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Abstract—A major challenge encountered in the offline eval-
uation of machine learning models before being released to
production is the discrepancy between the distributions of the
offline test data and of the online data, due to, e.g., biased
sampling scheme, data aging issues and occurrence(s) of regime
shift. Consequently, the offline evaluation metrics often do not
reflect the actual performance of the model online. In this
paper, we propose online adaptive metrics, a computationally
efficient method which re-weights the offline metrics based on
calculating the joint distributions of the model hypothesis over
the offline test data VS. the online data. It provides offline metrics
which estimate the production performance of the model by
taking into account the test data biases. The proposed method
is demonstrated by real life examples on text classification and
a commercial natural language understanding system. We show
that the online adaptive metrics can provide accurate predictions
of online recall and precision even with a small test dataset.

I. INTRODUCTION

Machine Learning (ML) systems in production need to
be frequently updated in order to add new functionalities
and improve accuracy. These updates are often achieved by
regularly releasing new models with additional functionalities
and improved accuracy. Before a new model is deployed into
production, the evaluation of its performance using offline test
data is a key step to assess its potential improvement and
to uncover possible degradation. Hence, it is critical that the
offline test data are representative of the online live data in
terms of distribution to reflect the real performance of the
new model in production. However, it is often not the case in
a real-world scenario.

A major challenge encountered in the offline evaluation
of ML models before being released to production is the
discrepancy between the offline and the online data. There
are few main causes contribute to this issue: 1) Instead of
random sampling, the offline data are collected using a biased
sampling scheme. For example, Figure 1 shows a natural lan-
guage understanding (NLU) application on the distribution of
utterance intent counts: the offline data are sampled according
to the Gaussian distribution while the online data are skewed
and heavy-tailed. 2) Limited resource available to annotate a
large volume of data and, consequently, to achieve sufficient
test data size the annotation process take place over a long
time frame, during which multiple seasonalities and regime
shifts can occur.
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Fig. 1: Comparison of offline and online distribution of the
utterance intent counts in a NLU application.

A. Offline evaluation vs. live performance

As a consequence of non-representative offline test sets, the
offline evaluation does not always reflect the performance in
production (aka. online performance). In this paper, we address
the problem of predicting the production performance with a
non-representative offline test data. Specifically, we compare
a certain candidate model, which can be, for instance, the next
one to be released in production, vs. a baseline model, which
is the one currently in production. The proposed method is
under the assumption that during the testing phase, we can
pull a set of random data from the online live traffic with
no ground truth. The joint distributions of the hypothesis of
the candidate vs. baseline model for both the offline test set
and the set of non-annotated utterances are then computed in
form of two-dimensional matrices. The entry-wise difference
between these two matrices is used as an indicator of the
mismatch between the test data distribution and the live data
distribution. This gap is then used to re-weight the offline
metrics and align them to the production performance. Our
approach is computationally very fast. It can be added to
any offline test scheme as a post-calibration step for accuracy
metrics without requiring any model architecture change. To
demonstrate the proposed method, we consider two open-
source text classification datasets and a commercial NLU
system and we show that the proposed methodology allows to
obtain online adaptive metrics values closer to the production
performance of the models.



B. Related Work

There are multiple studies in the literature contributed
to the task of tracking model online performance. They
typically focus on detecting change point or drift in mean
and variance [5, 9], for example, using reference windows
together with statistical tests to monitor if there is significant
drop in model live performance [16], scanning key evaluation
metrics such as accuracy, recall and prevision over time [10],
monitoring training distribution and controlling the trace of
the online error of the underlying algorithm [7]. This line of
studies aim to detect model drifts, but they do not deal with
adjusting the offline metrics to better align with the model
online performance.

Other relevant studies proposed algorithms to mitigate the
issue of the mismatch between training and testing data [8,
15, 1]. For example, [17] presented three data splitting tech-
niques, cross-validation, bootstrap and systematic sampling,
to compare their performance on generalization in testing
data. Another direction of research targets at removing biased
in the training data. [2] proposed a theoretical framework
for sample selection bias correction, in particular for cluster-
based estimation and kernel mean matching. [11] described
acquisition strategies for active testing [13] to form an ideal
test set by removing bias while reducing the variance of
the estimator [6]. The bias correction based methods require
deriving weights of the sampled data and re-calculation of the
model, which is computationally very expensive in the online
operation of large scale models.

In this paper, we propose a novel approach to compute
online adaptive metrics to predict production performance
from poor and non-representative offline test sets. The main
advantages of our approach lie in its generality, easy applica-
bility and minimal computational cost.

II. PRELIMINARIES

Let us consider the generic multi-class classification prob-
lem, where the K classification classes are given by the set
C ={C4,Cy,...,Cx}, for Cy, € N where k € {1,...K}. We
denote the offline test data of length N, indicated with the
superscript (o), as

D© = {d!”,a{”, ..., ay,
where dEO), i € {1,...N} represents each data point in D(®),

Similarly, let us denote the sample of online data during the
testing phase of length M, indicated with the superscript (1),
as

O = {al,af’,...dQ},

where d;l), j € {1,...M} represents each data point in DU,

Suppose the current model in production is the baseline
model B and we have a candidate model C' with some
improved features potentially to replace B. Now the goal is to
compare C with the baseline model B in terms of accuracy
defined by the evaluation metrics.

Let us denote the hypothesis of B over any data d
as HP)(d), the hypothesis of C' as H(®)(d), the ground

truth (aka. reference) as G(d), where HB)(d), H(®)(d) and
G(d) € C. We assume that the ground truth is known for
D) but not for DM, which is a common case in practice.

A. Joint Distribution Matrices

We define here the joint distribution matrices which will be
used in the rest of paper. First, we define the joint distribution
of the hypotheses of the baseline model B and of the candidate
model C over the offline test data D(©) as the K x K matrix,
M), whose (i, )™ entry is defined as

o) /. 1 o

My (i,5) = 55Ivd € D) - Hp(d) = Ci, Ho(d) = O}
subject to Y2, - M) (i,5) = 1, for i, j € {1,..K}.

Next, we define the joint distribution of the hypotheses of
the baseline model B, of the candidate model C and of the
ground truth G over the offline test data as the K x K x K

matrix, M%), .. whose (i, j, k)" entry is defined as

M) (i, 4 k)

= +Vd e D : Hg(d) = C;, Hc(d) = C;,G(d) = Cy|
subject to >, kMg)CG(z k) =1, for i, j,k € {1,..K}.
Note that the following relationship between Mgég

M), holds: f

and

K

Z BCG (i, 7,k

k=

M%’éz‘y

forall i,j € {1,..K}.

Finally, we define the joint distribution of the hypotheses
of the baseline model B and of the candidate model C' over
the live data DM as the K x K matrix, M%)C, whose (i,7)"
entry is defined as

l .o
MSB’)C(ZJ) =

subject to >, ; Mg)c(i,j) = 1, for 4,5 € {1,..K}. Note
that, as we assume here that M is large enough, Mg)c well
approximates the true joint distribution of the hypotheses of
the B and C over the live data from the Glivenko—Cantelli
Theorem [14].

Toy Example: To illustrate the above notations, we present
a simple binary classification example where

C ={Cy,Cs}.

1
17vd € DY : Hp(d) = Cy, Ho(d) = Cj|

Suppose that the joint distribution matrix over D(©) is

(o) _|0.6 0.05
Mo = [0.15 0.2

That is, in the offline data, 60% is hypothesized as C; by both
models B and C; 5% is hypothesized as C; by B and C5 by
C; 15% is hypothesized as Cy by B and Cy by C; finally
20% is hypothesized as Cy by both B and C. Suppose the
corresponding M%’CG matrix is given by MSB‘%G(:, 5, Ch) =

0.2 0.02 © .~ [04 003 ,
[0.03 0.1] and Mpoq(:,:, C2) = {0.12 0.1}. That is,



20% of D) is hypothesized as C; by B and C' and it has

ground-truth C7; 40% is hypothesized as C by B and C and it

has ground-truth C5, and so on. Note that similar interpretation
: @) )

applies to M, over D',

B. Evaluation Metrics

For each class C;, € N, k € {1,..K}, we define the
recalls of the baseline model B and the candidate model
C respectively as R%)(C’k) and R(C')(C’k), the precisions of
B and C respectively as Pg)(Ck) and Pg)(C’k), where the
superscript (+) can be either (o) or (I), indicating that the
metric is either for offline or online data. Furthermore, let us
denote A%) as the accuracy of B and A(é) as the accuracy of
C.

The recall and precision can be written in the following
way, using the joint distribution matrices described in Section
II-A:

o %, M (k.. F)
Ry(Cy) = S (1)
Zi,j Mg, g, k)
. M)k k
Zi,j MBCG(%J: k)
PP(Cy) = SLBCE 3)
Z_j M Bc(ky 7)

Zi M(B)C‘G(iv kv k)

()
P (C = @
e > MG (k)
A = S Mg (kG k) 5)
k,J
ALY = S MGaik k) (6)
k,i

where the superscript () € {(0),()}, Cr € N, k € {1,..K}.

C. Offline Test Set Generation

As explained in Section I, an ideal test set should be
generated by random sampling and annotating data from the
current traffic in production. If the test set size would be
sufficiently large, the test data distribution would match the
live distribution, where the latter is approximated by the
pulled non-annotated data distribution, and we would also
have Mg)c ~ Mg,)c However, due to biased data sampling,
seasonality and drift effects, the annotated test set has often
a completely different data distribution compared to the live
traffic.

Toy Example (continued): Assume that the live traffic
data have the following joint distribution matrix: Mg)c =

0.6 0.05
[0.15 0.2

M(E(;)c, e.g., biased sampling, seasonality and model drift.
For example, C; is more critical for the use case where
high precision is required. It is important that the confused
utterances hypothesized as C by the candidate model and as
C5 by the baseline model are in fact belonging to Cy. It is a

]. Few factors could drive M%)c to deviate from

common practice to draw a large fraction of those confused
utterances for re-annotation to be added to the offline test set,
which introduce sampling bias.

III. PROPOSED METHODOLOGY

The proposed method to generate online adaptive metrics is

based on two main assumptions:

1) The joint distribution of B and C' over the online data
can be approximated by M%)C(i,j), i,7 € {1,...,K}.
Note that we can pull an adequate number of randomly
sampled data (of size M) from the online data in
our problem setup, as mentioned in Section I and II
(Glivenko—Cantelli Theorem [14]).

2) The conditional probability of the ground-truth G with
respect the hypothesis Hp and H¢c over the online data,
ie.,

plG(d) = Cx|Hp(d) = C;, Ho(d) = Cj),

can be well approximated by the same conditional
probability over the offline data, which is given by

M2 (i, k)M ),
for C, € N where k € {1,...K}.
Based on the assumptions above, we propose a re-weighting
method to modify the offline recall, precision and accuracy as
defined in equations (1)-(6) when (-) being (o), in order to
minimize the bias in those metrics caused by the discrepancy
in distribution between offline and online data. Due to assump-
tion (1), we replace MSBO)C(Z',]') with Mg)c(i,j) in Pg’) and
Péo). Also, due to assumption (2), we have
l .o o .o M iy ]
Mg (i3 k) ~ Mg (i,4 k) - —BE222 ()
My (i, 5
M (ird)

so we replace Mg)cc(i,j, k) with Mg%G(i,j,k) MO G
Bo
in RY, R, P P, A% and AL,
Specifically, the proposed Online Adaptive Metrics (OAM)

for recall, precision and accuracy are then given by:

o . MY, (k,5)

(1) Z]’ MSB)CG(k»J; k) - W
Ry (Cy) = = vixrra)

ML (G, 3. k) - 2Belbd)

Zm BCG(Z7]7 ) Mg)c(id)

) s )
5 (1) 2 Mpeoe(is ki k) M2 (i.k)
RC (Ck) = O (9)
51 Ml i, k) - 15D
1,7 rJ

M52 (i)



o . M (k,5)
vy ToMBalkn) N
PY(C) = S M) (10)
(l)
L (k)
(1) > MS;)CG( k,k) - m
Pe’(Ck) = (11)
> ML (i, k)
. My (k. j)
AY = S MYk k) B (1)
k,j M(B)C(k7])
0)
- My (i, k)
ALY = Y MBLo Gk k) - B (13)
C Z BCG M(g)c(l, k)

Given the offline data D(") and online data D). The proposed
algorithm is outlined in the following pseudo code.

Algorithm 1: Online Adaptive Metrics algorithm

Compute the followmg

M), L |Vd € D) : Hg(d) = Ci, Ho(d) = G|
M@, « LivdeD® : Hp(d) = C,Ho(d) =
Cj7G(d) = Ck|

MY, — L vd e DO : Hp(d) = C;, Ho(d) = |
In all equations for recall/precision/accuracy substitute (in-
dicated as sobst.) the following matrices:
for i € {1,..K} do
for j € {1,..K} do
subst. M), (i, ) with M, (4, 7)
Bc\b Bc\b
subst. M9L, (i, 4, k) with ML (i, 5, k)-
end for
end for

Mgc( 7.7)
MY (i)

The following lemma guarantees that the probabilities de-
fined in the RHS of (7) sums to 1, hence the RHS of (7) is still
a joint distribution and it can be used to compute the online
adaptive metrics.

Lemma 1. For i, j, ke l,.. K,

o o Mip(,j
ZM(B)CG(Z)]’IC)'%:L
ij,k MBC(W)

Proof.
0 ¥)
ZMS’B)C’G(Z7]>I{7) ('i;)c .
N BC(’L7 )

MO o

=3 Moold) S i k)
i,j MBC(Zv.]) k
MY s .
=3 Muelhd) i) (i
i,j MBC(lvj)
0 .
=> " MY(i,5) =1
ij

Next, we present the theorem which indicates that the
adapted offline metrics Rg), R(cl), Pg), P(l) A(l) d AY
respectlvely converge to the online ones R(l) R(l) P(l) P(l

Ag and AC in distribution. Suppose /N is the offline sample
size.

Theorem 2. As N — oo, fori, j, k€ 1,...
M. j. k)
M (i, )
Proof. Here we present a sketch of the proof. Given that
l .
M](B)CG (Zv ]7 k)

D
Mise.(i. )

K, we have that

0 /. . l .o
Mjg’)c(%]) _>Mé)CG(Z7.7ak)'

=p(G = k|Hp =i, Ho = j)),

where p(G = k|Hp = i,Hc = j) is the probability of the
reference G to belong to the class k given the hypothesis of
the models B and C being ¢ and j. This probability can be
estimated from D¢ as

M (i3, k)
MG, 5)

As N — oo, under randomly sampling, we have

p(G=klHp =i, Hc = j) =

p(G=k|Hg =i,Hc =j) > p(G=k|Hg =1i,Hc = j).

Hence
MI(BO%'G(i J k) Mj(al)cc:(l j. k)
Mg (i, ) My (in5)
and the result follows. O

From Theorem 2 we obtain that, if the number of test data
N is sufficiently large, the adapted offline metric will coincide
with the online ones.

A. Why is the joint distribution needed ?

The online adaptive metrics are based on the entry-level
difference between the offline and online joint distributions of
the candidate vs. baseline model. An alternative way would
be to adjust the metrics of each model by considering the
difference between the offline and online distributions of its
hypothesis independently. We will show in the experimen-
tal results that the proposed online adaptive method largely
outperforms considering each model with independent dis-
tribution. In fact, by considering independent distributions,
differences and biased sampling across the entries of the joint
distributions are not captured. More specifically, the method
is robust to a bias sampling which not only privileges some
classes over others, but which privileges some of the entries of
the joint distributions with respect to others. As explained over
the paper, these are biased sampling methods widely utilized
in real-world applications, for instance to better understand the
impact of certain data which were hyphothesized in a class by
the baseline and in another by the candidate, and the proposed
method allows to cover them.



IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup on three
different datasets: two public text classification datasets and
a commercial natural language understanding (NLU) system.
The aim of our experiments is to quantify the impact of the
online adaptive metrics on the offline non-representative test
set. Our expectation is that the online adaptive metrics will
be closer to the metrics evaluated on online data than the
original offline metrics, without having access to the ground
truth of the online data. To this end, we report the results
on the online, offline metrics and the online adaptive metrics.
Also, we provide the results considering independent model
distributions explained in Section III-A. Specifically, we report
the following metrics for both baseline and candidate models.

e Online metrics: Metrics evaluated on ground truth of
online data.

o Offline metrics: Metrics evaluated on ground truth of
offline data.

o Online adaptive metrics with independent distribution
(OAM IndDis): Reweighted offline metrics on online
data using independent distribution.

¢ Online adaptive metrics with joint distribution (OAM
JointDis): Reweighted offline metrics on online data
using joint distribution.

A. Text classification public datasets

We first apply the proposed method to two public datasets:
(1) conference paper classification: which contains research
article titles and the categories of these papers (the confer-
ences’ names) '. The task is to classify each research article
to the correct conference based on the content of their titles.
(2) news headlines classification: which contains news titles
and the categories of these news articles 2. The task is to
classify each news headline to the correct type based on the
content of the title.

We run two different text classification models on these
datasets to act as the baseline model, which can correspond
to the old model currently running in production, and the
candidate model, which can correspond the newer model to
be released into production. For a baseline model of the
first dataset, we used a Multinomial Naive Bayes supervised
classification [12] with TFIDF as features. For the second
dataset, we apply GridSearch on SVM classification model [3].
As candidate model, we use a BERT transformer model [4]
with a sequence classification head on top of the pooled
outputs for both datasets.

We split both datasets into two sets: one used for training
the models and the other used to simulate the overall online
live data (so, the production traffic). After the splitting, the first
dataset contains 627 samples for the overall online live traffic
and the second dataset has 50214 samples. From the simulated
live data of both datasets, we build the joint distributions of

Thttps://github.com/susanli2016/Machine-Learning-with-
Python/blob/master/research_paper.csv
Zhttps://www.kaggle.com/rmisra/news-category-dataset

the hypothesis M%)C From the M%)C of each dataset, we
random generate another joint distribution matrix which will
correspond to the one of the offline test set M%’)C From the
first dataset we then random sample N = 100 data out of the
627 live data, and for the second dataset N = 2500 out the
50214 samples, according to the respective Mggj, to generate
the corresponding offline test set. As the first dataset is made
of only 5 classes, we can plot here the online and offline
joint distributions used in our experiment. To simplify the
visualization, we plot them in percentage.

13.18% 3.50% 0.16% 0.32%  0.48%
0.00% 32.36% 0.00% 0.48% 0.00%
MYy, = |0.32% 7.02% 3.29% 1.12% 0.32%
0.80% 5.42% 0.16% 14.45% 0.32%
1.59%  2.07% 0.00% 3.29%  9.35%
11.00% 5.00% 0.00% 1.00% 2.00%
0.00% 8.00% 0.00% 2.00% 0.00%
MPL = | 1.00% 12.00% 6.00% 6.00% 1.00%
4.00% 10.00% 0.00% 8.00% 1.00%
2.00%  9.00% 0.00% 6.00% 5.00%

To better visualize the discrepancy between the two matri-
ces, we show here the relative difference in percentage of the
offline distribution compared to the online one. The result is:

—16.54% 42.86% —100.00% 212.50% 316.67%
0.00% —75.28% 0.00% 316.67% 0.00%
212.50%  70.94% 82.37% 435.71%  212.50%
400.00%  84.50%  —100.00% —44.64% 212.50%
25.79%  334.78% 0.00% 82.37%  —46.52%

The minimum number of online samples to accurately estimate
the online joint distribution depends from the number of
classes K and larger K requires more data. For instance,
considering at least 250 and 15000 random samples from the
live data of the first and second dataset, respectively.

The results for the text classification datasets are summa-
rized in both Table I and Table II. For each model, we reported
the online vs. offline evaluation metrics, our proposed OAM
JointDis and OAM IndDis described in Section III-A. We used
both accuracy (Acc) as well as precision and recall as metrics.
Proving the precision and recall for each class would have
not been feasible in terms of space given the large number
of classes, hence we report the standard deviation across all
classes between the real values of the recall/precision and the
estimated ones by the utilized evaluation method.

As we can see in Table I and Table II, by applying the
proposed approach, we obtain metrics which are much closer
to the real value compared to before re-weighting or just
applying re-weighting independently to each model for both
datasets. We can also notice that applying a re-weighting
approach considering the models independently and not the
join distribution does not lead to closer metrics compared
to the real value in general, as the biased sampling is made
across the entries of the joint distribution and re-weighting on
individual distributions cannot help in general.



Conference’s Paper Classification
Model Setting Acc. std. Rec. | std. Prec.

Baseline Online metrics 0.727 0 0
(Multi. Offline metrics 0.510 0.192 0.219
Naive OAM IndDis 0.488 0.204 0.219
Bayes) OAM JointDis | 0.695 0.082 0.134

Online metrics 0.761 0 0
Candidate | Offline metrics 0.620 0.234 0.111
(BERT) OAM IndDis 0.669 0.123 0.111

OAM JointDis | 0.774 0.079 0.072

TABLE I: Classification

results for both baseline and candidate models on conference paper dataset.

News Classification
Model Setting Acc. std. Rec. | std. Prec.

Baseline Online metrics 0.560 0 0
(SVM Offline metrics 0.160 0.319 0.363
Grid OAM IndDis 0.111 0.330 0.363
Search) OAM JointDis | 0.526 0.096 0.148
Candidate Onli'ne metri'cs 0.752 0 0
(BERT) Offline metrl.cs 0.556 0.183 0.158

OAM IndDis 0.569 0.197 0.158

OAM JointDis | 0.700 0.160 0.043

TABLE II: Classification results for both baseline and candidate models on news headline dataset.

NLUER
Domain | Rel. Impro. Corr. Offl. Metr. and Onl. Meas. (%)
Music 15.65%
Video 84.85%

Friction
Domain | Rel. Impro. Corr. Offl. Metr. and Onl. Meas. (%)
Music 5.63%
Video 18.99%

TABLE III: Relative improvement on the correlation between
offline metrics and online measurements for a commercial
dataset using the proposed re-weighting method

B. Evaluation on a commercial dataset

We then evaluate the online adaptive metrics on a real com-
mercial dataset of a NLU system of a voice assistant, as Alexa,
Google Assistant, Siri, etc. A typical NLU system consists
of a domain classifier (e.g., music, video), a named entity
recognized (e.g., song name, device) and an intent classifier
(e.g., play music intent). Before a new NLU model is delivered
in production, it is tested over anonymized test data, collected
over time and often affected by biased sampling and drift
effects. When the model is delivered in production, manual
or automatic metrics are used for online evaluation. A manual
metric, called NLUER (natural language understanding error
rate), consists of sampling some random utterances, annotate
them and, for each reference domain, calculate how many
utterances within that domain have not been hypothesized
correctly by the model. It is readily seen that (I-NLUER) is
a recall-based metric. Another metric, instead automatic, is
called friction and it computes, for each domain, how many
utterances hyphothesized within that domain by the model
have not worked end-to-end on the voice assistant. It is readily
seen that (1-friction) is a precision-based metric. As the offline
test set is often not representative of the customer traffic, it is

expected a mismatch between offline and online metrics.

In this experiment, we show how the online adaptive
evaluation method can overcome this problem by provid-
ing better matching metrics that show more correlations to
online metrics. For the following evaluations, we collected
offline performance evaluations of multiple model releases
and map them to the online performance measurement for
these releases. We calculate the correlations of the offline
metrics with the online measurements, both before and after
re-weighting, using the Pearson correlation coefficient. We
report the correlations on the main domains: Music and Video.
We show in Table III the relative improvement in percentage in
correlation between offline and online metrics by utilizing the
online adaptive evaluation method compared to considering the
offline test set. Overall, for both online metrics, we see that the
proposed method gives a much better indication of the online
performance compared to the original offline metrics.

V. CONCLUSIONS

In this paper we target at solving the problem that the
model performance evaluated on offline test data does not
well reflect its online performance due to the discrepancy
between the offline and online data in distribution. Instead
of re-collecting the offline test data and re-training the model,
we address the problem with a computationally light online
adaptive re-weighting approach. In particular, we propose to
post calibrate the offline evaluation metrics using the weights
computed from the ratio of offline and online joint distribution
matrices. Experimental results on both public datasets and
a commercial dataset have shown that our proposed online
adaptive metrics could align better to online metrics than the
original accuracy, precision and recall offline metrics. We plan
to establish a theoretical framework on bias correction of
offline model evaluation metrics in our future work.
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