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Abstract
Voice assistant accessibility is generally overlooked as today’s
spoken dialogue systems are trained on huge corpora to help
them understand the ‘average’ user. This raises frustrating bar-
riers for certain user groups as their speech shifts from the aver-
age. People with dementia pause more frequently mid-sentence
for example, and people with hearing impairments may mis-
pronounce words learned post-diagnosis. We explore whether
semantic parsing can improve accessibility for people with non-
standard speech, and consequently become more robust to ex-
ternal disruptions like dogs barking, sirens passing, or doors
slamming mid-utterance. We generate corpora of disrupted sen-
tences paired with their underspecified Abstract Meaning Rep-
resentation (AMR) graphs, and use these to train pipelines to
understand and repair disruptions. Our best disruption recovery
pipeline lost only 1.6% graph similarity f-score when compared
to a model given the full original sentence.
Index Terms: accessibility, semantic parsing, spoken dialogue
systems, human-computer interaction

1. Introduction
People use voice assistants to set timers while their hands are
dirty preparing food, or to turn up the volume of the TV from the
warmth of their bed. These simple conveniences are undoubt-
edly pleasant, but they are also critical for the mental well-being
of certain user groups [1]. People with dementia can seamlessly
access their music [2], and people with limited mobility can re-
gain their independence. Instead of having to ask a family mem-
ber or carer to turn off their light before bed, they can do this
whenever they want with just their voice. Charities promote the
use of voice assistants for this reason, and the creators develop
features targeting these specific user groups [1].

With this in mind, the accessibility of today’s systems
must be considered as speech production differs between the
‘average’ user and the user groups that, while benefiting the
most from voice assistants, remain a minority in huge train-
ing datasets. For example, people with dementia pause more
frequently and for longer durations mid-sentence due to word-
finding problems [3, 4]. Non-standard speech is actually pro-
duced due to many different diseases and conditions like early-
stage motor neurone disease, muscular dystrophy, down syn-
drome, etc... Even seemingly unrelated problems lead to speech
production changes. For example, it is difficult to learn how to
say new words with hearing difficulties, so people with hearing
impairments often mispronounce words [5].

Similar to human speech processing, automatic speech
recognition (ASR) can signal when it struggles to recognise a
word in a spoken utterance [6]. This is indicated with a low
word-level confidence score, much like when people know they

are unsure of a particular word their interlocutor said. Both
humans and ASR systems try to use the surrounding words as
context to determine what word was likely uttered [7, 8], but
unlike human speech processing, today’s voice assistants do not
attempt to repair instances in which the ASR word confidence
remains low [9]. The natural language understanding compo-
nents are sent the utterance text regardless, and users have to
frustratingly repeat their entire utterance again if the mystery
word’s identity was guessed incorrectly [9, 10].

We propose that adapting voice assistants to be capable of
semantically parsing and repairing spoken utterances, with low-
confidence tokens, will make them more accessible for many
user groups. Additionally, words are disrupted by dogs barking,
sirens passing, doors slamming, or other family members mid-
utterance [11]. This work can therefore improve robustness to
noisy environments, benefiting all users. In this paper we gen-
erate several corpora to evaluate disruption recovery strategies,
and experiment to explore the feasibility of such a solution.

In order to understand and repair sentences that are dis-
rupted, we must carefully consider our choice of meaning rep-
resentation language (MRL). It must be able to handle: incre-
mentality, allowing structurally incomplete meanings to be es-
tablished over time; and conjunction, enabling the semantic rep-
resentation of both the disrupted utterance and follow-up repair
to be consolidated into the representation of the full sentence.
The chosen MRL must also be transparent, allowing system
designers to establish reasons for particular behaviour. This is
vital when interacting with potentially vulnerable groups, and
for downstream reasoning that also improves accessibility [1].

One formalism that satisfies the above desiderata is the
graph-based Abstract Meaning Representation (AMR) [12],
shown in Figure 1. Previous work on incremental AMR pars-
ing has exploited its underspecification and conjunction prop-
erties [13] that we require. AMR is also transparent by design
[12], and has been successfully used for downstream reasoning
[14, 15]. Finally, AMR has been used to pre-train large lan-
guage models, enabling state-of-the-art (SotA) semantic parsing
and text generation [16, 17] without sacrificing transparency.

The most recent AMR corpus, called AMR 3.0
(LDC2020T02) [18], contains over 59,000 sentences paired
with their AMR graph representations. AMR can represent
all sentences, taking all words into account in a reasonably
consistent manner, and this makes it a popular resource for the
semantic parsing task. Two AMR parsing models are currently
the non-ensemble SotA: AMRBART [17] and ATP [19]. These
are closely followed by SPRING [16], the SotA without using
additional training data. In fact, ATP actually uses the SPRING
model, but outperforms it by 1% by training it on auxiliary
tasks. AMRBART could not be retrained on modified AMR
corpora due to issues open in their GitHub repository, we



therefore re-implemented the SPRING system as our AMR
parsing baseline on a P3 AWS machine. The disruption recov-
ery experiments in this paper will be compared to this baseline
as an upper bound, with an ideal pipeline understanding and
repairing disrupted sentences as successfully as the SPRING
model parses the full original sentence. The SPRING model
relies on the BART-Large [20] pre-trained large language
model, further fine-tuned on linearised AMR graphs with the
RAdam optimiser [21]. The novel linearisation algorithm was
then used by both AMRBART and ATP.

In this paper we: (1) show that token-masking improves a
model’s ability to generate underspecified AMR; and (2) build,
evaluate, and analyse recovery pipelines that repair disrupted
sentences. Our top-performing pipelines can repair sentences
spoken by people with non-standard speech, or spoken in a
noisy environment, only losing 1.6% graph similarity f-score.

2. Disrupting AMR
To evaluate disruption repair pipelines, we need a corpus of dis-
rupted sentences paired with their underspecified AMR repre-
sentations and completions. As this does not exist, we have gen-
erated several corpora from the original AMR 3.0 corpus to run
our experiments. In this section we detail the general approach.
Experiment-specific details are in their respective sections1

Each word in a sentence carries specific meaning, which
is then represented by nodes and/or edges in an AMR graph.
We must therefore ensure that when we disrupt words in the
text, it is the semantic meaning of those exact words that we
underspecify in the graph. For this, we have re-implemented a
recent SotA AMR alignment model [22]. In Figure 1 we show a
coloured diagram of a text/AMR alignment to illustrate our dis-
ruption approach. If we chose to disrupt the word “invented” in
this example, the alignment model would identify which edges
and nodes need to be underspecified in the AMR (dark blue
edge and node in Figure 1). Following similar work to represent
incomplete instructions given to robots [23], we take advantage
of underspecification in AMR to represent the missing informa-
tion with a ‘NOTKNOWN’ argument. If this tag is present in
our model’s semantic parse, information must be missing due
to disruption in the spoken utterance, and repair is required.

In order for our recovery pipelines to be successful, they
need to first parse a disrupted sentence into AMR. The under-
specified graph should not just identify that information is miss-
ing, but critically, where that missing information belongs in the
graph structure. From Cognitive Science we know that clarifica-
tion requests are used to communicate and deal with misunder-
standings on the fly by eliciting a repair from the interlocutor
[25]. Our pipeline must therefore also correctly parse this re-
pair, and then conjoin the two AMR parses into its full form –
ideally the correct AMR representation of the full sentence.

3. Representing Interrupted and Disrupted
Sentences

As detailed in Section 1, we can detect disrupted words in a
spoken utterance (e.g. mispronunciations or door-slamming)
as ASR will output predictions with a low word-level confi-
dence score [6]. Words with a low score can be replaced with
an ‘[UNK]’ mask in this case. People pause mid-sentence due
to word-finding problems however, and this is particularly com-

1Our AMR disruption code and example dialogues can be found at:
https://github.com/amazon-science/disrupt-amr

Interrupted Corpus Details Smatch on Test Set
with NO mask Full corpus 82.2
with NO mask Incomplete 80.5

with mask Full corpus 82.4
with mask Incomplete 79.8

Table 1: SPRING models trained on interrupted AMR corpora.
‘Full’ indicates that incomplete, complete, and repair sentences
are present in the corpus (as opposed to incomplete only).

mon in speech produced by people with dementia. Words are
therefore entirely missing from the ASR output and cannot be
replaced by a mask [10]. In this section we: (1) check that un-
derspecified AMR can be generated when no mask is present,
ensuring people with dementia can benefit from semantic repair
pipelines; and (2) confirm our hypothesis that the mask tokens
do improve model performance.

Word-finding problems, and therefore long mid-utterance
pauses, typically precede nouns [26, 27], and this linguistic ob-
servation has been used to improve entity recognition on Siri’s
user data in English and French [28]. With this in mind, we
created two ‘interrupted’ corpora where the missing words are
nouns at the ends of sentences. We consistently refer to these
corpora as ‘interrupted’ as opposed to ‘disrupted’, given that
disruptions can occur at any point during a spoken utterance.
The process in Section 2 was used to create two interrupted cor-
pora, with the only difference being the presence of a token
mask or not. For example, “I put the book on the” vs “I put
the book on the UNK”. Given the interruption constraints, the
corpora were smaller than the original AMR corpus, each con-
taining 13,896 train, 654 dev, and 693 test instances. For error
analysis, we additionally train models on only the incomplete
sentences in the interrupted corpus, this is one third of the in-
terrupted corpus (as it excludes full sentences and repair turns).
Following all previous AMR literature, we use Smatch [29] as
the evaluation metric to measure the semantic overlap between
the predicted and gold AMR graphs (graph similarity f-score).

We retrained four SPRING models for comparison, the re-
sults and differences are detailed in Table 1. Interestingly, when
the model is only shown incomplete sentences paired with un-
derspecified AMR, the corpus without masking outperforms the
model that is given the mask. We argue that this is because
SPRING exploits the BART-Large pre-trained large language
model [20] which has never seen the ‘UNK’ mask previously.
We confirm this later when training our disruption models with
the much larger ‘disrupted’ corpora. Turning to the full corpus
results, we can see that the absence of a mask impacts perfor-
mance. We expect a recovery pipeline to identify when repair is
needed in an interaction. Without a mask, the model confuses
incomplete sentences with full sentences.

In this section we have determined that underspecified
meaning representations can be generated from incomplete sen-
tences without the presence of a mask. We see later, however,
that the confusion with full sentences strongly impacts the full
interruption recovery pipeline designed for people with demen-
tia. In addition, we have shown that for other user groups and
in noisy environments, where masking is possible, the semantic
parser performs promisingly well.

We have only explored ‘interrupted’ sentences so far, but
disruptions can occur at any point during a spoken utterance.
We therefore used the process in Section 2 to disrupt sentences
in the original AMR 3.0 corpus. Given that some sentences are



Figure 1: A colour coded diagram of text/AMR alignment [24]. The sentence is at the top, the AMR graph is on the left, and the
linearised text representation of the graph is on the right. The word “quench” in green is represented by the green nodes and edges.

very long, we disrupted some sentences multiple times, gener-
ating multiple underspecified parses. To give a simple example,
generating: “I put the book on the UNK” and “I put the UNK
on the table”. This resulted in a much larger corpus containing
76,168 train, 4,155 dev, and 4,451 test instances.

4. Building Disruption Recovery Pipelines
The interrupted corpus with masks was only required for the
experiments in Section 3. We want to build recovery pipelines
for accessibility purposes, and interruption masks are not possi-
ble, so we will therefore evaluate interruption pipelines with no
masks for people with dementia, and disruption pipelines for the
other groups discussed in Section 1, where masks are possible.

ASR outputs low word-level confidence scores that can be
masked before semantic parsing, so a disruption is known to
have occurred before recovery is initiated. A model trained on
full sentences and incomplete sentences could parse all user ut-
terances, but a pipeline with specialised models could be used
instead. That is, the disrupted sentence could be parsed by a
model that has only seen disrupted sentences during training,
and the repair could then be parsed by another model that has
only been trained on repair utterances. This ‘split‘ pipeline con-
tains specialised models, but each would be trained on less data.

Given the surrounding context of a misunderstood word,
humans sometimes try to predict what was said [7, 8]. We hy-
pothesise that guessing the misunderstood word may frustrate
the user further when interacting with a voice assistant, but we
deemed it was important to include this human-interaction ap-
proach for completeness. We fine-tuned two T5 models [30]
on our corpora, as they are particularly good at text generation
[31, 32]. One model was trained to complete interrupted utter-
ances, and one to repair disrupted sentences.

Finally, we built a naive pipeline to confirm that our other
recovery pipelines successfully repair disruptions. This pipeline
parsed both the incomplete sentence and repair turn with the
original SPRING model trained on AMR 3.0. It then conjoined
the two parses at the root node (e.g. the ‘top’ in Figure 1).

5. Pipeline Evaluation
With each approach detailed in Section 4, we evaluated the fol-
lowing pipelines against their respective Upper Bounds (UB):
• Interrupted: UB - the SPRING model trained on the original

AMR 3.0 corpus, given only full sentences in the interrupted
corpus. Interrupted pipelines aim to match this upper bound.

• Interrupted: All - the interrupted sentence and repair turn are
parsed by SPRING trained on the full interrupted corpus.

• Interrupted: Prediction - the interrupted sentence is com-
pleted by prediction using the T5 model fine-tuned on the
interrupted corpus. This is then parsed by the SPRING model
trained on the original AMR 3.0 corpus.

• Interrupted: Naive - the interrupted sentence and repair turn
are both parsed by the SPRING model trained on the original
AMR 3.0 corpus, and conjoined at the root node.

• Disrupted: UB - the SPRING model trained on the original
AMR 3.0 corpus, given only full sentences in the disruption
corpus. Disrupted pipelines aim to match this upper bound.

• Disrupted: All - the disrupted sentence and repair turn parsed
by the SPRING model trained on the full disrupted corpus.

• Disrupted: Split - the disrupted sentence and repair turn
parsed by specialised SPRING models (only possible for dis-
ruptions, due to masks, as aforementioned in Section 4).

• Disrupted: Prediction - the disrupted sentence is completed
by prediction using the T5 model fine-tuned on the disrupted
corpus. This is then parsed by the SPRING model trained on
the original AMR 3.0 corpus.

• Disrupted: Naive - the disrupted sentence and repair turn are
both parsed by the SPRING model trained on the original
AMR 3.0 corpus, and conjoined at the root node.

Pipeline evaluation results can be found in Table 2. If we
first explore the ‘Interrupted’ pipeline results, we can see that
the model confusion identified in Section 3 has a serious impact
on performance. That is, with no tokens to identify whether
a sentence is interrupted or not, the semantic parser confuses
incomplete sentences for complete sentences – failing to output
an underspecified AMR graph. Both the prediction and naive
recovery approaches outperform the semantic parsing model for
this reason. In Section 6 we run an error analysis to explore
what type of semantic information our model is failing to parse.

The disruption recovery pipelines perform remarkably well
(this contrast is explored in Section 6). It is worth highlighting
that the naive pipeline is passed the same incomplete sentence
and repair turn as the recovery pipelines, the main difference is
how the representations are conjoined. Our recovery pipelines
outperforming the naive pipeline, by up to 4.6%, highlights that
our semantic parser accurately identifies where the missing in-
formation belongs in the semantic structure of the sentence.

The prediction pipeline generally repaired sentences with
sensible completions, but as expected, these predictions were
often arbitrary guesses due to ambiguity. To illustrate this point,
consider completing the sentence: “She drove to UNK”.

Finally, it appears that specialist models outperform more
general semantic parsing models, even though the general



Pipeline Smatch Smatch Loss
Interrupted: UB 86.6 -
Interrupted: All 81.3 5.3
Interrupted: Prediction 82.3 4.3
Interrupted: Naive 83.2 3.4
Disrupted: UB 84.7 -
Disrupted: All 82.8 1.9
Disrupted: Split 83.1 1.6
Disrupted: Prediction 78.6 6.1
Disrupted: Naive 78.5 6.2

Table 2: Evaluation of interruption and disruption recovery
pipelines. The ‘Smatch Loss’ is the difference between the
pipelines Smatch score and its respective upper bound, ‘UB’,
score. The ideal loss would be 0, as that would indicate that the
recovery pipeline successfully repaired all sentences.

model was trained with a larger amount of data. From the re-
sults, we can conclude that when a system’s ASR outputs an
utterance with a disruption (indicated by low word-level con-
fidence), this disrupted sentence should be sent to a specialist
semantic parsing model trained specifically to generate under-
specified meaning representations. This can make a voice assis-
tant more accessible for people with non-standard speech, and
more robust for use in noisy environments like a family home.

6. Findings from Deeper Analysis
Smatch is the standard AMR evaluation metric, but newer met-
rics were designed to provide a more fine-grained evaluation of
AMR semantic parser performance [13]. These include scores
measuring the parser’s ability to predict graph structure, named
entities, negation, concepts, and more. We ran these metrics
across all of our pipelines to measure what certain pipelines
parsed successfully, and what can be improved.

The interruption recovery pipeline performed very poorly,
being outperformed by both the prediction and naive pipelines.
Upon further inspection, the ‘Interruption: All’ pipeline strug-
gled to parse negation and reentrancies when compared to the
prediction and naive pipelines. We determined that this was
simply due to the fact that the prediction and naive pipelines
used the SPRING model trained on the original AMR 3.0 cor-
pus, and that the interrupted corpus must contain fewer nega-
tions and reentrant edges. We trained a pipeline using the in-
terrupted corpus with masking from Section 3 to confirm this
pattern holds true. This is a positive finding, as AMR datasets
are supersets of their older versions (AMR 2.0 is a subset of the
larger AMR 3.0 corpus for example). In future, given a larger
AMR corpus, the same interruption code could be used to re-
cover interrupted sentences uttered by people with dementia.

Sticking with the interruption recovery results, the naive
pipeline outperformed the prediction approach. We discovered
that this was due to a large drop in the prediction pipelines abil-
ity to parse named entities, with a recall score drop of 8%. This
makes sense following reasoning explained in Section 5. Nouns
are often impossible to predict, resulting in the named entity be-
ing missing from the predicted AMR graph.

The disruption pipelines do not share the interruption
pipeline’s struggles with negation and reentrancies, further con-
firming our suspected diagnosis. In fact, the disruption re-
covery pipelines outperformed their respective prediction and
naive pipelines at parsing negation, named entities, and unla-
beled graph structure. The naive approach was particularly bad

at predicting the semantic structure of the graph (an 8% preci-
sion drop). This is expected as the two parses are arbitrarily
conjoined at the root node, resulting in structural issues.

7. Conclusion
In this paper we motivate the need for interruption and disrup-
tion recovery pipelines for voice assistant accessibility, and for
general robustness in noisy environments like family homes.
We found that disruption recovery is possible with a general
model (one that can accurately parse disrupted sentences in ad-
dition to complete sentences), and with a pipeline containing
specialist models (parsers specifically tailored to their specific
role, e.g. parsing only disrupted sentences).

Our top-performing pipeline lost only 1.6% Smatch when
compared to the SPRING model given the full utterances. This
recovery pipeline had to parse the disrupted utterance, correctly
identify where the missing information belongs in the semantic
graph structure of the sentence, parse the repair utterance, and
conjoin these representations to recover the full semantic graph.

As explained in Section 1, ASR may output words with
low confidence scores due to mispronunciation or background
noise. We all mispronounce words (e.g. when asking the
weather in Llanfairpwllgwyngyll), but people with speech im-
pairments, muscular dystrophy, early-stage motor neurone dis-
ease, and even hearing impairments commonly mispronounce
words [1]. Similarly, it is difficult to hear a word mid-utterance
when a dog barks. This paper confirms that it is possible to
repair misunderstandings naturally when this occurs.

We will release the code to generate all of the corpora used
in this paper for reproducibility, and we will also release the
hyperparameters used to fine-tune the T5 prediction models.

8. Future Work
To confirm that our pipelines do improve accessibility in prac-
tice, a user study must be designed, go through meticulous eth-
ical approval, be carried out, and analysed. In this paper we
showed that our approach was feasible, but response generation
would also be needed for an actual user study. This response
generator was out of the scope of this work, but would generate
a clarification request to elicit the repair turn from the user.

From a very small number of test cases, we found that chat-
GPT was surprisingly good at generating clarification requests
given only a few examples. We could not use chatGPT for our
entire disruption recovery pipeline, however, as it breaks our
requirement for MRL transparency. This is absolutely critical
when designing systems to be accessible, as the target groups
commonly contain vulnerable members. We must be able to es-
tablish reason for system behaviour, and control this behaviour
to avoid harming the user. ChatGPT could potentially be used
only to generate the clarification request, but further analysis
is needed. We plan to evaluate which response generation ap-
proach would be the most appropriate (for example chatGPT or
AMR to text generation [16, 17]). We are also working to use
the findings in this paper in a future user study.
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