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Abstract

Existing outfit recommendation frameworks focus on out-
fit compatibility prediction and complementary item re-
trieval. We present a text-driven outfit generation frame-
work, Text2Outfit, which generates outfits controlled by text
prompts. Our framework supports two forms of outfit recom-
mendation: 1) Text-to-outfit generation, where the prompt
includes the specification for each outfit item (e.g., prod-
uct features), and the model retrieves items that match the
prompt and are stylistically compatible. 2) Seed-to-outfit
generation, where the prompt includes the specification for a
seed item, and the model both predicts which product types
the outfit should include (referred to as composition gener-
ation) and retrieves the remaining items to build an outfit.
We develop a large language model (LLM) framework that
learns the cross-modal mapping between text and image
set, and predicts a set of embeddings and compositions to
retrieve outfit items. We devise an attention masking mecha-
nism in LLM to handle the alignment between text descrip-
tions and image tokens from different categories. We conduct
experiments on the Polyvore dataset and evaluate the quality
of the generated outfits from two perspectives: 1) feature
matching for outfit items, and 2) outfit visual compatibility.
The results demonstrate that our approach significantly out-
performs the baseline methods in text to outfit generation.

1. Introduction

Fashion outfit recommendation system constructs outfits
from items that go well together (e.g., an outfit that includes
a top, a bottom, shoes, bags, etc). It is an important rec-
ommendation problem for online retailers, as customers fre-
quently shop for items that can be worn together. Existing
outfit recommendation methods mainly focus on compatibil-
ity prediction (determining whether a set of fashion items
in an outfit go well together) [7, 9, 21, 29, 30] or outfit
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Figure 1. A text to outfit generation framework that generates
outfits driven by the text prompt. Our framework supports two
forms of outfit recommendation. For text-to-outfit generation, the
prompt includes outfit-level and item-level specifications. The
model retrieves outfit items that match the texts in the prompt
and are stylistically compatible. For seed-to-outfit generation, the
prompt includes the specification for a seed item (a seed image
or text description). The model predicts the composition (outfit
categories) and retrieves the items to build outfits.

complementary item retrieval (completing a partial outfit by
finding a compatible item) [20, 25]. The outfit items are
predicted by a pre-trained model and are not controlled by
the text prompt. For example, generating outfits with desired
attributes, e.g., wide-leg sweatpants.

Recent work ([14, 15]) for text to image retrieval lever-
ages a pre-trained LLM model to learn image embeddings.
They perform better retrieval than non-LLM based ap-
proaches (e.g., CLIP [24]) especially for longer text descrip-
tions. However, these approaches focus on retrieving single
images so they are not designed for retrieving image sets
like outfits.

We present an outfit generation framework (Text2Outfit)
that generates outfits driven by a text prompt (cf. Figure
1). Our framework learns the cross-modal mapping (text
to image set) and predict the embeddings to retrieve outfits



that match the product features specified in the text prompt
and are visually compatible. We instantiate our framework
in two outfit recommendation scenarios using text prompts.
In the first scenario (text-to-outfit generation), users spec-
ify the text prompt that describes both outfit-level features
(e.g., an outfit for spring and causal) and individual items
(e.g., a blouse in white with an off-shoulder design). Our
model retrieves the complementary outfit items that match
the prompt to build outfits. In the second scenario (seed-
to-outfit generation), users specify the requirements for a
few items (e.g., a seed item), using either images or texts,
e.g., a white knitted sweater, and the model both completes
the composition and retrieves complementary items to com-
plete the outfit. We consider the case of just one seed item,
but the framework can be extended to include multiple seed
items. To build complete outfits, we predict the outfit com-
position (outfit product categories) for the remaining items
and retrieve items in the predicted categories to build outfits.

We use learnable image tokens to generate embeddings
for image retrieval similar to ([14, 15]). In contrast to prior
work, we use a set of image tokens to retrieve outfits (image
set) beyond a single image. Specifically, we incorporate a
set of image tokens for different product categories (e.g.,
top, bottom, shoes). For each image token, we use the MLP
layers on the top of the hidden state vector from the LLM
to generate the embeddings. We train the framework in an
end-to-end manner (fine-tune both LLM model and MLP
layers) using LoRA [10] with a loss function that considers
both product feature matching and outfit compatibility.

The prompt includes the texts describing multiple items,
which introduces the challenge of aligning the outfit texts and
image tokens. It is important to avoid the case - where the
image token from one category wrongly attends to the text
descriptions from other categories. We present a masking
mechanism in the self-attention layers to facilitate the needed
attention learning (cf. Section 3.1 and Figure 3) .

For seed-to-outfit generation, since we only have one
seed item as input, we must select the composition (outfit
categories) for the remaining items. For example, for specific
occasions/seasons, some categories should not be included.
So, for summer outfits, the coat category should not be
included in the final outfit. We train the LLM model to
predict outfit compositions (outfit category combinations)
and retrieve the items in the predicted categories.

We evaluate our framework on the public Polyvore Outfit
dataset [29] and measure the quality of generated outfits from
two perspectives: 1) feature matching for outfit items and 2)
outfit compatibility. Since the Polyvore dataset does not have
text product attributes, we use Claude-3 [3] to extract the
product features for each outfit item (we verify the precision
of Claude-3 with human annotations in Section 4.1). The
experiment section shows that our approach outperforms
the baseline approaches in the product feature matching and

outfit compatibility.

To summarize, the main technical contributions of our
work are:

* We propose a text-driven outfit generation framework that
generates outfits based on text prompts or images, facili-
tating outfit recommendation in two forms.

* We develop a large language model framework to predict
the embeddings (and compositions) to retrieve the outfit
items where they match the input prompt and are visually
compatible.

* We devise an attention masking mechanism to handle the
alignment between the text descriptions in the prompt and
the image tokens from different outfit categories.

2. Related Work

2.1. Outfit Recommendation

Outfit Compatibility Prediction: Outfit compatibility pre-
diction evaluates how well a set of fashion items are compati-
ble with each other in an outfit. Early works [21, 30] focused
on pairwise item-level compatibility by leveraging item co-
view or co-purchase information. However, compatibility is
determined only by the pairwise items, not the entire outfits.
Later works such as [7, 9, 27, 29] addressed the compatibil-
ity problem at the outfit level. They use different types of
architectures to model the relationship between outfit items
(e.g., bidirectional LSTM [9], subspace embeddings [27, 29]
and graph convolution networks (GCN) [7]). These methods
can be used for the fill-in-the-blank (FITB) problem - given
a subset of items in an outfit and a set of candidate items,
select the most compatible candidate. [4] extends FITB to
build an entire outfit from a seed item - it starts from a seed
item and iteratively finds the complementary items to build
an outfit. However, the composition (outfit category com-
bination) is pre-determined from the existing outfits. It is
unclear how to compute the compositions for the new seed
items.

These approaches are mainly designed for compatibility
prediction and FITB. In contrast, our framework generates
outfits based on the input text prompt and predicts the outfit
composition given a seed item.

Outfit Complementary Item Retrieval: Complemen-
tary item retrieval is to find a compatible item(s) to complete
a partial outfit from a large database. Lin et al. [20] designed
a category-based attention mechanism that enables scalable
indexing and searching for complementary items. Sarka et
al. [25] generated the embeddings using a transformer-based
architecture that encodes the compatibility for the partial out-
fit. These approaches address the FITB problem in a scalable
manner (support large-scale indexing and complementary
item retrieval), which differs from our problem settings.

Outfit Retrieval: CLIP4Outfit [11] trained transformer
encoders to learn cross-modal similarity (the similarity be-



tween text descriptions and outfit images) and used outfit-
level embeddings to retrieve the most relevant outfit given
the text descriptions. However, this approach considers the
whole outfit as a candidate for retrieval. To be able to match
a variety of text descriptions, the approach requires construct-
ing a large-scale outfit dataset that covers different types of
outfits, which is not feasible in practice. Moreover, their
framework does not support outfit generation based on a
given seed item. In contrast, our model is an outfit-building
approach, retrieving individual items and assembling them
into complete outfits.

2.2. Text-to-Image Retrieval

Most related work focuses on text-to-single image retrieval.
CLIP [12] learned joint representations of text and images
through large-scale contrastive learning. These represen-
tations can be fine-tuned on the domain-specific datasets
to achieve higher performance, such as Fashion-CLIP [6]
for the fashion domain. Later works (e.g., Flamingo [1],
BLIP [16] and BLIP-2 [17]) learned a unified vision-
language representation space and translated visual features
into LLM to generate captions for images. The unified
vision-language representation (e.g., Q-Former [17]) can be
used for text-to-image retrieval. Some recent work leverages
the LLM model to predict embeddings for retrieval [14, 15],
which performs better than CLIP embeddings for longer cap-
tions. FROMAGe [15] takes the interleaved image and text
as input and produce image embeddings and text as output.
GILL [14] extends FROMAGe to support image retrieval
and image synthesis. Similar to [14, 15], our framework
also uses learnable image tokens for retrieval. In contrast to
prior work on single image retrieval, our approach focuses
on retrieving multiple items to build the outfits (image set
retrieval).

2.3. Text-to-Image/Outfit Synthesis

Most work focuses on generating a single image given the
text prompt [5, 8, 23, 26]. Some recent work [13, 18] gener-
ates a full-body human image wearing garments that reflect
the provided textual descriptions. However, the synthesized
images may not fully preserve the attribute details specified
in the prompt as mentioned by [18]. In addition, to obtain
shoppable content, these approaches require using a retrieval
system to retrieve similar images from the product catalog
(the generated images may not be able to find similar cat-
alog images). In contrast, our framework is designed for
outfit generation and retrieves outfit items that preserve the
attributes specified in the prompt.

3. Method

Figure 2 illustrates the system overview of our framework.
Our framework supports both forms: 1) text-to-outfit gen-
eration and 2) seed-to-outfit generation. For text-to-outfit

generation, the task is to find the outfit items that match
the text descriptions described in the input prompt. We use
a set of image tokens and learn the image embeddings for
different categories. We fine-tune the LLM to learn the em-
beddings using the outfit retrieval and compatibility losses,
which encourage embeddings to retrieve the items that match
the product features and are visually compatible. We devise a
masking attention approach to handle the alignment between
the text descriptions in the prompt and the image tokens.
Details are described in Section 3.1.

For seed-to-outfit generation, the task is to find outfit
items to complete an outfit given a seed item and a prompt
that describes the global outfit features. We train the LLM
model to predict the outfit compositions (outfit category
combination) and the embeddings to search the relevant
outfit items to generate outfits. Details are described in
Section 3.2

3.1. Text-to-Outfit Generation

We are given an input text prompt: T = {T1,T5, ..., T},
where each text description 7; describes the outfit-level spec-
ification (e.g., outfit for spring and casual) or the item-level
specification (e.g., a blouse in white with off-shoulder de-
sign). The order of the text descriptions for each category is
arbitrary. The goal is to find the outfit items that match the
text descriptions in the prompt (cf. Figure 2 (a)).

To produce embeddings, we add a set of image tokens
to LLM: [IMGeat, , -, IMGeat, |; each image token corre-
sponds to a high-level category (we use 11 image tokens for
Polyvore dataset; the category list is described in Section
4.3). The hidden state vectors of these image tokens from
LLM are denoted as hcat, , ---, Deat,, . We learn a set of MLP
layers: Wyoe = {WES ..., WIS} to transform the hid-
den state vectors to the embeddings: e = {ecat; , -+ €cat,, }»
where embedding e.¢, is used to retrieve the outfit images
for the category .

An outfit item is represented by an image I and its text
descriptions T. We use a visual encoder Fjp,g to extract the
visual embeddings from the image and use a text encoder
FEi« to extract text embeddings from the text descriptions.
The multi-modal feature of an outfit item is denoted by:
f = Witem * (Eimg(I) || Ext(T)), where || is the concatena-
tion and Wiiepm, 18 a learnable MLP model that is fine-tuned
with the outfit retrieval loss.

We train our framework end-to-end using the following
losses: outfit retrieval loss, attention mask loss, and outfit
compatibility loss. The outfit retrieval loss retrieves items
that match the product features mentioned in the prompt.
The attention mask loss handles the alignment between the
outfit text descriptions and the image tokens. The outfit
compatibility loss improves the visual compatibility of the
retrieved outfit items.

Outfit retrieval loss. A training batch includes a set of posi-
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Figure 2. System overview of the text to outfit generation framework. For text-to-outfit generation (a), the LLM framework predicts a set of
embeddings for different outfit categories, which are used to retrieve the outfit items. We devise an attention masking approach to handle
the alignment between the text descriptions in the prompt and the image tokens from different categories (details are in Section 3.1). For
seed-to-outfit generation (b), the LLM framework takes a seed item as input, predicts the outfit compositions (outfit categories), and retrieves
items in the predicted categories to build the outfits (details are in Section 3.2).

tive outfits. We randomly sample a set of negative outfits for
each positive outfit, where each item in the negative outfits
has the same high-level category as the positive outfit. Since
there are no ground truth negative outfits, random negatives
are typically used in outfit training (e.g., [20, 25, 29]). We
extract the occasion, season, color and product features of
the outfit items using Claude-3 (details are in Section 4.1).
To simulate the prompt for training, we randomly select
the product features of each outfit item and use Claude-3
to generate the free-form prompt. The goal is to learn the
embeddings so that the similarity between the predicted em-
beddings and the positive outfits is greater than the negative
ones.

Specifically, a batch includes a set of triples: Y
{T,p, N}, where T is the prompt, p is the positive outfit
and N is a set of negative outfits. The outfit retrieval loss is
defined as:

»Cret(pv Z'Ccat cat ’fgt 5 Ccat; )g(cati) (H

i=1

We combine the loss for each category to obtain the outfit
retrieval loss. £ is the indicator function denoting if the cate-
gory ¢ is presented in the outfit. The loss for each category
is defined as:

exp(sim(f? . | ecat,)/T
Ecati(ffabN N o p( (catla Catz)/ )

£ ecat, ) =
o ont) = TN plom(Fccon)/ )

2)
We adopt the InfoNCE loss ([28]). f t is the feature for
positive outfit item and 7, is the feature for negative outfit
item. ecat, is the embeddlngs T is the temperature. We use
the cosine function for the sim function.

)

Attention Mask loss. The prompt includes the text descrip-
tions for multiple categories. We observed the alignment
problem where the image token from a category may attend
to the text descriptions from other categories. For example,
the top image token attends to the shoe text descriptions.
An example prompt: “An outfit for spring and formal event.
Black high heels. A black dress with a rose print. A red
bracelet with gemstones.” The text describes the features
for fine-grained categories like high-heel, dress, etc, but the
image tokens correspond to high-level categories (e.g., tops,
bottoms, shoes). These pose the challenge for the LLM
model to find the relations between the outfit text descrip-
tions and multiple image tokens, which affects the product
feature matching performance (cf. Table 3)).

To address this issue, we design a masking approach
in the self-attention layers of the LLM decoder. Figure 3
illustrates the mask attention for the top image token. We
incorporate the mask loss to guide attention learning, where
the mask loss is applied to all image tokens. We compute
the binary cross-entropy loss (BCE) for each image token
between the ground truth mask and the predicted attention
values. The mask loss is defined as:

mask - ZZBCE aja

=1 j=1

5, 3)

where n is the number of image tokens. k is the number
of tokens from the text descriptions. «; is the predicted
attention value and me is the ground truth mask.

Compatibility loss (CP. loss). We include a compatibility
loss to facilitate the embedding learning that improves the
compatibility of the generated outfit items. We trained an
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Figure 3. The figure illustrates the masked attention for the top
image token, where the mask facilitates the top image token to
attend to the right text descriptions (outfit text and top text sections,
highlighted in yellow) in the prompt. Details are in Section 3.1.

outfit compatibility model (details are in Section 4.2), which
predicts a compatibility score given a set of outfit items. In
training, we freeze the model weights of the compatibility
model (denoted as C) and fine-tune the embeddings (e) such
that the compatibility score is maximized. The compatibility
loss is defined as:

Lep(e) = =C(Wep - €) ©)

Training and Inference. We train the framework end-to-end
using LoRA [2] by minimizing the following loss function:

min L(0, Wiet, Witem, W
oWt TR,y £ O Wty Witem, W) )

L=X Lt + A Lok +A3-L

cpy

where 6 is LLM model weights. Wyet, Witem, and W,
are the MLP models for outfit retrieval, outfit item feature
extraction, and compatibility, respectively. L,¢; is the outfit
retrieval 1oss, Lmask is the mask loss and L, is the compat-
ibility loss. A1, A2, and A3 are empirically chosen to make
the magnitudes of the losses similar in scale. We report the
results of using different losses in Table 3.

In the inference, we feed the text prompt to the LLM
model to predict the embeddings and use them to retrieve
the outfit items.

3.2. Seed-to-Outfit Generation

The task is to generate a complete outfit given an input seed
item and a text prompt describing the global outfit features.
Unlike the text-to-outfit generation task, where users specify
the texts for each outfit item, here, users only specify the
information for the seed item. Therefore, we need to predict
the composition of the remaining items. One can retrieve

the outfit items from all the categories to build an outfit.
However, some categories do not go well with certain types
of occasions, seasons, or the seed types. For example, coats
should not be included for summer outfits, or an all-body
dress should not be selected if the seed is a top.
Composition loss. To address this problem, we train
the LLM model to predict the outfit compositions (a set of
outfit categories), where the compositions are learned from
outfit datasets (cf. Figure 2 (b)). Specifically, the input
includes a prompt and a seed item (users provide an image
or a text description for the seed item. For the image, we
use a visual encoder to extract the embeddings and feed
them to the LLM). To predict the compositions, we add
two MLP models (one for predicting the high-level category
and another for predicting the fine-grained category) on the
top of the hidden state vectors of the high-level category to
predict the composition. The composition loss is defined as:

n

Leomp = Y CEi(yheea, vo) + CEi(y 5.0, us5),  (6)

i=1

where the hc denotes the high-level category and fg denotes
the fine-grained category. CE is the cross-entropy loss. We
train the framework with LoRA end-to-end with the follow-
ing loss:

L= ‘cret + A5 - ‘Ccp + A - ‘Ccomp (7

The loss function includes the retrieval, compatibility, and
composition prediction losses. We train the model to predict
the composition of the seed item belonging to the top cate-
gory. The performance of other categories for the seed item
is in Appendix Table 2. In inference, we search for outfit
items in the predicted high-level and fine-grained categories
to compose an outfit.

4. Experiments
4.1. Dataset

We evaluate the model performance on the Polyvore dataset
[29]. The dataset includes two different sets: a disjoint set
and a non-disjoint set. The non-disjoint set contains 53,306
training outfits and 10,000 testing outfits, while the disjoint
set contains 16,995 training outfits and 15,145 testing outfits.
We train our framework on the non-disjoint training set as
it contains a larger number of outfits and report the perfor-
mance on both non-disjoint and dis-joint testing sets (results
are in the Appendix Section 1).

The Polyvore dataset does not have annotated product
attributes. Motivated by recent works that leverage LLM
for annotations (e.g., [19, 31]), we leverage Claude-3 [3]
to extract outfit-level attributes (occasion and season) and
item-level attributes (color and product features). We verify



the agreement between the predicted attributes from Claude-
3 and humans on a subset of testing samples (500 outfits
and 2629 items). The results show the Claude-3 annotated
attributes achieve 94.7% overall precision (97.3% for color,
95.5% for product feature, 92.2% for occasion, and 93.6%
for season), verifying the feasibility of using Claude-3 for
attribute annotations.

4.2. Evaluation

We evaluate the quality of the retrieved outfits in two ways:
1) feature matching for outfit items and 2) outfit compatibility.
To evaluate feature matching, we compute the number of
items in the top-10 retrieval results that match the product
features specified in the prompt. We evaluate the feature
matching for color, occasion, season, and product feature
attributes for the outfit items, which are critical attributes
for outfits. To handle non-exact matches, where the product
features are different but their meanings are similar, we use
ModernBERT embedding [22] to evaluate the affinity of two
features (we select the thresholds of different attributes using
a validation set). We report the results using precision @top-
10 (denoted as P@10).

To evaluate outfit compatibility, we train an outfit com-
patibility model using a SOTA architecture (OutfitTrans-
former [25]), where the model takes a set of outfit items as
input, and predicts a compatibility score. We replace the
ResNet features in the original architecture with the Fashion-
CLIP embeddings [6] and use the item image and the text
description as input. We achieve better outfit compatibility
prediction than the original architecture. We achieve 94.93%
(93% for OutfitTransformer) and 93.88% AUC (88% for
OutfitTransformer) for the non-disjoint and disjoint sets re-
spectively. We report the compatibility (CP) score for the
top 10 retrieved outfits.

There is no ground-truth outfit composition given a seed
and prompt. To obtain a quantitative quality score, we use
Claude-3 (we also evaluate the performance with Pixtral
Large from Mistral Al, see Appendix Section 2) to evaluate
the quality of the predicted compositions. Recent work
(e.g., [33]) shows that strong LLMs achieve high agreement
with humans. We evaluate the quality in two ways: 1) We
use Claude-3 to predict a quality score for each predicted
composition and report an average quality score (denoted
as Comp. score). 2) Given two compositions generated
by the baseline and our approach, we ask Claude-3 to pick
the better composition and report the winning rate of our
approach (denoted as Comp. win rate).

4.3. Baselines and Model Settings

There is no existing framework for text-to-outfit retrieval
tasks ([11] is designed to retrieve entire outfits, which is
different from our settings as mentioned in Section 2). We
convert a set of baseline approaches to the outfit retrieval

tasks and report the performance. In Table |, we catego-

rize these baselines into the text-to-single-item retrieval and

text-to-outfit retrieval approaches. Existing methods for text-
to-image retrieval [0, 14, 24] mainly focus on single-image
retrieval. To make these methods applicable to outfit re-
trieval problem, we make the following changes: 1) We
convert the outfit-level specification (occasion/season) into
item-level specification. 2) We use the text descriptions of
each category to retrieve the outfit items (assuming that the
text descriptions to category correspondence are given).

For text-to-outfit retrieval, we converted the GILL [14]
framework to support multiple-category retrieval. For text-
to-outfit retrieval methods, the text descriptions to category
correspondence information are not given, which is directly
predicted by the models (except the fixed mask approach
in Table 1, which uses the text-to-category correspondence
to generate the fixed mask for attention). The details of the
baseline approaches are described below.

» CLIP [24]: We convert the outfit-level specification into
item-level specifications and perform retrieval for each
category. We use ViT-L-14 version.

* Fashion-CLIP 2.0 [6]: We use the same settings as CLIP
and use Fashion-CLIP to retrieve items for each category.
We use version 2.0, which achieves better performance
than version 1.0.

* BLIP-2 [17]: We use the pre-trained image encoder and
Q-Former from BLIP-2. Like CLIP, we perform image
retrieval for each category using the corresponding text
description. We use the ViT-g version.

* GILL [14] + Multiple categories: We add the learnable
image tokens for each high-level category for multiple
image retrieval. We fine-tune the MLP layers to learn
embeddings while keeping the LLM model fixed following
the original training approach. We use the same prompt
format as our model. Note that we compare our method
with an improved version of GiLL, in which we replace
the original CLIP vision encoder with Fashion-CLIP

Model Settings: For our framework, we use the pre-

trained OPT 6.7B model [32] (same as GILL) as the LLM
backbone. We fine-tune the LLM with LoRA (we set the rank
to 64 for Q, K, and V projection matrices). We use Fashion-
CLIP 2.0 [6] as the visual encoder Ej,,, and the text encoder
FEiext. Fashion-CLIP 2.0 achieves better performance than
CLIP embeddings. In model training, the visual and text
encoder weights are fixed. We use the bi-directional masks
for image tokens. We use 11 image tokens for the Polyvore
dataset, corresponding to the following high-level categories:
tops, bottoms, all-body, outerwear, shoes, bags, jewelry,
accessories, sunglasses, hats, and scarves.

4.4. Text-to-Outfit Performance Evaluation

Table 1 summarizes the text-to-outfit retrieval results. We
use the testing set of the Polyvore dataset to generate the



Method ‘ Modality ‘ Color (P@10) Product feature (P@10) Season (P@10) Occasion (P@10) Avg (P@10) ‘ CP. score
Text-to-single-item retrieval

CLIP [24] Text only 96.06 70.91 90.22 76.62 83.46 63.49
Fashion-CLIP [6] Text only 96.82 80.42 89.68 81.27 87.05 64.07
BLIP-2 [17] Text only 93.29 66.94 85.46 84.51 82.55 65.09
CLIP [24] Text to image 83.59 61.32 85.49 67.01 74.35 49.77
Fashion-CLIP [6] Text to image 87.59 72.67 85.91 68.88 78.76 53.03
BLIP-2 [17] Text to image 86.39 66.69 85.62 67.75 76.61 51.05
Text-to-outfit retrieval

GILL [14] + multiple category Text to image 48.19 48.15 86.87 69.69 63.23 74.26
Text20utfit + learnable mask (ours) | Text to image 78.42 76.54 86.60 70.45 78.00 66.28
Text20utfit + learnable mask (ours) | Text to image/text 86.05 84.81 95.69 93.66 90.05 84.05
Text20utfit + fixed mask (ours) Text to image/text 96.61 86.27 94.87 92.48 92.56 82.51

Table 1. Text-to-outfit retrieval performance comparison. P@ 10 denotes precision at top-10 and CP. score denotes compatibility score using
[25] for top-10 retrieved outfits. Note that for single-item retrieval approaches, the text descriptions and its corresponding category are given
while the outfit retrieval approaches are not given such information. The bold text denotes the best performance and the underlines denotes

the second best performance. Details are in Section 4.2.

Method Composition Season (P@10) | Occasion (P@10) | Comp. score (c3) Comp win rate (c3) | CP.score CP. score (c3)
Seed text + prompt (baseline) All categories 97.32 96.20 2.59 6% 80.82 2.78
Seed text + prompt (ours) Predicted 97.56 96.01 4.57 94% 86.18 3.85
Seed image + prompt (baseline) | All categories 95.00 87.50 2.85 8% 72.88 2.66
Seed image + prompt (ours) Predicted 96.43 91.80 4.32 92% 83.36 3.83

Table 2. Seed-to-outfit retrieval performance comparison. The scores with (c3) are evaluated by Claude-3. Details are in Section 4.5.

prompt. Given a test outfit including multiple outfit items, we
randomly select outfit attributes (occasion and season) and
item attributes (color and product features) and use Claude-
3 to generate the free-form prompt. We use the generated
prompt to evaluate the outfit retrieval performance.

Our approaches achieve 90.05% and 92.56% average
P@10 using the learnable mask and fixed mask respectively,
showing better feature-matching precision than the base-
line approaches. The GILL + multi-category approach has
an alignment issue (the alignment between the outfit texts
and the images tokens) while our approach uses the learn-
able mask to alleviate the alignment issue. We fine-tune the
model end-to-end with LoRA instead of using the frozen
LLM model as GILL, improving the performance (see Ta-
ble 3 for detailed analysis). Our approach with a learnable
mask also performs better than the single-item retrieval ap-
proaches, where they are given the text description to cate-
gory correspondence information, while our approach does
not.

In addition, our approach shows better outfit compatibility
than the baseline approaches. We achieve the compatibility
score 84.05 using the learnable mask setting (we compute
the average compatibility scores for the ground truth pos-
itive (86.95) and negative (22.99) outfits on the Polyvore
testing set using OutfitTransformer. The generated outfits
from our method achieve similar compatibility as the posi-
tive outfits). Single-item retrieval approaches perform worse
on outfit compatibility because they find items that match
the text descriptions but do not model the item relationships
in an outfit. Our framework is fine-tuned on the outfit data,
and incorporates the outfit retrieval and compatibility losses,

which improve overall compatibility. Figure 4 shows exam-
ple results of our framework.

4.5. Seed-to-Outfit Performance Evaluation

Table 2 summarizes the results for seed-to-outfit retrieval.
We used the Polyvore test set to construct the input (seed
and prompt) for evaluation. Given a test outfit including
multiple outfit items, we randomly select the outfit attributes
(occasion and season) and use Claude-3 to generate the free-
form prompt.

We compare our approach with a baseline approach that
uses all 11 high-level categories for the composition. We
feed the compositions (e.g., category 1/fine-grained category
1, category 2/fine-grained category 2, ...) of the baseline and
our approach to Claude-3 for evaluation (for the baseline
approach, the fine-grained category is obtained from the top-
1 retrieved outfit). Our approach shows better composition
scores (the score is between 1 (poor) to 5 (excellent)) and
winning rates than the baseline (e.g., 94% and 92% winning
rate of using seed text and seed image, respectively). We
verify the agreement between Claude-3 and humans on a
subset of samples (500 outfits). The Spearman’s rank cor-
relation coefficient is 0.73, which indicates they are highly
correlated. We report the visual compatibility using both
OutfitTransformer [25] (CP. score) and Claude-3 (CP. score
(c3)). Our approach shows better visual compatibility than
the baseline approach.

4.6. Ablation Study

Multimodal feature: We compare the performance of
single-modality (image) vs. multimodality (image + text)



Modality LoRA Mask Loss CP. loss ‘ Color (P@10) Product feature (P@10) Season (P@10) Occasion (P@10) Avg (P@10) ‘ CP. score
1 Image - - 48.31 53.03 85.10 68.62 63.76 53.43
2 Image + text - - 44.60 47.18 88.94 81.07 65.45 78.62
3 Image + text v - 74.74 75.01 95.60 93.90 84.82 86.95
4 TImage + text v Global CE 79.28 82.23 96.02 94.43 87.99 85.63
5 Image + text v Local BCE 85.58 84.87 95.89 93.47 89.95 83.43
6 Image + text v Local BCE 86.05 84.81 95.69 93.66 90.05 84.05

Table 3. Ablation study of different components in our framework. Details are described in Section 4.6.

(a) Text-to-outfit generation

Prompt: Spring outfit for casual. A canvas upper flats in a
pink shade. A jeans in black with high-waisted accents. A
sleeveless top in a white shade. A denim jacket in a blue

shade. + Seed image

(b) Seed-to-outfit generation

Prompt: Outfit for casual in spring.

W
GILL + Multiple Category Shoes Jewelry Bottoms Bag
T \\:./ (sandals) (bracelet) (jeans) (bags)
% TR — .
- . 3 / / ~fi \ W 2
= ‘ o | + Seed text: A floral print b ) " P -
| 5 @ tank in a white shade AT

Text20utfit + learnable mask (ours)

PS\ 7
ﬁx, -~ PYE | .

+ Seed image

Tops Shoes
(tank) (sandals)

Jewelry
(bracelet)

Bottoms Bag
(jeans) (bags)

Prompt: Formal events outfit for spring weather.

.y

. Shoes Jewelry Bottoms Bags
Text20utfit + fixed mask (ours) (heels) (bracelet) (skirt) (clutch)
— - P
S —— 3 m
P « = = =
' — + Seed text: A sleeveless v i f“‘\ \ M=
| e . . L)
S — ~ m— tank in a beige shade pF' Y { siagd
|~ | A - ,) | |
Tops Shoes Jewelry Bottoms Bag
(tank) (sandals) (earrings) (skirt) (bags)

Figure 4. Qualitative results. We compare the results for text-to-outfit generation with the extended GILL [14] approach that supports
multiple image retrieval and our framework (learnable mask and fixed mask). The non-matched items are marked with boxes. We show the
predicted compositions and retrieval results for seed-to-outfit generation with a seed image or text. More visual results are in the Appendix

Section 4.

(row-1 and row-2 in Table 3). Using multimodality improves
the average P@ 10 from 63.76% to 65.45% for feature match-
ing.

LoRA: We compare the performance of fine-tuned LLM
(with LoRA) vs. frozen LLM (row-2 and row-3 in Table 3).
Using LoRA significantly improves the average P@10 from
65.45% to 84.82% and improves the compatibility score
from 78.62% to 86.95%.

Mask loss: We investigate different loss functions for the
attention masking: Global CE and Local BCE (row-4 and
row-5 in Table 3). For Global CE, we consider the atten-
tion values from all the text tokens to each image token as
a distribution and optimize a global cross-entropy loss. We
optimize each attention value for Local BCE with a binary
cross-entropy loss. Local BCE performs better, as it op-
timizes the attention directly with the ground truth mask,

while global CE optimizes the overall distribution of the
attention.

Compatibility loss: We analyze the impact of including a
compatibility loss in the training loss (cf. Equation 5). It
further improves compatibility (row-6 in Table 3).

5. Conclusions

We present a framework for text-based outfit genera-
tion. We explore two different forms of outfit genera-
tion: 1) text-to-outfit generation and 2) seed-to-outfit gen-
eration tasks, which enable the controllable outfit gener-
ation. In addition, we introduce a masking mechanism
which better handles the alignment between outfit texts
and the image tokens, and achieves comparable perfor-
mance when using the ground-truth masks. The exper-
imental results demonstrate that our model outperforms
the baseline approaches for text to outfit retrieval tasks.



References

(1]

(2]

(3]

[4

—

[5

—

[6

—

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. NeurlPS, 35:
23716-23736, 2022. 3

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein,
Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell,
David Berard, Evgeni Burovski, et al. Pytorch 2: Faster
machine learning through dynamic python bytecode transfor-
mation and graph compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2,
pages 929-947, 2024. 5

Anthropic. Introducing the next generation of claude.
https://www.anthropic.com/news/claude—-3-
family,2024. 2,5

Federico Becattini, Federico Maria Teotini, and Alberto Del
Bimbo. Transformer-based graph neural networks for outfit
generation, 2023. 2

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce
Lee, Yufei Guo, et al. Improving image generation with
better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023. 3

Patrick John Chia, Giuseppe Attanasio, Federico Bianchi,
Silvia Terragni, Ana Rita Magalhdes, Diogo Goncalves, Ciro
Greco, and Jacopo Tagliabue. Contrastive language and vision
learning of general fashion concepts. Scientific Reports, 12
(1):18958, 2022. 3,6, 7

Guillem Cucurull, Perouz Taslakian, and David Vazquez.
Context-aware visual compatibility prediction. In CVPR,
pages 12617-12626, 2019. 1,2

Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng
Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou,
Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma,
and Li Yi. DreamL.LM: Synergistic multimodal comprehen-
sion and creation. In ICLR, 2024. 3

Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis.
Learning fashion compatibility with bidirectional Istms. In
ACM MM, pages 1078-1086, 2017. 1,2

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021. 2
Junkyu Jang, Eugene Hwang, and Sung-Hyuk Park. Lost
your style? navigating with semantic-level approach for text-
to-outfit retrieval. In WACYV, pages 80668075, 2024. 2,
6

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In JICML, pages 4904—
4916. PMLR, 2021. 3

Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu,
Chen Change Loy, and Ziwei Liu. Text2human: Text-driven

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

controllable human image generation. ACM Transactions on
Graphics (TOG), 41(4):1-11, 2022. 3

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Gen-
erating images with multimodal language models. NeurIPS,
36,2023.1,2,3,6,7,8

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried.
Grounding language models to images for multimodal inputs
and outputs. In ICML, pages 17283-17300. PMLR, 2023. 1,
2,3

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In ICML, pages
12888-12900. PMLR, 2022. 3

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. In ICML, pages
19730-19742. PMLR, 2023. 3, 6,7

Shikai Li, Jianglin Fu, Kaiyuan Liu, Wentao Wang, Kwan- Yee
Lin, and Wayne Wu. Cosmicman: A text-to-image foundation
model for humans. In CVPR, pages 6955-6965, 2024. 3
Wei Li, Hehe Fan, Yongkang Wong, Yi Yang, and Mohan
Kankanhalli. Improving context understanding in multimodal
large language models via multimodal composition learning.
In Forty-first International Conference on Machine Learning,
2024. 5

Yen-Liang Lin, Son Tran, and Larry S Davis. Fashion outfit
complementary item retrieval. In CVPR, pages 3311-3319,
2020. 1,2, 4

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton
Van Den Hengel. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th international ACM
SIGIR conference on research and development in informa-
tion retrieval, pages 43-52, 2015. 1,2

Zach Nussbaum, John X. Morris, Brandon Duderstadt, and
Andriy Mulyar. Nomic embed: Training a reproducible long
context text embedder, 2024. 6

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,
Tim Dockhorn, Jonas Miiller, Joe Penna, and Robin Rombach.
SDXL: Improving latent diffusion models for high-resolution
image synthesis. In ICLR, 2024. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, pages 8748-8763. PMLR, 2021. 1, 6,7

Rohan Sarkar, Navaneeth Bodla, Mariya I Vasileva, Yen-
Liang Lin, Anurag Beniwal, Alan Lu, and Gerard Medioni.
Outfittransformer: Learning outfit representations for fashion
recommendation. In WACYV, pages 3601-3609, 2023. 1, 2, 4,
6,7

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying
Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang,
and Xinlong Wang. Generative multimodal models are in-
context learners. In CVPR, pages 14398-14409, 2024. 3
Reuben Tan, Mariya I Vasileva, Kate Saenko, and Bryan A
Plummer. Learning similarity conditions without explicit
supervision. In ICCV, pages 10373-10382, 2019. 2


https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

(28]

[29]

(30]

(31]

(32]

(33]

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding, 2019.
4

Mariya I Vasileva, Bryan A Plummer, Krishna Dusad, Shreya
Rajpal, Ranjitha Kumar, and David Forsyth. Learning type-
aware embeddings for fashion compatibility. In ECCV, pages
390-405,2018. 1,2,4,5

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley,
Kavita Bala, and Serge Belongie. Learning visual clothing
style with heterogeneous dyadic co-occurrences. In ICCV,
pages 4642-4650, 2015. 1,2

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. Want to reduce labeling cost? gpt-3 can
help, 2021. 5

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068,
2022. 6

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan
Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging LL.M-as-a-judge with MT-bench
and chatbot arena. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Benchmarks
Track, 2023. 6



	Introduction
	Related Work
	Outfit Recommendation
	Text-to-Image Retrieval
	Text-to-Image/Outfit Synthesis

	Method
	Text-to-Outfit Generation
	Seed-to-Outfit Generation

	Experiments
	Dataset
	Evaluation
	Baselines and Model Settings
	Text-to-Outfit Performance Evaluation
	Seed-to-Outfit Performance Evaluation
	Ablation Study

	Conclusions

