
generated autoregressively, where |o;| denotes
its length.

Rewards For each rollout, we compute a
scalar reward r; = R(0;) using a reward func-
tion R, typically defined per rollout. Let
r = (ry,...,rq) denote the group reward vec-
tor, with mean 7 and standard deviation o,.

Advantage Estimation Outcome supervi-
sion assigns each rollout an advantage based
on its normalized reward within the group:

Aip =

fort=1,...,|oi.
Op
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Figure 3: GRPO vs. GAPO. Comparison between GRPO and GAPO (left) and illustration of frequency-
aware rewards (right). GRPO assigns per-sample rewards, while GAPO computes rewards over the whole
group, enabling distributional signals such as diversity and coverage. Our frequency-aware reward function
penalizes overrepresented outputs and boosts underrepresented ones, guiding the model toward uniform

sampling over equally valid responses.

Policy Update We then compute per-token
importance sampling ratios:

To\Oit | 4, 04 <t
pr(f) = "0 L Oict)_
Tho1a (Oi,t q, 0i,<t)
where 0; «; = (0i,1,...,0i4—1) denotes the to-

ken prefix. Following Schulman et al. (2017),
we clip these ratios using a hyperparameter
€ > 0 to constrain the update magnitude:

|o; ]

1 &1
Eclip(e) = 527

‘ ‘ min{pi7t(9)Ai7t,
i=1 191l =1

clip(pit(0),1 —€,1+ e)flw}.

Objective The final GRPO objective com-
bines the clipped surrogate with a KL penalty:

Jarro(0) = Laip(0) =B Dxw[me || mref] -
—— ~—_—————
clipped surrogate KL penalty

Here, 5 > 0 controls the trade-off between
policy improvement and divergence from the
fixed reference policy mer. The KL term
Dxi,[mg || Tref] measures the average KL diver-
gence between the current and reference poli-
cies over the rollout distribution.

5 Group Aware Policy Optimization

Group-Aware Policy Optimization

(GAPO) GAPO introduces a simple yet
effective modification to the GRPO framework:

the reward is computed jointly across the
group of rollouts rather than independently
per rollout (Figure 3). This change allows
the reward function to capture group-level
properties—such as diversity or sampling bal-
ance—without altering the policy architecture,
optimization objective, or training procedure.

Formally, for a group of rollouts o =
{o1,...,0¢}, the reward assigned to rollout
1 is }

Ty = R(O)i,

where R(0) € RC is a vector of group-aware
rewards computed over the full set.

5.1 Theoretical Foundation

A reward is compatible with GAPO if three
standard policy-gradient conditions hold. (i)
Parameter independence: the reward may de-
pend on the sampled roll-outs o~y but must
not contain the policy parameters 6 explicitly,
exactly the premise of the REINFORCE iden-
tity (Sutton et al., 1998). (ii) Finite reward:
values must be finite; GRPO’s subsequent ad-
vantages normalization already stabilizes vari-
ance, so no extra clipping is required. (iii)
0-independent reward noise: each component
R;(0) can be deterministic or can include addi-
tional randomness, provided that randomness
is drawn independently of 6; this keeps the
likelihood-ratio estimator unbiased (Williams,
1992). When the task already ranks comple-
tions (e.g. correct > incorrect), any shaping
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Figure 4: Sampling from a list. Output distributions for different models when prompted to choose
from a list of planets (a) or musical instruments (b). NV denotes an invalid response not in the list.
Panel (c) shows the average Jensen-Shannon divergence (JS) from uniform distribution across all topics.

term should preserve that order; for example
potential-based shaping (Ng et al., 1999) pro-
vides this guarantee. The frequency-aware re-
ward of in sec. 5.2 satisfies all three conditions
and behaves as an entropy bonus that links
GAPO to maximum-entropy RL.

5.2 Group-Based Reward for Uniform
Sampling

To promote output diversity while ensuring
validity, we design a simple frequency-aware
reward that encourages uniform sampling over
a predefined set of valid responses. This
leverages GAPQO’s group-level view to penal-
ize over-represented outputs and favour under-
represented ones.

Setup Let V = {vy,...,vr} be the set of
valid outputs, and let o = (01, ...,0q) denote
a group of rollouts. Each o; is either a valid
item in V or an invalid response.

Frequency-Aware Reward The empirical
frequency of each valid item v is

Zz‘G:1 {o; = v}
Zz'Gzl 1{o; €V}

fu(o) =

Assuming a uniform target distribution u =
1/L, the reward for rollout i is

~ 1- foi -3 , 0f € V?
R(o); = (for = 1)
—1,

otherwise.

This design rewards under-represented valid
items and penalises frequent ones, encouraging
the policy to spread probability mass evenly
across V. The resulting vector R(o) is fed
directly into the GRPO update.

6 Experiments

We trained models from the Qwen2.5 Instruct
family (Yang et al., 2024) using our proposed
GAPO method with the frequency-aware re-
ward function introduced in Section 5. The
models were fine-tuned using LoRA (Hu et al.,
2022). For training, we constructed a syn-
thetic dataset comprising random lists from
diverse topics, with list lengths ranging from
4-12 items (see examples in Appendix E, and
additional implementation details in Appendix
F). In these experiments, the models were in-
structed to sample a single item from each
list.
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6.1 Uniformity Experiments

We first evaluate our approach on a task di-
rectly aligned with our objective: sampling
items uniformly from a fixed list. For this ex-
periment, we constructed 10 distinct lists, each
containing eight items from different categories
(e.g., planets, musical instruments, books), and
issued identical selection prompts 100 times per
model and list. Importantly, these categories
were not seen during GAPO training.

Figure 4a presents the distributions of model
responses for planets and musical instruments
across all models: ChatGPT-40, Claude Son-
net 3.5, Gemini 2.5 Flash, and Qwen2.5 In-
struct (7B/32B), with the latter shown both
before and after GAPO fine-tuning. To quan-
tify uniformity, Figure 4b shows the Jensen-
Shannon divergence (JSD) computed between
each model’s empirical distribution and the
ideal uniform distribution over valid items (i.e.,
12.5% each, with 0% for invalid outputs). JSD
is preferred over Kullback-Leibler divergence
here, as it remains defined even when distribu-
tions have non-overlapping support.

As shown in Figure 4c, GAPO-trained mod-
els consistently achieve significantly lower di-
vergence (JSD < 0.1) compared to all baselines
(JSD > 0.3), indicating distributions much
closer to uniform. Complete results across all
10 categories are provided in Appendix A. The
visualizations confirm that GAPO-trained mod-
els produce distributions substantially closer
to uniform, while baseline models consistently
over-represent certain choices.

6.2 Open Questions Experiments

In this experiment, we ask the model to re-
turn a single item belonging to a specific cat-
egory, e.g., “Name one city anywhere in the
world”, without providing a list of options. We
randomly selected 10 categories and ask each
model to name an item from the category 500
times while counting the unique items each
model presents. This task is both more com-
plicated than selecting an item from a list and
differs from the training objective for show-
ing generalization. Figure 5 shows that all
regular models sample only a few different
items per task, while our models sample many
more unique items. For example, our finetuned
Qwen2.5 32B samples on average 147 unique
items compared to 24 sampled by Qwen2.5 32B
before finetuning. The eight categories not pre-
sented in Figure 5 are presented in Appendix B.

6.3 Creativity

Diversified model outputs are particularly im-
portant for creative writing tasks. To assess our
method’s output diversity in creative writing
scenarios, we conducted two experiments.
First, we generated 1500 short haikus using
the prompt “Write a haiku in English.” with
both the baseline and GAPO-trained Qwen2.5
32B Instruct models. We then embedded each
story using a Transformer-based embedding
model (Song et al., 2020) and visualized the
embedding space using t-SNE. Figure 6 demon-
strates that the GAPO model produces haikus



Table 1: Comparison of diversity metrics across creative writing tasks. GAPO consistently outperforms
the baseline model in both semantic diversity (higher embedding distances) and lexical uniqueness (higher

1-Self-BLEU scores).

Creative Writing Task

‘ Avg. Embedding Distance (1) ‘ Avg. 1-Self-BLEU (1)

‘ Baseline GAPO (ours) ‘ Baseline GAPO (ours)
Write a story with no more than 100 words 0.31 0.44 0.83 0.95
Write a poem with no more than 100 words 0.17 0.20 0.73 0.93
Write a haiku in English 0.1 0.21 0.54 0.80
Craft a one-sentence mystery opening 0.40 0.59 0.67 0.93
Compose a two-line dialogue between two characters 0.21 0.57 0.58 0.85
Pitch an idea for a new fruit in one sentence 0.01 0.44 0.16 0.78
Tell a joke 0.15 0.37 0.19 0.37
Write only the chorus for a pop song 0.25 0.43 0.65 0.94
Average \ 0.20 0.41 0.54 0.82

that occupy a substantially broader region
of the embedding space. This indicates that
GAPO generates haikus with greater diversity
compared to the baseline model.

Next, to quantify output diversity across a
wider range of creative tasks, we prompted each
model with eight different writing instructions
and generated 100 outputs for each prompt.
We then computed two complementary diver-
sity metrics: (1) average embedding distance
between all pairs of outputs, which captures
semantic diversity, and (2) average 1 - Self-
BLEU score (Zhu et al., 2018; Papineni et al.,
2002), which measures lexical diversity. Table 1
presents these results.

As shown in Table 1, the GAPO model con-
sistently produces more diverse outputs across
all creative tasks. On average, GAPO improves
the embedding distance by 160% (from 0.15 to
0.39) and the 1-Self-BLEU score by 75% (from
0.52 to 0.91). The improvements are particu-
larly notable for tasks like “Compose a two-line
dialogue” and “Tell a joke”, where the baseline
model shows near-zero diversity (indicating al-
most identical outputs), while GAPO achieves
substantial variation.

Finally, to qualitatively illustrate our
method’s superior output diversity compared
to the baseline, side-by-side comparisons of re-
sponses generated by each model on several
of the aforementioned creative writing tasks
are presented in Appendix C. These results
verify that GAPO effectively promotes output
diversity in open-ended creative writing tasks
compared to the baseline.

6.4 Benchmarks

While increasing diversity is valuable, a key
concern is that it may come at the expense of
accuracy or coherence. We assess GAPO on
standard reasoning and knowledge benchmarks
to verify it remains competitive with the base-
line. We report results on ~200 sample subsets
of the following benchmarks:

e GSMBS8K (Cobbe et al., 2021), a dataset
of grade-school math problems requiring
multi-step reasoning.

« MATH (Hendrycks et al., 2021), a bench-
mark of advanced mathematical problems.

o« HumanEval (Chen et al., 2021), a code
generation benchmark assessing functional
correctness.

e MMLU-Pro (Wang et al., 2024), a multi-
choice exam of diverse domains.

To ensure robust results, we report the av-
erage performance across five evaluation runs
for each subset (see Appendix F).

Table 2 presents results for Qwen2.5 32B In-
struct at temperature 0.7. GAPO performs
comparably to the baseline across all bench-
marks. These results suggest that GAPO can
improve output diversity while maintaining
similar performance levels to the original model.

6.5 Creativity-Coherence Tradeoff

We have empirically validated that our GAPO
model is more creative than the baseline. In
this section, we further verify that the increased

diversity does not come at the expense of coher-
ence. We evaluate both the baseline and GAPO



Table 2: Performance comparison of Qwen2.5 32B Instruct Baseline and GAPO-trained models on standard
benchmarks at temperature 0.7. GAPO improves flexible scoring and output diversity while maintaining

or improving generalization.

GSMSK MATH
Model ‘ Exact Flexible | Verify Exact Match ‘ HumanEval ‘ MMLU-Pro
Baseline 0.835 0.865 0.484 0.524 0.555 0.675
GAPO (ours) | 0.772 0.905 0.499 0.502 0.579 0.656
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Figure 6: Creativity visualization. t-SNE Visu-
alization of embeddings of responses for the prompt
“Write a haiku in FEnglish.”. In the bottom plot,
identical haikus or text responses are represented
with the same color. Small random noise was added
to spread identical responses into visible clusters.

Qwen2.5 32B models across multiple tempera-
ture settings, measuring coherence by accuracy
on the MATH dataset and creativity by the
average cosine distance between response em-
beddings, computed as described in Section 6.3.
The creative writing prompts used for this anal-
ysis are listed in Appendix D. As shown in
Figure 7, GAPO consistently achieves higher
creativity at each coherence level, indicating
improved diversity without loss of coherence.

frequency-aware reward function, GAPO effec-
tively counters mode collapse in LLMs, produc-
ing near-uniform distributions on list selection
tasks and improving diversity and creativity on
open-ended prompts, without sacrificing coher-
ence. Future work should explore integrating
GAPO earlier in the training pipeline and ex-
tending its reward functions to balance diver-
sity with task-specific accuracy, enabling its ap-
plication to open-ended tasks where the space
of valid responses is implicit or unbounded.



8 Limitations

Our work has several key limitations. We fo-
cused on LoRA fine-tuning rather than full
model tuning or earlier integration in the in-
struction pipeline. The reward function as-
sumes equally valid completions, making it best
suited for list selection and harder to extend
to accuracy-diversity tradeoffs. Finally, while
we show generalization to unseen categories
and open-ended questions, the limits of this
generalization are not fully understood.

Potential Risks GAPO may generate
broader ranges of problematic content due to
increased diversity, though base model safety
properties should be preserved. The diversity-
accuracy tradeoff could impact safety-critical
applications, requiring task-specific evaluation
before deployment. Our synthetic dataset con-
tains potential biases that may propagate to
trained models. Additionally, the computa-
tional requirements may limit access for smaller
research groups.
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A Uniformity - Additional Results

Instruction: Please select one of the following items {list}.
Format your response as follows: <answer>selected_item</answer>.

100%- s J5=0.19  100%- 74% J5=0.33  100%- 71% J5=0.26
24% o 20% 8%
0%- —— E— . . . . 0%- — . . 0% = —— _ = .
100%- 69% . J5=0.35 100%- 79% JS=0.35 100% - . 519% JS=0.28
. 28% 13% 31%
0% 0% — 0%
100%- - 100%- 97% - 100%- -
64% 15=0.26 15=0.46 56% 15=0.22
20% 25% -
0%4———,——-—,—,—,—,—,— 0% 3% 0%
100%- =l 100%- = 100%- =i
20% 579 J5=0.21 3% 48% J5=0.29 70% J5=0.25
b 11%
0%- " L. . 0%- " 0%- =
9
100%- 26% JS=0.45  100%- 2% JS=0.46  100% 73% 15=0.33
19%
0%- i‘:/l 0%~ io/i 0%- -_ —n
100%- J5=0.08  100%- JS=0.11  100%- Js=0.11
34% 160 25%25% 21%38%
0% 0% PO S —— | i B
100%- J$=0.04 100%- JS=0.08 100%- J$=0.02
16%21% 27%22% 21% 15%
o%— Y 0% —3 % - - <
o F TS S RN $‘° TS S D s
<9 & 1> Q‘ RS N (o & o N O N
o g <& W 8 T E D 6\ MR & v
(a) Books. (b) Celebrities. (c) Flowers.
98%
100%- 56% 15=0.28 100%- : 15=0.47 100% - 87% J5=0.37
26% o
0%- . — —_ 0%- 2% 0% Ev/i —
o o
100%- 77% J$=0.40 100%- 100% J$=0.50 100%- 100% JS=0.50
.23%
0%- L] 0%- . 0%-
9 100%
100%- 94% J5=0.43  100%- ’ JS=0.50  100%- 62% 15=0.28
23%
0%- —— 4% 0%- 0%- - - —_ —_—
100%- 15=0.26 100%- J5=0.37 100%- 85% J5=0.37
36% 32% 39% 41%
0% % o 8%
- " = ’ b = .
100%- 92% J5=0.43 100%- 96% J5=0.44 100%- 93% J5=0.42
8% 3% 4%
0%- -_ 0%- == 0% —— —
100%- )5=0.22  100%- J5=0.11  100%- J5=0.05
32%38% 26%28% 22%21%
0% 0% 0%
100%- J5=0.07  100% J5=0.10  100%- J5=0.07
25%25% 32% 25% 22% 21%
0% " XY u%———h—-——:— 0% Ky
e @ B SR Y o @ 4
€ @@ &° o‘Q\ S Q,@{F N Q\é\ é‘\'}\ b’?}\(\ @Qé & 9(_1@0 & & Q"’ \d ‘\° &‘* <0 ef’(\ & «—,‘9& N
RN &7 LSS Rl > P N e ‘c <9 o
R @ q°é‘ & & & ~
(d) Colors. (e) Languages. (f) Cities.
hatGPT wen Qwen
100%- 669 J5=0.35 100%- 50% J5=0.23 ¢ a40G Q7§ == 7B
-31% 23% GAPO
0%- [ J— 0%- - — - — Claude Qwen Qwen
100%- 94% 15=0.43  100%- 66% js=032 W 35 328 pmm 328
27% Sonnet GAPO
5% -
0%- = 0%- . =-.o — Gemini
100% oo 15=0.25 100%- J5=0.25 25
2 31% 39% 40%
0%- [ Jp— — 0%- —— ]
00% 0 0% J5=0.32  100%- 60% 15=0.29
20%
0%- 0%- =
99%
100%- 71% J5=0.34  100%- 4 J5=0.48
23% %28
. Hz N . -
100%- J5=0.10  100%- J5=0.04 zo
28% 20% 27% 14%
0% 0% e T e e o e
100%- J5=0.06  100%- J5=0.06
22% 21% 22% 20%
- & & & & DO (. NS SR
0(, rS &Q/ \54. & & ‘{\\Q & < og@ Q\“ ‘ Qbo & © <~ .
¥ & 4;\@ [ (O \,\Q 0 & & & ChatGPTClaude Gemini Qwen Qwen Qwen Qwen
&' && «(\e ] N 40 35 25 78 32
Sonnet GAPO GAPO
(g) Sports. (h) Movies. (i) Average JS.

Figure 8: Sampling from a list (Additional Results). Comparing distribution of selections across
different models when prompted to choose from a list of Books (a), Celebrities (b), Flowers (c), Colors
(d), Languages (e), Cities (f), Sports (g), Movies (h). Panel (i) shows average Jensen-Shannon divergence
across all topics.
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Figure 9: Open set diversity (Additional Results). (a)-(h) Cumulative unique responses when
generating 500 samples for open-ended prompts e.g., "Name a book title". (i) Average number of unique
samples across categories.



C Creativity - Diversity Visualization

In this section, we show side-by-side comparisons of the responses generated by the Qwen2.5 32B
Instruct model before and after LoRA finetune with our proposed GAPO. Figures 3, 4 5 and 6
show the first ten generation per creative task prompt. For each model the first ten responses
are sorted alphabetically. Reoccurring strings are shown in color to ease qualitative evaluation.

Table 3: Comparison of haikus generated by qwen2.5 32B baseline and GAPO models with the prompt:
"Write a haiku in English.".

Qwen32B | Qwen32B GAPO

Cherry blossoms bloom,
Soft whispers in the spring breeze,

Beauty fades too soon.

Autumn leaves whisper ,
Chill winds carry their secrets,

Silent paths remain.

Cherry blossoms fall ,
Whispering spring’s ephemeral,
Beauty fades, yet stays.

Cherry blossoms bloom,
Petals fall like gentle snow,
Spring whispers softly.

Cherry blossoms fall ,
Whispering spring’s gentle goodbye,
Petals carpet the earth.

Cherry blossoms bloom,
Soft whispers in the breeze sway,
Springtime’s fleeting dream.

Cherry blossoms fall ,
Whispering spring’s soft farewell,
Petals drift like snow.

Cherry blossoms fall ,
Whispers of spring in the air,
Petals kiss the earth.

Cherry blossoms fall ,
Whispering spring’s soft farewell,
Petals drift like snow.

Leaves whisper secrets,
Autumn ’s breath whispers cold air,
Dusk cloaks silent world.

Cherry blossoms fall ,
Whispering spring’s soft goodbye,
Petals carpet the earth.

Leaves whisper softly,
Autumn ’s breath turns colors gold,
Dusk falls on the path.

Cherry blossoms fall ,
Whispering spring’s transient grace,
Petals carpet the earth.

Leaves whisper softly,
Chill Autumn breeze sweeps in,
Day fades to twilight.

Cherry blossoms fall ,
Whispers of spring fade to dust,
Silence holds the breath.

Moonlight bathes the trees,
Silent whispers fill the night,
Peace covers the earth.

Cherry blossoms fall ,
Whispers of spring linger on,
Silence fills the air.

Morning dew glistens,
Whispers of dawn through the leaves,
Silence cradles gold.

Cherry blossoms fall ,
Whispers of spring scatter wide,
Petals touch the earth.

Whispering wind chills,
Leaves tumble with silent grace,
Night whispers goodbye.




Table 4: Comparison of dialogues generated by qwen2.5 32B baseline and GAPO models with the prompt:
“Compose a two-line dialogue between two characters.”

Qwen32B

| Qwen32B GAPO

Alice: " Did you finish the report? "
Bob: "Almost, just need to add the final graphs."

" Did you hear about the festival this weekend?"

"Yes, I'm excited to see the fireworks !"

Alice:
Bob: "Almost, just need to add the final graphs."

" Did you finish the report? "

" Did you lock the door before we left?"
"Yeah, I double-checked it."

Alice: " Did you finish the report? "

Bob: "Almost, just wrapping up the conclusions."

'T can’t believe it’s raining again."

"Looks like we’ll need our umbrellas today."

Alice: " Did you finish the report? "

Bob: "Almost, just wrapping up the conclusions."

"Where have you been all night?"
"Sorry, I got caught up at the office ."

Alice: " Did you finish the report? "

Bob: "Almost, just wrapping up the conclusions."

Alice: " Did you hear about the big surprise party ?"
Bob: "No way! Who’s it for?"

Alice:

Bob: "Almost, just wrapping up the conclusions."

" Did you finish the report? "

Alice: " Did you how was your day?"
Bob: "It could’ve been better."

Alice:

Bob: "Almost, just wrapping up the conclusions."

" Did you finish the report? "

Alice: " Did you forget our anniversary again?"

Bob: "Sorry, I promise to make it up to you this time."

Alice: " Did you finish the report? "

Bob: "Almost, just wrapping up the conclusions."

Alice: " Did you see the sunset today?"

Bob: "It always makes my day brighter, Alice."

Alice: " Did you lock the door ?"
Bob: "Yes, I did, no need to worry."

Mom: "Have you eaten your vegetables ?"
Son: "Yes, Mom, all of them!"

Alice:

Bob: "No, I missed it. Was it spectacular?"

" Did you see the eclipse last night?"

Sarah: "I can’t believe we’re finally here."
Tom: "It’s incredible, isn’t it?"




Table 5: Comparison of jokes generated by qwen2.5 32B baseline and GAPO models with the prompt:
“Tell a joke.”.

qwen32B | gwen32B GAPO

Sure, here’s a light joke for you:
Why don’t scientists trust atoms?

Because they make up everything!

Sure! Here’s a joke for you:
Why did the computer go to the doctor?

Because it had a virus and a byte to eat!

Why don’t scientists trust atoms?

Because they make up everything.

Sure! Here’s a joke for you:
Why did the tomato turn red?

Because it saw the salad dressing!

Why don’t scientists trust atoms?

Because they make up everything.

Sure! Here’s a joke for you:
Why did the tomato turn red?

Because it saw the salad dressing]!

Why don’t scientists trust atoms?

Because they make up everything.

Sure! Here’s a joke for you:
Why don’t scientists trust atoms?

Because they make up everything!

Why don’t scientists trust atoms?

Because they make up everything.

Sure! Here’s a joke for you:
Why don’t scientists trust atoms?

Because they make up everything.

Why don’t scientists trust atoms?

Because they make up everything.

Sure! Here’s one for you:
Why did the scarecrow win an award?

Because he was outstanding in his field!

Why don’t scientists trust atoms?

Because they make up everything.

Why don’t scientists trust atoms?

Because they make up everything!

Why don’t scientists trust atoms?

Because they make up everything.

Why don’t scientists trust atoms?

Because they make up everything!

Why don’t scientists trust atoms?

Because they make up everything.

Why don’t scientists trust atoms?

Because they make up everything!

Why don’t scientists trust atoms?

Because they make up everything.

Why was the math book unhappy?

Because it had too many problems!




Table 6: Comparison of song choruses generated by qwen2.5 32B baseline and GAPO models with the

prompt: “Write only the chorus for a pop song.”.

Qwen32B | Qwen32B GAPO

Chorus: All T need is a little bit more,

Shine bright like a diamond in the night, In this moment, you’re my only door,
Dancing  under the moonlight , everything Oh , let’s dance in the moonlight glow,

feels right ,

Jump into the rhythm, let your soul take flight,

Shine bright , oh so bright, make the darkness take a
dive tonight.

Together, we’ll make it all worthwhile, yeah!

Dancing in the moonlight , feeling so alive,
Every moment’s right, under this endless sky.
Heartbeats sync with the stars, shining bright tonight,

Lost in the rhythm, everything feels alright .

I’'ll hold on forever, never letting go
Our love is like a fire, burning so bright
We’ll dance through all the night and find our way

Love ’s the only thing that can make us stay

Here’s the sun, shining down on me,

In this moment, I feel completely free.
Every star, a whisper in the dark,
Together we spark.

I’'m alive, I believe in me, shining bright and free,

Every moment feels so right under this endless sky,
yeah!

Here’s the sun, shining through,
Got that feeling, brand new,

Dancing under the moon,

This moment’s forever, or so it seems.

I’'m falling in love all over again

Won'’t let go of this feeling once it starts

I'm falling in love all over again

Can’t deny this moment, it’s right where we are

Let’s dance under the moonlight , feel the rhythm of
the night,
Together we shine so bright , everything feels right .

I’'m just gonna dance with you tonight
Feel the rhythm, let it ignite
In this moment, we'’re alive

Dancing into the night, oh my life

Oh oh oh , let the music move your soul tonight,
Under the moonlight , everything feels brand new,
Oh oh oh , dance like nobody’s watching you,

In this moment, we’re alive, shining so bright .

Let’s dance tonight

No more hiding in the light

It’s time to feel alive

Shine bright in the night sky with you and I

Oh oh , we shine so bright tonight,
Under the moonlight , everything feels right ,

Hand in hand, we dance into the light,
Oh oh , everything’s gonna be alright.

Let’s go dancing in the moonlight

Our hearts beating as one tonight
Feel the rhythm and let it shine

Dancing in the moonlight , we’re just fine

Oh oh , we shine so bright tonight,
Underneath this endless sky, everything feels right ,

Hand in hand, we dance into the light,
Oh oh , together we ignite.

Oh baby , let’s dance all night long
In this moment we’re right where we belong
Under the moonlight , feeling so right

Let’s keep dancing until the morning light comes along

Oh , let the music move your body tonight,

Dancing under the stars, everything feels right ,
Heartbeats in rhythm with the moonlight ,

Shine on , shine on , till the morning light.

Oh baby , we're dancing under the stars tonight
We won’t ever let this moment go

Our love is shining brighter than the light

Come closer, feel the magic grow, oh yeah

We shine so bright , night turns to day,
In this moment, let’s lose all sense of way,
Hearts beating loud, under the starlit sky,
Together we fly, where the dreamers lie.

Oh baby , you light up my world so bright
Every moment feels like a never-ending night
I just wanna hold on tight

Oh baby , you light up my world, shining right
tonight




D Creativity and Coherence

We provide additional results in Figure 10 to illustrate the effects of GAPO on creativity and
coherence. Each plot shows results for a single creative prompt from Table 1, while the results
in Section 6.5 present the average creativity metric across prompts. Compared to the baseline,
GAPO generates more varied and creative responses.
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Figure 10: Coherence vs. Creativity additional results.



E Training Data Examples

In the following table, we present a collection of training data examples organized by prompt and
topic. Each prompt instructs the selection of a single item from a list, with examples drawn from
various categories. The complete set of categories in the dataset includes: Animals, Countries,
Emotions, English, Foods, Letters, Numbers, and Vehicles. All examples follow a consistent
pattern where the model is expected to make a selection and format its response using the
specified XML tags. The examples shown below represent a subset from three of these categories.

Prompt ‘ Topic

“Pick exactly one option, ensuring uniform selection: [White Ibis, Hawk Moth, | Animals
Coelacanth, Crossbill, Grebe, Guinea Fowl]. Format your response as follows:
<answer>selected_item< /answer>.

“Instruction: Please pick one from the following list: [Softshell Turtle, Orien- | Animals
tal Stork, Harpy Eagle, Barracuda, Nighthawk, Sparrowhawk, Manatee, Pla-
narian, Squacco Heron, Bittern, Snipe]. Format your response as follows:
<answer>selected_item< /answer>.

“Please select one from these options: [Grizzly Bear, Hermit Crab, | Animals
Spotted Owl, Jerboa, Honeybee]. Format your response as follows:
<answer>selected__item< /answer>.”

“Take one from these choices: [Hawksbill ~ Turtle, Wildebeest, | Animals
Gaur, Thick-knee, Cormorant]. Format your response as follows:
<answer>selected_item< /answer>.”

“Pick exactly one option, ensuring uniform selection: [Reverent, Calm, Sym- | Emotions
pathetic, Intrigued, Astonished, Disgusted]. Format your response as follows:
<answer>selected__item< /answer>.”

“Please randomly select one option with equal probability: [Disappointed, De- | Emotions
lighted, Rejected, Amused, Disgusted, Triumphant, Captivated]. Format your
response as follows: <answer>selected_item< /answer>.

“Pick one option from the list: [Envious, Perplexed, Tense, Nostalgic, Impatient]. | Emotions
Format your response as follows: <answer>selected_item< /answer>.”

“Please choose one option from the list: [Ecstatic, Uncomfortable, Disappointed, | Emotions
Proud, Overwhelmed, Surprised, Perplexed, Fascinated, Intimidated, Apathetic].
Format your response as follows: <answer>selected item< /answer>.

“Pick exactly one option, ensuring uniform selection: [60, 8362, 8990, 4265, 7731, | Numbers
2817]. Format your response as follows: <answer>selected item</answer>.

“Instruction: ~ Select one from these choices: [8330, 2258, 6507, 7349, | Numbers
1908, 6383, 285, 6115, 9238]. Format your response as follows:
<answer>selected__item< /answer>.”

“Select exactly one option at random: [7513, 6115, 7899, 5540, 115, 4733, 4262, 4425, | Numbers
5778]. Format your response as follows: <answer>selected item< /answer>.

“Please choose just one from the list [7634, 5133, 6974, 7736]. Format your response | Numbers
as follows: <answer>selected item</answer>.

Table 7: Training data examples by prompt and topic.



F Implementation Details

Framework and Architecture We implemented GAPO as a modification of the original
GRPO method (Shao et al., 2024) using the HuggingFace Transformer Reinforcement Learning
(TRL) framework (von Werra et al., 2020).

Model Selection and Training In our experiments, we utilized the 7B and 32B Instruct
variants of the Qwen2.5 family (Yang et al., 2024). Each model was fine-tuned with GAPO on
the dataset described in Appendix E, with batch size 8 and learning rate le-5. For the training
process, we employed Low-Rank Adaptation (LoRA) (Hu et al., 2022) with rank 64, alpha 32, and
dropout 0.1. For GAPO we utilized 32 generations per group and no KL penalty on divergence
from the reference policy (5 = 0).

Benchmark Evaluations We utilized the Language Model Evaluation Harness framework
(Gao et al., 2024) to conduct the benchmark evaluations. Specifically, the test subsets of the
benchmarks we have utilized were sampled as follows:

¢ GSMSK: 200 randomly sampled problems

o MATH: 210 samples (30 samples per each of the 7 sub-tasks)

e MMLU-Pro: 196 samples (14 samples per each of the 14 sub-tasks)
e HumanEval: Full evaluation set

Finally, we note that our code will be made publicly available to facilitate reproducibility and
further research in this area.



G Supervised Fine Tuning Baseline

An alternative approach to address sampling bias in LLMs is to incorporate a teacher-forcing
objective into the supervised fine-tuning (SFT) process. Specifically, for each prompt, we
construct all valid completions by appending each item from a reference list to the prompt. We
then compute the next-token prediction loss for each completion and aggregate these losses.
Minimizing the total loss encourages the model to assign similar probabilities to multiple valid
outputs, thus promoting output diversity.

We experimented with the above baseline and compared its output diversity and coherence
to those of the reward-based model, as shown in Table 8. As observed, while the SFT baseline
significantly improves diversity on in-distribution data compared to a vanilla Qwen2.5 model
(e.g., reducing the Jensen-Shannon divergence from 0.31 to 0.19), it fails to generalize to unseen
lists and tasks, as reflected by the Unique@500 metric, computing how many unique samples
exist across 500 generated samples. This observation aligns with the findings reported in (Chu
et al., 2025).

Table 8: Comparison of uniformity metrics between different models.

Model | 38 (1) | Unique@s00 (1)
Qwen2.5 7B 0.31 29
+Min-p (0.05) | 0.33 10
+Min-p (0.1) 0.36 6

4SFT 0.19 3
+GAPO 0.09 112




H Licensing and Additional Disclosures

H.1 Artifact Licensing

Models. Qwen2.5 7B and 32B Instruct models are licensed under Apache 2.0, permitting
research use and modification.

Frameworks. HuggingFace TRL (Apache 2.0), LoRA/PEFT (Apache 2.0), Language Model
Evaluation Harness (MIT).

Datasets. GSM8K (MIT License), MATH, HumanEval, and MMLU-Pro (academic research
use). All usage complies with respective license terms.

H.2 Synthetic Data Compliance

Our training dataset consists entirely of synthetically generated lists from neutral categories
(animals, countries, emotions, numbers, vehicles, foods, letters, English words). No personally
identifiable information, copyrighted content, or real user data was incorporated. List items
contain only factual, publicly available information.

H.3 Code and Data Availability

Complete implementation including GAPO modifications to GRPO, training scripts, evaluation
protocols, and synthetic dataset generation will be released under an open-source license to
ensure reproducibility.
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