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Abstract

Recent research has demonstrated that debate mechanisms among Large Language
Models (LLMs) show remarkable potential for enhancing reasoning capabilities
and promoting responsible text generation. However, it remains an open question
whether debate strategies can effectively generalize to Multi-Modal Large Lan-
guage Models (MLLMs). In this paper, we address this challenge by proposing
a location-aware debate framework specifically designed for MLLMs to mitigate
hallucination without requiring additional external knowledge. Our approach in-
troduces an asymmetric debate structure across both textual and visual modalities.
For textual processing, one MLLM instance generates a comprehensive image
description while identifying object locations, while a second instance "zooms in"
on specific regions of interest to evaluate and refine the initial descriptions. For
visual processing, we introduce a novel hybrid attention module that fuses visual
self-attention with cross-modal attention between textual and visual information,
effectively highlighting critical content regions. The framework incorporates a
judge component that evaluates the complete debate process and selects the most
reliable output between the two debating instances. Our experimental results
demonstrate that this approach substantially reduces hallucination across diverse
MLLMs and evaluation metrics. Moreover, the framework serves as a readily
integrable complement to existing hallucination mitigation methods. By employing
consistent procedures and standardized prompts across all investigated tasks, our
framework proves both effective and highly adaptable, enabling direct application
to a broad range of black-box MLLMs without architectural modifications.

1 Introduction

Recent advancements in multi-modal large language models (MLLMs) have demonstrated significant
progress, achieving outstanding performance across various vision-language tasks Bai et al.| (2023);
Alayrac et al.| (2022); L1 et al.[(2023); [Zhu et al.| (2023));|Liu et al. (2024bla); |Peng et al.| (2023b)); Team:
et al.[(2023); |Dai et al.| (2023)). With the ability to process both image and text inputs, these general-
purpose foundation models are versatile and can be adapted to a wide range of tasks, including image
generation [Black et al.| (2023)), biomedical applications |Li et al|(2024)), text-to-video generation |Cai
et al.|(2023)), and reasoning |Lai et al.[(2024).

While the remarkable performance and versatility of MLLMs are highly favorable, they are plagued
by a well-known issue called “hallucination." Specifically, MLLMs often generate incorrect responses
regarding the existence of objects, their color, quantity, orientation, and spatial relationships. More-
over, some of their responses are entirely irrelevant to the input images. These flaws pose significant
challenges to the development of responsible and robust multi-modal intelligence agents, particularly
in critical domains such as healthcare |Li et al.|(2024), autonomous driving [Wei et al.| (2024), and
military applications Rivera et al.[(2024).

39th Conference on Neural Information Processing Systems Workshop: Evaluating the Evolving LLM Lifecycle:
Benchmarks, Emergent Abilities, and Scaling (NeurIPS 2025).
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Figure 1: The Overall Debating Pipeline of the Proposed Location-Aware Framework. Debater 1 is
tasked with generating general descriptions and identifying object locations within the image, while
Debater 2 focuses on providing detailed descriptions of specific regions of interest, guided by both
textual input and the hybrid attention module. The judge evaluates and selects between the debaters’
statements rather than modifying the final description.

To address the challenge of “hallucination,” various approaches have been proposed, including
instruction tuning |Liu et al.| (2023), over-trust penalty Huang et al.| (2024]), instruction correlation
Wang et al.| (2024), the replacement of uncertain objects|Zhou et al.| (2023)), and multi-agent debate
Lin et al.|(2024); Khan et al.|(2024); Du et al. (2023). While all these methods have demonstrated
effectiveness, the multi-agent debate strategy is particularly appealing, as it does not rely on costly
external knowledge, such as additional instruction data for training, and offers an intuitively designed
solution [L1iu et al.|] (2023)).

Building on this idea, debate mechanisms have been explored in LLM to enhance reasoning and
factual accuracy in text generation [Khan et al.|(2024); [Du et al.| (2023)); [Liang et al.| (2023)). A similar
framework was then directly extended to the domain of MLLMs [Lin et al.|(2024)).

In this paper, we argue that the debate framework should differ from the general LLM framework due
to the presence of multi-modal inputs, i.e., text and images. The spatial information from images
is often underutilized, leading to suboptimal results in the debating framework. To address this,
we propose a simple yet highly effective asymmetric debate framework for MLLMs. Specifically,
one MLLM is tasked with describing objects along with their corresponding spatial locations in the
image, as illustrated in Figure[T} Another MLLM instance then reviews and critiques the responses
from the first debater. Importantly, we emphasize spatial information in both modalities. While the
textual description allows the second MLLM instance to infer object locations, we further enhance
spatial awareness by utilizing a hybrid attention module that dims unrelated areas while highlighting
the described regions in the image. This design enables the second debater to focus on key regions
of interest through both textual and visual guidance. The process is repeated over multiple rounds.
Finally, the debate history, along with the input image, is presented to a judge, who determines the
winner and provides the final response to the query.

To comprehensively assess the effectiveness of our proposed framework, we evaluate it from three
key perspectives: object-level hallucination, object-existence hallucination, and overall text quality.
These aspects are quantified using four evaluation metrics: Caption Hallucination Assessment with
Image Relevance (CHAIR), GPT-4-assisted evaluation, and Polling-based Object Probing Evaluation
(POPE). Through extensive experiments on benchmarks and hallucination metrics, we conclude the
findings and contributions as follows:

1. The proposed location-aware debate fosters more responsible responses compared to single-
modal debate. Previous debate frameworks often overlook the spatial information inherent in objects
within images. As a result, debaters tend to distribute their attention uniformly across regions of
interest rather than focusing on the most relevant areas, as guided by the input text and image. To
address this, we first introduce a debater specifically tasked with clarifying the locations of recognized



objects. This simple yet effective design significantly enhances response accuracy, reducing CHAIR
scores by an average of 7.02%. Building on this, we further integrate spatial information into the
image using an attention module, which mitigates hallucinations even further, reducing CHAIR
scores by an average of 9.52%.

2. The proposed location-aware debates between MLLLMs help generate more responsible
content and are widely adaptable. We conduct experiments across various decoding methods,
including greedy decoding, nucleus sampling Holtzman et al.|(2019), beam search decoding|Sutskever
(2014), DoLa Chuang et al.| (2023, and OPERA Huang et al.|(2024)), as well as different types of
MLLMs, including InstructBLIP Dai et al.| (2023), MiniGPT-4 [Zhu et al.[(2023)), LLaVA-1.5|L1 et al.
(2024)), and Shikra|Chen et al.|(2023). While some of these baselines are specifically designed to
reduce hallucinations, the location-aware debate framework continuously enhances their effectiveness
as a general, readily integrable approach. Notably, we observe a 2% to 35.56% reduction in
hallucination rates, consistently reflected in the CHAIR metric.

3. The judge should choose the right statement among debaters rather than providing a
summary. Providing the debating history and input data to the LLM judge allows for a more compre-
hensive response to queries. However, this process may inevitably introduce new hallucinations if the
judge is tasked with summarizing and refining the debaters’ statements. Therefore, we instruct the
judge to select the most accurate statement rather than synthesizing or reinterpreting the debaters’
responses. This design consistently reduces hallucinations across various evaluation metrics.

2 Related Work

2.1 Hallucination in Large Foundation Models

Recent advancements in computational resources have significantly accelerated research on large-
scale foundational models. MLLMs, such as LLaVA [Liu et al.| (2024b)), Vicuna Chiang et al.[(2023)),
Shikra|Chen et al.|(2023)), MiniGPT-4 Zhu et al.|(2023)), and others |Bai et al.| (2023)); |Dazi et al.|(2023));
Li et al.| (2022}, 2023), enhance content understanding and generation by leveraging information from
multiple modalities. However, these models can sometimes generate text that is inaccurate or fails to
address the given query [Zhang et al|(2023a)). Such limitations arise from various factors, including
overfitting, training data biases, and insufficient response validation mechanisms. To address these
challenges, previous research has explored various approaches, including data augmentation Lee
et al.| (2022), fine-tuning techniques |Ouyang et al.| (2022); Lee et al.|(2023), debating |Khan et al.
(2024) and self-refinement strategies Manakul et al.| (2023)); Peng et al.[(2023a). Extending to multi-
modal foundation models, some efforts have been dedicated to instruction tuning Liu et al.| (2023)
and statistical analysis-based error correction [Zhou et al.|(2023)). More recently, researchers have
introduced a nearly cost-free approach that mitigates hallucinations by penalizing over-confident
tokens [Huang et al.| (2024).

2.2 Debate Strategies

While numerous approaches have been proposed to reduce hallucinations using a single LLM agent
Wei et al.[(2022); [Yao et al.| (2024); Shinn et al.| (2024)); [Wu et al.| (2025)), there is a growing trend
of leveraging multiple agents working collaboratively to enhance generation quality through post-
training refinement. The initial efforts focused on communicative agents for thought exploration,
which later evolved into the concept of multi-agent debate, designed to mimic human-like discourse to
improve factual accuracy and reasoning |Du et al.| (2023)). Building on this foundation, the framework
was extended to interactive debates, incorporating LLM judges to facilitate the selection of more
truthful responses|Khan et al.|(2024). In parallel, the multi-agent debate (MAD) framework introduced
divergent chain-of-thought exploration, demonstrating promising results in translation tasks Liang
et al|(2023)). Ultimately, this debate paradigm was further extended to the multi-modal LLM (MLLM)
domain [Lin et al.|(2024).

2.3 Region-Level Image Attention

In vision-related research, identifying key regions for fine-grained analysis is a widely adopted
strategy. This approach plays a crucial role in object detection Ren et al.| (2016); Redmon| (2016));
Zang et al.|(2024), where it helps localize target objects. Beyond detection, large foundation models



have applied similar techniques to open-vocabulary object recognition Kamath et al.|(2021); [Zhou
et al.| (2022); |Liu et al.| (2024c)), enabling more flexible and adaptive visual understanding. Region-
level attention has also been leveraged in related tasks such as image captioning|Yang et al.| (2017);
‘Wu et al.| (2024) and graph generation [Tang et al| (2019); |Yang et al.[ (2022), demonstrating its
versatility in structured representation learning. More recently, this concept has been incorporated
into instruction tuning to enhance model performance across a broader range of applications Zhang
et al.|(2023b). Building on these advancements, we extend region-aware mechanisms to multi-modal
LLM debates, promoting hierarchical evaluation and improving the reliability of generated responses.

3 Methodology

In this section, we present our proposed multi-agent debate framework for MLLMs. First, we provide
an overview of the framework in Section[3.1] Next, we detail the technical implementation of the
Hybrid Attention Module in Section

3.1 The Overall Debating Pipeline

We adopt an asymmetric multi-agent debate e
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The attention module allows Debater2 to focus on key regions for further inspection and discussion,
significantly reducing potential hallucinations. Importantly, the assigned attention from the hybrid
attention module is dynamically adjusted based on Debater!’s description, meaning that the region of
interest may shift accordingly.

Finally, the debating history, along with the raw input image, is fed into the judge, a third MLLM
instance. Crucially, instead of summarizing the debaters’ statements, the judge is tasked with selecting
the most accurate description of the image. Additionally, we provide the judge with the unprocessed
image to ensure a fair evaluation and prevent any potential bias introduced by the attention module.

3.2 Hybrid Attention Module

To enable fine-grained visual-linguistic understanding, we propose a hybrid attention mechanism that
combines CLIP’s [Radford et al.|(2021)) intrinsic self-attention with cross-modal attention and refines
the resulting maps via advanced post-processing and adaptive fusion strategies. The overall design of
this module is shown in Figure [2| More specifically, given an input image I € R¥*W >3 we first
employ CLIP’s Vision Transformer (ViT-B/32) to partition it into N = HW /P2 non-overlapping



patches (with P = 32). These patches are encoded into patch embeddings:
X ={z,...,xy} € RVX4,

where d = 768 is the embedding dimension. [V is a perfect square so that the patches can be arranged
into a square grid of dimensions v/N x v/N. Simultaneously, a text description D, is processed by
CLIP’s text encoder to yield token embeddings, which is formally defined as:

T={ty,... ta} € RM*d
with M denoting the sequence length.

To capture spatial relationships within the image, we extract self-attention features from the final
three layers (of the total L = 12 layers) of the Vision Transformer. For each layer [ among the last
three, the attention matrix A, with a shape [1, num_heads, N + 1, N + 1]) is averaged over heads,
and the attention corresponding to the [CLS] token is removed. The resulting map is then reshaped

into a v/N x v/N grid:
Ag) = reshape (mean (A:(ff;)l;), VN, \/N) .

These layer-specific maps are averaged to produce a preliminary self-attention map Ag, which
is subsequently refined via Gaussian smoothing, normalization, and contrast enhancement using
Contrast Limited Adaptive Histogram Equalization (CLAHE) Reza (2004), followed by percentile-
based boosting.

While self-attention captures most of the critical objects within the image, it may not always align
precisely with the descriptions provided by Debaterl. In some cases, certain objects may be over-
looked, even when they are of interest to the MLLM instances and central to the discussion. To
address this issue, we incorporate information from Debater 1’s descriptions to refine the attention
mechanism. Specifically, by leveraging these spatial features, we compute cross-modal attention
between visual and textual representations to improve alignment and ensure a more accurate fo-
cus. Therefore, in parallel, cross-modal attention is computed by aligning the visual and textual
representations. Specifically, we extract the text [CLS] token from the text encoder, denoted as
tas = T:,0], and project it into the common embedding space via CLIP’s text projection layer
defined as T},,.,; = Proj ECtOr oy (tas)- For the image, we discard the [CLS] token from the patch
embeddings to form X, = {z2,..., 2N}, and project these using the vision projection layer
Viroj = Projectoryision(Xpatcn)- The cross-attention map is then computed as:

Ac = softmax (Vyro; Tg;l;oj/T) )

where 7 = 0.07, is a temperature parameter that scales the similarity scores. The map A is reshaped
intoa v N x /N grid and refined with Gaussian smoothing, CLAHE-based contrast enhancement,
and percentile boosting.

Finally, the two refined attention maps are fused to yield the final attention map:
A=(1-a)As+ aAc, st. a>=0,

where the fusion weight « is set to a fixed value, e.g., & = 0.3 for self-attention and 1 — oo = 0.7 for
cross-attention. Finally, the integrated attention map is then thresholded at the 70th percentile using
the operator ®(-) and normalized via a sigmoid activation: M = o(®(A)), ensuring that the final
mask M robustly highlights the image regions most relevant to the text description.

4 Experiments and Results

In this section, we present the experiments and related results. Specifically, in Section 4.1} we
outline the experimental setup, including baseline MLLMs, generation and decoding methods,
evaluation metrics, and implementation details. This setup ensures a comprehensive assessment of
the proposed framework and provides the necessary information for reproducing the experimental
results. In Section we report the evaluation results with and without the proposed location-
aware debate across multiple metrics, including CHAIR, GPT-4-assisted evaluation, and POPE. We
provide an in-depth analysis of hallucination reduction and text quality improvements to demonstrate
the effectiveness of the proposed framework. Lastly, in Section ??, we conduct ablation studies to
highlight the importance of location-aware debate and reveal the influence of critical hyperparameters.



4.1 Experiments Setup

Baseline Models. Following the previous paradigm Huang et al.|(2024), we select four representative
MLLMs: InstructBLIP|L1 et al.|(2022), MiniGPT-4 [Zhu et al.| (2023)), LLaVA-1.5|L1 et al.|(2024)), and
Shikra |Chen et al.|(2023)). These models are chosen to represent different strategies for vision-text
alignment, including linear projection layers and Q-Former |L1 et al.|(2023)). To ensure consistency
throughout the debate process, all debaters use the same 7B-parameter MLLM. Additionally, for the
hybrid attention module, we employ CLIP ViT-B/32|Radford et al.|(2021) across all experiments.

Baselines Methods. We evaluate the proposed debate framework against various baseline methods,
ranging from standard greedy decoding and nucleus sampling |Holtzman et al.|(2019) to beam search
decoding [Sutskever| (2014), DoLA |Chuang et al.| (2023)), and the more recent OPERA |Huang et al.
(2024).

To further assess the robustness of our framework, we deliberately include two techniques specifi-
cally designed to mitigate hallucination: DoLLA and OPERA. Despite their hallucination-reducing
mechanisms, we find that the proposed debate framework still provides additional benefits. DoLA
refines token selection by contrasting differences in logits between earlier and later transformer
layers, leveraging the observation that factual knowledge in LLMs is often localized to specific layers.
Building on this, OPERA introduces a penalty term on model logits during beam search decoding to
address overconfidence, along with a rollback strategy that detects and re-evaluates summary tokens
in previously generated outputs, enabling a more reliable token allocation.

Method InstructBLIP  MiniGPT-4 LLaVA-1.5 Shikra Method InstructBLIP  MiniGPT-4 LLaVA-1.5  Shikra
Cs Cr Cs Cr Cs Cp Cs Cp Cs Cr Cs Cr Cs Cr Cs Cp
Greedy 58.8 23.7 318 9.9 450 147 558 154 Greedy 30.4 14.8 244 82 206 64 222 171
Greedy + Debate 539 204 275 88 402 129 516 142 Greedy + Debate 283 133 217 75 182 6.0 196 6.6
Nucleus 54.6 23.8 318 112 468 140 553 152 Nucleus 30.4 15.8 238 86 264 86 225 78
Nucleus + Debate 50.1 215 283 105 436 134 510 141 Nucleus + Debate 282 142 211 78 232 78 196 68
Beam Search 55.8 160 312 95 472 134 524 142 Beam Search 21.5 72 234 78 190 60 212 6.6
Beam Search + Debate  51.0  13.5 27.7 89 432 128 490 135 Beam Search + Debate  19.5 7.0 221 76 158 56 188 5.8
DoLa 48.8 15.7 322 100 473 145 545 148 DoLa 22.5 72 242 82 202 63 206 6.5
DoLa + Debate 45.6 14.5 290 99 422 139 502 127 DoLa + Debate 20.9 7.0 21.7 80 186 58 184 6.0
OPERA 47.8 14.1 270 9.8 46.6 128 398 125 OPERA 16.8 7.1 226 84 145 56 142 63
OPERA + Debate 425 12.7 174 96 414 11.8 351 104 OPERA + Debate 15.2 6.5 202 73 126 52 127 58

Table 1: CHAIR hallucination evaluation results ~ Table 2: CHAIR hallucination evaluation results
on sentence (C's |) and image level (C7 |) with  on sentence (Cs |) and image level (C; ) with
and without the proposed debate framework. The  and without the proposed debate framework. The
max new tokens is set to 512. max new tokens is set to 64.

4.2 Experimental Results
4.2.1 CHAIR Evaluation

The Caption Hallucination Assessment with Image Relevance (CHAIR) |[Rohrbach et al.|(2018)) is
an evaluation metric designed specifically to assess object hallucination and object-existence-level
hallucination in image captioning tasks. Given descriptions of images, CHAIR quantifies the degree
of object hallucination with high accuracy. The metric measures the ratio of objects mentioned in the
description that are not present in the ground-truth label set. More specifically, CHAIR evaluates
hallucination in both textual and visual contexts, distinguishing between sentence-level hallucination,
i.e., CHAIRg (Cs) and image-level hallucination CHAIR;(C7). Formally, these two metrics are
defined as follows:

|{hallucinated objects}|
|{all mentioned objects}|’

CHAIRg =

|{captions with hallucinated objects}|

CHAIR
! |{all captions}|

We use the MSCOCO dataset |Lin et al.| (2014) for our experiments and CHAIR evaluation. Specifi-
cally, we randomly select 1,000 images from the validation set of COC0O2014 to compute the average
CHAIR value. The prompt consists of a system message that contains a user question and context
information. Concretely, the user question follows a standard prompt:

(User Question) = “Please describe this image in detail”,
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Figure 3: The reduced hallucination ratio from GPT-4-assisted evaluation on the VG-100K dataset.
The numbers above the downward arrows of each bar represent relative decrease ratios. We report
four aspects of hallucination.

following previous research [Huang et al.| (2024)); [Chuang et al.| (2023)); [Sutskever (2014). The system

message is designed to ensure that the MLLMs recognize their role as debaters and are tasked with
providing object locations. Formally, it is defined as:

“You are participating in a debate about an image.”
“Answer (User Question) ”

“Describe the location of detected objects.”

“Here is the previous context: (Context) ”,

where (Context) represents the statement from the other debater and remains empty if the debate is at
the initialization stage.

For the judge’s prompt, we only task it with selecting the better statement between the two debaters.
Formally, given the final statements from the two debaters, denoted as (Contextl) and (Context2),
respectively, we apply the following prompt:

“Debater 1’s Statement: (Contextl) ”

“Debater 2’s Statement: (Context2) ”

“As a Judge, choose the best statement from two debaters.”

To ensure a comprehensive evaluation, we set the max new fokens to 64 and 512 for the generation
tasks of MLLMs. The results are presented in Table[I]and Table[2] We observe a notable reduction in
sentence-level hallucinations, ranging from 6.56 % to 35.56 % . For image-level hallucinations, the
reduction remains favorable, varying from 2.00% to 16.80%.

We also report results with a 64 max token. In this setting, the reduction rate for CHAIR g ranges
from 5.56 % to 16.84 %, while for image-level hallucinations, the reduction rate for CHAIR varies
from 2.44% to 13.10%. The average reduction ratio is lower compared to the 512 max token setting.
However, this observation is expected, as longer generations are more prone to severe hallucinations

Huang et al | (2024).

4.2.2 GPT4-assisted Evaluation

Beyond object and object-existence hallucination, additional evaluation aspects for the debate frame-
work would be beneficial. In particular, attributes, locations, and spatial relationships of objects
have not been systematically quantified or assessed. To address this gap, we further evaluate our
framework on HalluBench (2023)), one of the most widely used benchmarks for halluci-
nation assessment. For ground-truth references, we use descriptions from the Visual Genome (VG)
dataset [Krishna et al.| (2017)). To assess hallucinations in generated descriptions, we rely on GPT-4
for detailed analysis. Specifically, the collected descriptions are fed directly into GPT-4, which is
prompted to analyze hallucinations on a sentence-by-sentence basis. For MLLM prompting, we
maintain the exact setup used in the CHAIR evaluation, setting the maximum token length to 512

More specifically, we report four aspects of hallucination: the number of hallucinated sentences
per image (HSPI), the number of hallucinated words per image (HWPI), the ratio of hallucinated
sentences (HSR), and the ratio of hallucinated words (HWR). The three decoding methods, Greedy,
DoLA, and OPERA, are presented in detail in Figure@



Method InstructBLIP  MiniGPT-4 LLaVA-1.5 Shikra
Greedy 80.2 58.5 82.2 81.1

Greedy + Debate 83.1 60.2 83.6 83.8
Nucleus 80.2 57.8 82.5 81.2
Nucleus + Debate 83.4 55 83.9 83.6
Beam Search 84.4 70.3 84.9 825
Beam Search + Debate 853 71.8 86.5 84.2
DoLa 83.4 72.8 83.2 82.1
DoLa + Debate 85.1 74.9 84.4 83.9
OPERA 84.8 73.3 85.4 82.7
OPERA + Debate 854 75.1 85.8 84.2

Table 3: POPE (71) hallucination evaluation results on four MLLM models. We report the average
F1-score computed on random, popular, and adversarial splits of POPE.

We observe that the debate framework consistently helps MLLMs generate more reliable content
across various perspectives and evaluation metrics. Specifically, the average HSPI decreased from
2.27 to 2.06, representing a relative reduction of 9.35% on average difference decoding methods.
Similarly, averaged HWPI was significantly reduced from 47.09 to 38.89, corresponding to an average
improvement of 17.42%. In terms of sentence-level hallucination, HSR dropped from 0.50 to 0.46,
yielding an average reduction of 9.55%, while averaged HWR decreased from 0.54 to 0.50, resulting
in an average decrease of 8.97%. These findings highlight the effectiveness of the proposed debate
framework in mitigating hallucination across different models and decoding methods. Concrete
numerical results and additional findings on Beam Search and Nucleus Sampling are provided in the
Supplementary Materials.

4.2.3 POPE Evaluation.

More recently, the POPE evaluation has been introduced to assess MLLMs in terms of object-level
hallucination. It has gained widespread adoption in recent research [Huang et al.| (2024)); |Lin et al.
(2024). To evaluate our framework on this benchmark, we maintain the same prompt design used in
the CHAIR evaluation but modify the user question as follows:

(User Question) = “Please describe this image in detail”,

which is a standardized query specifically designed to determine whether the model can accurately
identify the presence of a given object in an image.

The POPE evaluation consists of three distinct settings: Random, Popular, and Adversarial. Under
the Random setting, objects are randomly sampled from the entire dataset to assess the model’s
ability to recognize general objects. In the Popular setting, evaluation is conducted on the most
frequently described objects in the dataset, focusing on the model’s capability to verify common
object occurrences. Finally, the Adversarial setting evaluates the model’s ability to distinguish objects
that are visually or semantically relevant to those present in the image, measuring its robustness
against misleading cues.

Consistent with previous evaluate settings, we report the results over four MLLMs with their averaged
F1 scores with and without debate framework. We notice more obvious improvement especially over
naive decoding method such as Greedy and Nucleus Search.

5 Conclusion

In this work, we introduce a novel and effective multi-modal debate framework to pursue more
responsible generation and reduced hallucination. The location-aware debate differs significantly from
traditional single-modal debate frameworks by incorporating location awareness in visual content.
This is achieved through both textual descriptions and a hybrid attention module to encourage fine-
grained attention in visual contexts. Extensive experiments demonstrate that the proposed framework
effectively reduces object-level hallucination and object-existence hallucination while simultaneously
enhancing overall text quality under various metrics. More importantly, the framework generalizes
effectively across different MLLMs and decoding methods. We hope this work inspires further
research on debate frameworks for MLLM:s.
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