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Abstract

High-quality search is essential for the suc-
cess of online platforms, spanning e-commerce,
social media, shopping-focused applications,
and broader search systems such as content
discovery and enterprise web search. To en-
sure optimal user experience and drive busi-
ness growth, continuous evaluation and im-
provement of search systems is crucial. This
paper introduces PROBES, a novel multi-task
system powered by Large Language Models
(LLMs) designed for end-to-end evaluation of
semantic search systems. PROBES identifies
context-aware relevance using a fine-grained
scale (exact, substitute, complement, irrele-
vant) by leveraging the query category, feature-
level intent, and category-aware feature impor-
tance, enabling more precise and consistent
judgments than relying solely on raw query text.
This allows PROBES to provide differentiated
relevance assessment across a diverse range of
query categories. PROBES then dives deeper
to understand the reason behind irrelevant re-
sults (Precision issues) by checking product
content conflicts and inaccuracies. It also an-
alyzes Missed Recall by leveraging retrieval
and relevance models to determine whether a
missed recall was due to a selection issue or
a ranking/retrieval system issue. To evaluate
PROBES, we introduce a new metric, the Ac-
tionable Error Rate (AER), defined as the pro-
portion of actionable errors over all flagged
errors. We observe that PROBES operates at
an AER of 76%, generating actionable insights
across 100 product categories.

1 Introduction

Search is the primary entry point for user inter-
action on online platforms, helping users explore
products and express their intent. The quality of
search algorithms is crucial for ensuring a smooth
user experience, enabling users to find desired prod-
ucts with minimal interaction. An effective search
algorithm must address three fundamental chal-

lenges: (1) understanding user intent, (2) retrieving
the most relevant products that fulfill the user’s ses-
sion intent, and (3) ranking and displaying results
with the most relevant items appearing at the top.

A search system represents a complex AI ap-
plication requiring a cascade of models to inter-
pret user intent, retrieve relevant results, and rank
them from most to least relevant. Large-scale eval-
uation of search systems is essential for provid-
ing timely feedback to search algorithms, ensuring
high-quality user experiences, and driving over-
all system effectiveness. However, search system
evaluation presents several complexities: the intri-
cate, multi-model cascade architecture of search
systems; the variety of ways users express search
intent through queries; and the requirement to re-
trieve items from extensive collections within mil-
liseconds.

Online A/B testing is a standard for evaluat-
ing search model performance but has limitations:
it requires significant user feedback, complicates
control group management when multiple tests
run concurrently, and risks degrading user expe-
rience if a model under performs. For example,
in e-commerce, search directly affects product dis-
covery and purchasing decisions; in delivery plat-
forms, it influences item availability and fulfill-
ment choices; and in social media, it shapes con-
tent discovery and user engagement. These chal-
lenges highlight the need for scalable offline evalu-
ation. Manual audits, though reliable, are slow and
resource-intensive, evaluating 50,000 queries with
20 results each would demand over 6,000 hours.
While crowd sourcing offers scale, it’s costly and
demands multiple annotators to ensure accuracy.

In this paper, we introduce PROBES, an LLM-
based system for offline search quality evaluation.
PROBES detects Precision (irrelevant products that
were displayed in top results) and Missed Recall
(relevant products that were not retrieved) issues
for a search query and its results. It further inves-



tigates these issues to determine the root causes
(poor index feature quality, retrieval/ranking issue
or selection issue). To achieve this, PROBES lever-
ages LLMs to: (1) understand user intent and query
category, (2) determine query category aware prod-
uct relevance to query intent, and (3) evaluate prod-
uct index feature quality. Additionally, it employs
a keyword-product similarity model trained on a
novel relevance aware loss to retrieve the top-k
most relevant products to determine root cause of
missed recall issues. We further propose a new
metric, “Actionable Error Rate” (AER), to measure
the quality of PROBES by assessing the human-
PROBES agreement rate for defect identification.

The key practical and scientific contributions of
this paper are as follows: (1) We propose PROBES,
an LLM-powered framework that stitches together
multiple components to enable end-to-end evalua-
tion of complex semantic search systems. (2) We
demonstrate that incorporating feature-level intent
and category-aware feature importance leads to
more accurate relevance assessment than relying
solely on raw query text (Section 5.2). Table 2
highlights the performance gains resulting from
this design. (3) We introduce the Actionable Error
Rate (AER) as a new metric to measure the effec-
tiveness of PROBES, and show that it achieves an
AER of 76% across 100 product categories, pro-
ducing actionable insights for improving search
algorithms. (4) We present a relevance-aware loss
function to train the retrieval model, and show in
Section 5.4 that it provides clear improvements
over relevance-agnostic training objectives.

This paper is organized as follows. Section 3 de-
scribes the dataset used throughout the paper. Sec-
tion 4 introduces the architecture of PROBES. Sec-
tion 5 dives deep into each component of PROBES
including the introduction of our new metric “Ac-
tionable Error Rate” (AER) to evaluate the perfor-
mance of such a complex evaluation system. We
summarize our contributions and future directions
in Section 6, and discuss limitations in Section 7.

2 Related Work

Traditional search evaluation relied heavily on hu-
man judgments, as outlined by (Voorhees, 2001).
To improve scalability, crowd-sourcing methods
were introduced (Alonso and Baeza-Yates, 2011;
Blanco et al., 2011), though they struggled with
consistency and cost. The use of behavioral signals
marked a major shift—click data and engagement

metrics were shown to enhance relevance assess-
ment in operational systems (Huang et al., 2013;
Liu et al., 2017; Wang et al., 2018). Deep learn-
ing brought further improvements, enabling better
semantic understanding of queries and products
(Zhang et al., 2016; Li et al., 2019; Yang et al.,
2019), with contextual embeddings advancing per-
formance even further (MacAvaney et al., 2019;
Dai and Callan, 2020). Most recently, LLMs have
shown promise in automating relevance evalua-
tion (Mehrdad et al., 2024), multimodal assessment
(Hosseini et al., 2024), missed recall detection (Wu
et al., 2024), post-ranking evaluation (Yan et al.,
2024), and graded relevance scoring (Liu et al.,
2024). PROBES builds on these advances by offer-
ing a scalable, end-to-end semantic search evalua-
tion framework

3 Master Dataset

All PROBES experiments use the Shopping
Queries Dataset (Reddy et al., 2022), which reflects
real-world behavior through user queries, product
listings, and ESCI-based relevance labels. We fo-
cus on English (US) queries and analyze product
content - titles, descriptions and bullets. Relevance
labels include:

• Exact (E): Fully matches the query and
its specifications (e.g., “plastic water bottle
24oz”).

• Substitute (S): Functionally similar but
misses some aspects (e.g., red shirt for “green
shirt”).

• Complement (C): Used with a matching item
(e.g., track pants for “running shoes”).

• Irrelevant (I): Unrelated or unsuitable (e.g.,
socks for “telescope”)

4 PROBES

Figure 1 demonstrates the PROBES architecture.
(1) PROBES begins by identifying the query
category and extracting feature-level intent with
category-aware feature importance from the search
query using QIC-LLM. (2) If the query category
corresponds to a product-search intent, PROBES
uses QRR-LLM to measure context-aware rele-
vance between the query intent and the retrieved
results using a fine-grained scale: exact, substi-
tute, complement, irrelevant. (3) When a Pre-
cision issue (i.e., at least one irrelevant result)



Figure 1: PROBES workflow

occurs, PROBES invokes CQ-LLM to find the
root cause, primarily inspecting index features for
feature-value conflicts or inaccuracies — the most
common source of irrelevance. (4) If the search
results contain a Missed Recall issue (i.e., no Ex-
act products found in Step 2), PROBES uses the
Pdt-RT model to retrieve the top-k most relevant
products from the collection. It then applies QRR-
LLM to evaluate the relevance of these retrieved
products to the query intent. If at least one Ex-
act product is present among the top-k retrieved
items, PROBES features the Missed Recall issue
to ranking/retrieval errors; otherwise, it concludes
the issue arises from missing selection in the col-
lection.

5 PROBES Components

5.1 Query Intent & Category Classifier
(QIC-LLM)

Query Intent and Category Classifier (QIC-
LLM) is a multi-task LLM component designed
to uncover hierarchical user intent from search
queries. Queries range from exact product searches
(e.g., “brand WH-1000XM5 headphones”) to sub-
jective needs (e.g., “best laptop”) or even non-
product intents (e.g., “return policy”). Understand-
ing this intent is essential, particularly for complex
or ambiguous queries that often lead to irrelevant
retrieval and incorrect relevance labeling. Symp-
tomatic queries such as “stains on carpets,” for
instance, express a problem to be solved, yet sys-
tems frequently return items related to carpets or
stains rather than the intended solution (e.g., stain
removers).

To address such challenges, QIC-LLM organizes
user intent at both semantic and feature levels. Em-
pirical analysis of 10000 queries across 100 prod-

uct categories shows that users consistently follow
one of 15 recurring patterns, including (i) Negation
queries (e.g., “chairs without wheels”), (ii) Specifi-
cation queries (e.g., “iPhone 15 Pro Max 256GB”),
and (iii) Compatibility queries (e.g., “charger for
iPhone 16”). Additional examples appear in Ta-
ble 6. These observations motivate the need for
structured, category-aware interpretation of user
queries. QIC-LLM performs two key functions:
(1) Query category classification: Identifies the
semantic type of the query—e.g., (2) feature-level
intent extraction with importance: Extracts fea-
tures such as product_category, compatible devices,
and color, assigning each a corresponding impor-
tance (“must_have” vs. “approximate_is_okay”)
inferred from the query category.

QIC LLM benefits PROBES in two ways: (i)
It improves query–result relevance measurement,
yielding an average gain of ∼4.2% over raw-
query–based relevance (Table 2). (ii) It enables
effective index-feature conflict checks in CQ-LLM,
for diagnosing Precision issues.

QIC-LLM Output Example

Query: black charger for iPhone 12
Output:
{

"query_category": "compatibility",
"features_with_importance": {

"product category": {"value": "charger",
"importance": "must_have"},

"compatible_device": {"value": "iPhone",
"importance": "must_have"},

"color": {"value": "black",
"importance": "approximate_is_okay"}

}
}

We evaluated several LLMs on two core
tasks—query category classification and feature-



Query category Feature-level intent

Model Precision Recall Precision Recall

Claude-4-Sonnet 0.92 0.91 0.95 0.93
DS-R1-Qwen-14B 0.92 0.89 0.91 0.89
Mistral Nemo 0.85 0.83 0.88 0.86
Mixtral-8x7B 0.87 0.85 0.90 0.88

Abbreviations: DS-R1-Qwen-14B = DeepSeek-R1-Distill-Qwen-14B

Table 1: QIC-LLM Evaluation

level intent extraction (Table 1). For each model,
we performed dedicated prompt engineering (8–10
variants per LLM) and selected the best prompt
using a validation set (as per F1 metric) of 1,000
manually annotated queries sampled from the mas-
ter dataset (Section 3). The final prompts were
then evaluated on a 10,000-query test set (100
queries for each of 100 product categories) us-
ing a human-in-the-loop setup. Claude 4 Son-
net achieved the highest precision and recall, with
DeepSeek-R1-Distill-Qwen-14B performing com-
parably and showing strong results on both tasks.
Mixtral remained competitive given its smaller ar-
chitecture, while Mistral Nemo performed reliably
on structured, text-driven inputs. This consistency
reflects that structured, text-only intent understand-
ing aligns well with the strengths of modern LLMs,
making lighter open-weight models viable for pro-
duction use. Although Claude 4 achieved the
best accuracy, we selected DeepSeek-R1-Distill-
Qwen-14B for production due to its 2.2× cost ef-
ficiency enabled by inference optimizations, with
only marginal performance loss. We also evaluated
its category-wise precision and recall (Table 5).

5.2 Query-Result Relevance (QRR-LLM)

In this section, we provide the details of query-
result relevance task. Classifying each product
shown in response to a user query as being relevant
or not may not always the most appropriate. For
example, for the query “iPhone”: would an iPhone
charger be relevant, irrelevant, or somewhere in
between? In practice, many users issue such broad
queries expecting the search engine to infer their
true intent, such as purchasing accessories rather
than the phone itself. To address this issue in rel-
evance evaluation we have adopted the ESCI la-
beling scheme, categorizing query-result pairs into
four classes: Exact (E), Substitute (S), Complement
(C), and Irrelevant (I). This offers a more granular
alternative to binary relevance.

Further, we propose to use query category and
feature level intent with importance values instead

of raw query as input to LLM for relevance mea-
surement task. Motivation to do this is the follow-
ing: This allows PROBES to focus only on queries
that express clear product-based intent. Query cat-
egory classification filters out non-product or am-
biguous queries (e.g., “return policy”, “120cm”),
which would otherwise introduce arbitrary ESCI
labels and degrade evaluation quality.

Second, for meaningful product based queries,
QIC-LLM assigns a query category (e.g., compat-
ibility, feature-based, subjective), which provides
essential context to interpret relevance accurately.
This becomes especially critical when determin-
ing whether a product is a valid Substitute or truly
Irrelevant. While ESCI offers clearer definitions
for labels like Exact and Complement, the line be-
tween Substitute and Irrelevant often depends on
the user’s core intent, something not always ob-
vious from surface-level matching. For example,
showing a blue bag instead of a black bag may still
be acceptable in a feature-based query, as color is
often a flexible preference, and the blue bag can be
considered a reasonable Substitute. However, in a
compatibility-based query like “20W charger for
iPhone”, relevance hinges on the product’s com-
patibility. If the result is a charger for Android
(C-type), it fails to satisfy the primary intent and
must be labeled Irrelevant, regardless of matching
color or product category. To identify what matters
most in each query and determine whether a re-
turned product truly meets the user’s intent, we rely
on QIC-LLM. By classifying the query and extract-
ing structured features along with their importance
(e.g., “must-have” vs. “approximate”), QIC-LLM
helps isolate the critical features that define rele-
vance, enabling more precise and intent-aligned
ESCI labeling.

Third, for some queries that are highly specific,
relevance assessment works differently. For exam-
ple, in a query such as “iPhone 15 Pro Max 256GB
Black,” the product collection might contain only
one exact match. Other near matches (e.g., 128GB
versions) may be wrongly labeled Irrelevant when
they should be considered valid Substitutes. Rec-
ognizing the specificity of such queries helps avoid
penalizing the search engine unfairly.

We evaluate multiple LLMs for the relevance
measurement task. Our initial step is to invest in
prompt-engineering (8–10 iterations per LLM) to
establish strong baselines for open-source mod-
els. We then run ablation studies using three in-
put configurations: (i) raw query, (ii) feature-level



Raw query Attr-level intent (w/o QC importance) Attr-level intent w/ QC importance

Model P R F1 P R F1 P R F1

Claude-4-Sonnet 0.93 0.91 0.92 0.95 0.92 0.94 0.97 0.94 0.96
DS-R1-Qwen-14B 0.92 0.90 0.91 0.94 0.91 0.93 0.96 0.93 0.95
Mixtral-8x7B 0.91 0.89 0.90 0.92 0.89 0.91 0.94 0.91 0.93
Mistral Nemo 0.89 0.87 0.88 0.91 0.87 0.90 0.93 0.89 0.92

Abbreviations: QC = Query Category. P = Precision, F1 = F1 Score, R = Recall, DS-R1 = DeepSeek-R1-Distill-Qwen-32B.

Table 2: QRR-LLM Evaluation across different input types and models with Precision (P), Recall (R), and F1 scores

intent, and (iii) feature-level intent with query-
category–based importance. A validation set of
1,000 (query, intent, product content, ESCI label)
tuples from the master dataset is used to select
the best prompt per model. Final evaluation is
performed on a 30,000-sample test set (300 per
product category). Table 2 reports detailed results
across LLMs and input variants.

We find that using feature-level intent with
category-aware importance consistently outper-
forms other inputs, as it provides QRR-LLM with
structured guidance on which features matter most.
While Claude-4-Sonnet delivers the best overall
performance, DeepSeek-R1-Distill-Qwen-14B out-
performs other open-source models of compara-
ble size—even some larger ones—likely due to
stronger reasoning capabilities, which are critical
for relevance assessment.

5.3 Content-Quality (CQ-LLM)

Following an “Irrelevant” classification from QRR-
LLM, PROBES invokes a Content Quality assess-
ment module to diagnose potential root causes
within the product listing data. An irrelevant re-
sult appears in search result if product content has
inaccurate or conflicting feature values. For each
identified feature (e.g., color, device compatibil-
ity, by QIC-LLM from a query like “red case for
iPhone 13”), CQ-LLM performs a multi-faceted
analysis of the product content page. We leverage
the framework and model architecture from (Joshi
et al., 2025), to identify discrepancies in the prod-
uct information. This analysis encompasses (i) Ver-
ifying the factual accuracy of feature values against
the product information presented across various
modalities, including product title and detailed de-
scription. (ii) Checking for contradictions or con-
flicting information regarding the feature across
different sections of the product content. Discrep-
ancies identified (Refer to 7 for examples) during
this inaccuracy and conflicts evaluation are flagged
as potential contributing factors to the item’s irrele-

vant retrieval. Given a query, irrelevant results from
master dataset (section 3) and feature level intent
from QIC-LLM, we leverage Claude-4 to detect
inaccuracies or conflicts for each feature identified
by QIC-LLM.

Validation set contains 1,000 examples and Test
set contains 10,000 samples (100 per product cat-
egory). We chose the best prompt for each model
based on Precision on validation set.

Finally, we evaluate model performance on test
set by computing Actionable Error Rate (AER eq 1)
- the proportion of system-flagged errors that are
validated by human reviewers as both correctly
identified and operationally fixable. Note that,
AER is a precision oriented metric. We don’t fo-
cus on recall for this task since output of this task
is used for driving fix treatments (generally man-
ual). In practice, fix capacity is lesser compared to
the volume of issues identified for fixing . Hence,
AER (a precision oriented metric) is more useful
for efficient downstream consumption.

AER =
Human Validated, Fixable Errors

Total Errors Flagged by the System
(1)

We observe that smaller LLMs (<20B params)
don’t perform well since this is a complex rea-
soning task. Again, we consistently observe that
Claude-4-Sonnet performs better than rest of the
open-source models. Among open-source mod-
els, DeepSeek-R1-Distill-Qwen-32B performs best.
Again, we conjecture that these may be due to bet-
ter reasoning capabilities of the models and task
also requires reasoning.

5.4 Product Retrieval Model (Pdt-RT)

We analyze missed recall issues by focusing on
queries that yield no exact matches. The Product
Retrieval Model plays a crucial role in diagnosing
ranking and selection issues within the search sys-
tem. This model aims to independently identify
the top-k most relevant products from the entire
product collection for a given query.



AER%

Model Conflicts Inaccuracy Params

Claude 4 Sonnet 88.4 87.9 ~400B
DS-R1-Qwen-32B 82.1 83.5 32B
Mixtral-8x7B 80.5 82.0 46.7B
LLaMA 2-34B 78.2 80.0 34B

Abbreviations: DS-R1-Qwen-32B = DeepSeek-R1-Distill-Qwen-32B;
Params : number of parameters

Table 3: Content Quality Evaluation

• Ranking or Retrieval Issue: For queries with
no “Exact” matches in actual results, we apply
QRR-LLM to the top-k retrieved products. If
any of them come out to be “Exact,” it sug-
gests a ranking or retrieval issue - the original
search algorithm failed to surface the correct
product despite its presence in the product col-
lection. Note that, top-k products serve as
a practical proxy for the entire product col-
lection, balancing accuracy and efficiency, as
running the QRR-LLM on millions of prod-
ucts would be computationally infeasible.

• Selection Issue: If neither the actual results
nor the top-k retrieved products contain “Ex-
act” matches, it points to a selection issue
- either relevant items are missing from the
product collection or described in a way that
prevents them from being identified as rele-
vant to the query.

Data Preparation and Architecture: We use the
master dataset (section 3), containing ESCI labels
for (query, product) pairs, to build training and eval-
uation sets. The model uses a Siamese two-tower
architecture that generates separate embeddings for
queries and products to learn similarity. We use
SentenceBERT (Reimers and Gurevych, 2019) as
the embedding model.
Training with Customized Triplet Loss: Model
training is driven by a customized triplet loss func-
tion. A standard triplet loss aims to minimize the
distance between an anchor (the query) and a posi-
tive example (a relevant product) while maximiz-
ing the distance between the anchor and a negative
example (an irrelevant product). We extend this
concept to incorporate the hierarchical nature of
the ESCI labels. Our modified triplet loss func-
tion enforces the following distance relationship
in the embedding space: D(Q,E) < D(Q,S) <
D(Q,C) < D(Q, I), where D is the Distance
function, Q is the search query, and E,S,C, I are

Exact, Substitute, Complement and Irrelevant prod-
uct respectively, by carefully selecting triplets from
products sampled with different ESCI labels during
training. This nuanced loss function (Equation 2)
encourages the model to learn a fine-grained rep-
resentation of relevance, capturing the subtle dis-
tinctions between the ESCI categories. The loss
function is described below:

L =max(0,m1 + d(q, p+)− d(q, p−1 ))

+max(0,m2 + d(q, p+)− d(q, p−2 ))

+max(0,m3 + d(q, p+)− d(q, p−3 )) (2)

where, q is the query embedding, p+ are posi-
tive samples (Exact products), p−1 (Substitute), p−2
(Complement), p−3 (Irrelevant) are negative sam-
ples, m1 < m2 < m3 are margins and d is the
distance function (cosine distance).
We use total 200k queries and 4 pairs of
(query,class) for every query, one for pair per each
ESCI class as training data. We trained two mod-
els: one with relevance-aware loss (Eq. 2) and the
other with an equal-margin, relevance-agnostic loss
function, using the same training data. Typically,
retrieval models are evaluated on NDCG metric,
however, we evaluate performance on AER (1)
metric since our objective is to identify missed
recall issues with higher action-ability. We have
performed online evaluation by taking the missed
recall issues surfaced by PROBES over a period
a month and validate manually for a sample of
∼ 2000 issues. We observe that the model trained
on relevance aware loss performs at 76% AER,
whereas the model trained on relevance agnostic
loss performs at 69% AER.

6 System evaluation and conclusion

In this paper, we introduced PROBES, an LLM
based automated evaluation and modular system
for online search systems. We introduced a new
metric AER to measure effectiveness of such sys-
tems. PROBES performance metrics are as follows:
(i) 76% AER (3 out of 4 issues surfaced are action-
able), (ii) ∼ 3% issue detection rate (300 issues
found per 10000 queries), (iii) 80% reduction in
insight generation time (5 days earlier to 1 day),
(iv) 92% reduction in manual hours (∼ 30 manual
validation hours compared to ∼ 400 hours earlier).
Further, we also propose a novel approach for rel-
evance measurement that leverages feature-level
intent and query-category awareness, which shows
substantial improvement over using only the raw



query for the task. We also introduce a relevance-
label-aware loss function for the retrieval model,
which helps achieve an 8% absolute improvement
in AER over a generic loss function.

7 Limitations

PROBES presents a powerful, scalable approach to
diagnosing search system issues by identifying pre-
cision and recall failures and tracing them to root
causes like content quality, retrieval, ranking errors
or selection gaps. Its ability to automate traditional
manual evaluations drastically reduces human ef-
fort while providing actionable insights. However,
PROBES still faces several limitations. It currently
relies on static data and lacks user reviews and
ratings, valuable for subjective queries like “best
chair.” Ambiguous queries will benefit from con-
textual cues or interactive disambiguation, such
as leveraging recent user activity (e.g., browsing
history or session patterns) or prompting follow-
up clarifying questions to refine intent. We plan
to incorporate image data for evaluation as well
as expand to different languages as a future work.
Finally, while PROBES effectively identifies and
diagnoses search failures, it stops short of prescrib-
ing solutions - incorporating a recommendation
module to suggest content corrections, retrieval ad-
justments, or ranking improvements will evolve
PROBES into a proactive, end-to-end search opti-
mization system.
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A Appendix

QRR LLM Output Example

Query: black charger for iPhone 12

QRR-LLM Input:

feature level intent with query category based impor-
tance

{
"query_category": "compatibility",
"feature_extraction": {

"product category": {"value": "charger",
"importance": "must_have"},

"compatible_device": {"value": "iPhone",
"importance": "must_have"},

"color": {"value": "black",
"importance": "approximate_is_okay"}

}
}

Product Information
Black USB-C charger compatible with Samsung Galaxy
devices

QRR-LLM Output:

{
"reason": "This is a compatibility query where
the charger must work with iPhone 12.
Although the color matches (black),
the product is only compatible with Samsung
and not iPhone",
"ESCI tag": "Irrelevant"

}

Query Product Info ESCI

55 inch tv wall
mount

Wall mount for
37–70 inch TVs

E

black long sleeve
shirt

Black Long Sleeve
Shirt

E

laptop laptop case C
green cotton socks red cotton socks S
wire for iOS device wire for Android I
no calorie snacks Chocolate Brownie I

Table 4: Example output of QRR-LLM

Query Category Precision Recall

Feature search 0.94 0.90
Non-Product search 0.96 0.92
Product category search 0.99 0.97
Thematic search 0.93 0.90
Brand search 0.98 0.98
Exact search 0.99 0.99
Symptom search 0.88 0.84
Compatibility search 0.95 0.92
Relational search 0.93 0.88
Subjective search 0.85 0.82
No product category 0.84 0.80
Natural Language search 0.90 0.87
Slang or spelling error search 0.80 0.76
Negation search 0.86 0.83
Generic search 0.88 0.85

Table 5: Precision and Recall by Query Category (
DeepSeek-R1-Distill-Qwen-32B)

Query Category Examples

Feature search leather jacket
Non-Product search my orders, my refunds
Product type search sandals, tv
Thematic search Christmas decorations
Brand search starbucks
Exact search Zebronics XE Mouse
Symptom search dry cough
Compatibility search apple carplay adapter
Relational search ronaldo jersey kids
Subjective search best hair mask
No product type 124 cm, 4K
Slang search chlr, nke
Negation search chair without wheel
Generic search home essentials

Table 6: Query Categories with Examples



Issue Type Product Category Model Explanation

Conflict Chair The product information states the item weight as 8.84 pounds.
However, the bullet points mention the weight as 7.27 lbs, which
is conflicting with the other source.

Conflict Television The product information states the display size is 65.0 inches,
but the product product detail mentions the size as "83 Inch".
This is a significant conflict in the display size specification.

Inaccuracy Chair The size value listed as 999 seems anomalous and inaccurate
for a chair product.

Inaccuracy Chair The special feature listed as \"Toy\" seems anomalous for an
outdoor chair intended for adults and children up to 250 lbs.

Table 7: Content quality model output examples

Language Total Train Public Test
# Queries # Judgements Avg. Depth # Queries # Judgements Avg. Depth # Queries # Judgements Avg. Depth

English (US) 97,345 1,819,105 18.7 68,139 1,272,626 18.7 14,602 274,261 18.8
Spanish (ES) 15,180 356,578 23.5 10,624 249,721 23.5 2,277 53,494 23.5
Japanese (JP) 18,127 446,055 24.6 12,687 312,397 24.6 2,719 66,612 24.5

Overall 130,652 2,621,738 20.1 91,450 1,834,744 20.1 19,598 394,367 20.1

Table 8: Summary of the Shopping queries dataset for the tasks 2 and 3 (large version): the number of unique
queries, the number of judgements, and the average number of judgements per query (Avg. Depth).



A.1 Prompt Templates

QIC Prompt Template

In an e-commerce website, customer intent is captured through search queries, such as:

<product_category>{pt}</product_category>
<search_query>{search_query}</search_query>

Task Overview
Your task is two-fold:

1. Classify the extracted information into one of the categories listed below, based on the definitions provided <list of
query categories>

2. Perform feature extraction for each search query and its importance (approximate_is_okay or must_have) inferred
from query category (1)

Rules

– Carefully review the definitions of each category before making a classification.

– If a search query does not clearly fit into any existing category, you are allowed to define and assign a new category
that better represents the user’s intent.

– Use the query type to determine the importance of the features, examples :

– For thematic queries, the theme is must_have.

– For relational queries, the related entity is important (e.g., “Messi shoes”).

– For negation queries, the feature being negated is important (e.g., “headphones without wire” — here without wire
is must_have).

– Make sure you do not infer, assume, or imply anything out of context that is not mentioned.

– Handle variations in case, singular/ plural forms, and spelling mistakes.

Categories
<categories>
<definitions and example of each category>
</categories>

Example
<2 examples for few short prompting>

Output Schema
{
"searched_keyword": searched keyword,
"reason": reason for classification,
"category": type of search query,
"feature_level_intent_with_importance" : feature_level_intent_with_importance

}



QRR Prompt Template

In an e-commerce website, the customer search is given as a search query, along with information about the products in the
search results.
Your task is to classify these into four categories: Exact, Complementary, Substitute, and Irrelevant.

Input Schema
<search_query>{search_query}</search_query>
<product_information>{product_data}</product_information>
<Query Category and intent features with importance>{QIC output}
</Query Category and intent features with importance>

Categories
Exact: The product information is an exact match to the search query — all extracted features match exactly.

Substitute: The product is a substitute — the approximate_is_okay features may differ, but the core need is met.

Complementary: The product is a complementary item — such as an accessory or add-on to the main product in the
query.

Irrelevant: The product is completely unrelated to the query — does not fulfill the intent or relevant features.

Example
<2 examples for few short prompting>

Output Schema
{

"searched_keyword": searched keyword,
"reason": reason for the category,
"category": type of search of the search_query

}
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