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Abstract

Large Language Models (LLMs) pruning
seeks to remove unimportant weights for in-
ference speedup with minimal accuracy im-
pact. However, existing methods often suf-
fer from accuracy degradation without full-
model sparsity-aware fine-tuning. This paper
presents Wanda++, a novel pruning framework
that outperforms the state-of-the-art methods
by utilizing decoder-block-level regional gra-
dients. Specifically, Wanda++ improves the
pruning score with regional gradients for the
first time and proposes an efficient regional opti-
mization method to minimize pruning-induced
output discrepancies between the dense and
sparse decoder output. Notably, Wanda++ im-
proves perplexity by up to 32% over Wanda
in the language modeling task and generalizes
effectively to downstream tasks. Moreover, de-
spite updating weights with regional optimiza-
tion, Wanda++ remains orthogonal to sparsity-
aware fine-tuning, further reducing perplexity
with LoRA in great extend. Our approach is
lightweight, pruning a 7B LLaMA model in
under 10 minutes on a single H100 GPU.

1 Introduction

The growing size of Large Language Models
(LLMs) improves performance (Touvron et al.,
2023; Intelligence, 2024a,b) at the cost of mem-
ory consumption and inference latency. For ex-
ample, loading the weights of LLaMA-2 70B re-
quires 140 GB of GPU memory in FP16 format.
Hosting a such model even with a batch size of
1 and 512 input tokens needs at least four A100-
40GB GPUs, with the time to first token (TTFT)
exceeding 100 milliseconds (Agarwal, 2023). To
address these challenges, various model compres-
sion approaches, including weight decomposition
(Hsu et al., 2022; Yang et al., 2024; Ghiasvand
et al., 2024), quantization (Lin et al., 2024; Zhou
et al., 2025), and pruning (Sun et al., 2023; Fran-
tar and Alistarh, 2023; Zhang et al., 2024), have
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Figure 1: Wanda++ mitigates 2:4 pruning-induced
degradation more effectively, with relative perplexity
improvement over Wanda shown on Wikitext using
LLaMA-1 models across four different sizes.

been explored. Similar to LLM quantization, many
recent LLM pruning methods have shifted from in-
training approaches (Han et al., 2015b; Frankle and
Carbin, 2018) to post-training methods, as seen in
SparseGPT (Frantar and Alistarh, 2023) and Wanda
(Sun et al., 2023). However, unlike post-training
quantization like AWQ (Lin et al., 2024), which
compresses model weights almost losslessly by 4×
(from 16-bit to 4-bit), these pruning methods have
yet to achieve comparable levels of performance.

To mitigate the performance degradation,
GBLM and Pruner-Zero (Das et al., 2023; Dong
et al., 2024) propose improved pruning criteria
that enhance the layer-wise Wanda score by in-
corporating gradient information obtained through
full-model backpropagation (BP). These studies
highlight the importance of gradient information,
demonstrating that it provides valuable insights
even though Wanda assumes that the gradients of a
fully trained network are small and contribute little
when higher-order terms are considered. Mean-
while, other approaches focus on recovering model
performance through full-model sparsity-aware tun-
ing (Sun et al., 2023) or distillation (Liang et al.,
2023). However, all these methods, which heavily
depend on full-model loss, suffer from impractical
memory requirements and excessive pruning time
due to the high computational cost of full-model
backpropagation. This raises the question:

Is there a way to effectively involve gradient
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information while still in a lightweight manner?
In this paper, we propose Wanda++ pruning

framework to leverage gradients at the “decoder-
block" level, termed regional gradients, which
shows significant improvement compared to Wanda
(Sun et al., 2023) without sacrificing the pruning
efficiency. Compared with traditional full model
BP, the regional gradient can be obtained by only
loading and computing gradients per single de-
coder block, which largely reduce the GPU hours
required. Compare with previous gradient-free
method like Wanda, the regional gradient can im-
prove the pruning performance by accessing the
gradient information. Wanda++ prune each de-
coder block by iteratively prune the model based
on a Regional Gradient Score (RGS) and slightly
update the weights with our proposed Regional
Optimizer (RO).

To effectively obtain the regional gradient in
the RGS score, we compute the regional gradi-
ent through a backward process on a regional loss,
which is defined as the ℓ2 norm of each decoder’s
output hidden states. To involve the regional gra-
dient into the pruning score, we follow the design
of GBLM score (Das et al., 2023). Note that the
regional gradient is only computed once during the
iterative pruning process of each decoder block and
reused for all RO iterations to further reduce the
computation. As a result, the regional gradient may
become less accurate after weights being updated
during the RO process. The design of GBLM score
provide an effective way to reflect changes by fetch
the input per in-block layer and blend it into the
RGS along with regional gradients.

For the RO in Wanda++, we construct a sim-
ple loss function between the outputs of the dense
and pruned decoder blocks to update the model
weights within each block. The concept of regional
optimization traces back to previous local optimiza-
tion approaches in convolutional neural networks
(CNNs), which aimed to optimize models by focus-
ing on individual convolutional layers (Wang et al.,
2021). Differently, RO in Wanda++ extends this
idea for mitigating pruning-induced loss on a small
portion of calibration data at each LLM decoder-
block, instead of optimizing the cross-entropy loss
for classification tasks.

Our proposed framework achieves up to a 32%
reduction in WikiText perplexity at 2:4 sparsity,
compared to the Wanda method under the same
experimental setup, as shown in Figure. 1. Our
contributions can be summarized as follows:

• We propose Wanda++, a lightweight yet effec-
tive framework that prunes LLMs using regional
gradients, achieving performance improvements
without requiring access to full model gradients.

• Wanda++ effectively lowers the pruning-induced
degradation in a non-incremental way and gener-
alize well in zero-shot downstream tasks.

• The RO method in Wanda++ is orthogonal to
previous full-model sparsity-aware fine-tuning
methods and has been shown to achieve a similar
perplexity improvement as Wanda after applying
LoRA fine-tuning.

2 Related Work

Network Pruning: The concept of pruning neural
networks has been explored for decades, begin-
ning with foundational works such as (LeCun et al.,
1989; Hassibi et al., 1993). In addition to widely
studied unstructured pruning approaches, struc-
tured pruning methods, which remove entire sub-
nets of a network or rows/columns within weight
matrices, are more easily supported on hardware
for inference speedup (Liu et al., 2017; Shen et al.,
2022). Research in this area has focused on analyz-
ing input/output activation statistics to identify the
most suitable neurons for pruning (Bai et al., 2021;
Molchanov et al., 2022). However, even at 50%
sparsity, structured pruning often results in non-
trivial performance degradation (Ashkboos et al.,
2024). Beyond these methods, semi-structured
pruning (Pool et al., 2021; Fang et al., 2022, 2023),
such as 2:4 sparsity, shows greater resilience at
50% sparsity and can effectively reduce runtime la-
tency with throughput improvement on NVIDIA’s
recent hardware. Therefore, this work primarily fo-
cuses on unstructured and semi-structured patterns,
although the proposed Wanda++, RO in particular,
is sparsity pattern agnostic.
LLM Pruning: As LLMs continue to grow in size,
scaling traditional pruning methods to accommo-
date them presents significant challenges. Tradi-
tional pruning methods, which typically require
full model retraining, demand substantial compu-
tational resources, making them impractical in the
era of LLMs. A notable trend in LLM pruning
is the adoption of post-training pruning methods
(Frantar and Alistarh, 2023; Sun et al., 2023; Das
et al., 2023; Zhang et al., 2025), which develop spe-
cific pruning scores to determine the importance of
different weight elements. Additionally, SliceGPT
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(Ashkboos et al., 2024) focuses on structured prun-
ing by slicing rows or columns of weight matrices
based on input eigenvectors and eigenvalues.
Pruning with Gradient Information: The use of
gradient information during the training process
has been extensively studied in two ways. The first
set of methods directly incorporates gradient infor-
mation to refine their pruning scores at a finer gran-
ularity. Recent developments, such as GBLM and
Pruner-Zero (Das et al., 2023; Dong et al., 2024)
use gradients obtained through the full model back-
ward with respect to cross entropy loss to achieve
better performance, though they are time and mem-
ory infeasible for large-scale model.

The second set of methods focuses more on in-
corporating gradient information during sparsity-
aware distillation or fine-tuning. For example,
(Liang et al., 2023) explores a task-agnostic dis-
tillation approach combined with iterative pruning
to achieve strong performance on natural language
understanding tasks. Additionally, full-model or
LoRA fine-tuning has been considered as an aux-
iliary step in various prior pruning works that em-
phasize single-shot performance to further reduce
the pruning degradation, such as Wanda (Sun et al.,
2023) and SliceGPT (Ashkboos et al., 2024).

3 Prior Solutions

Existing solvers for post-training LLM pruning
often start with magnitude pruning (Han et al.,
2015b), which removes individual weights based
on their magnitudes. This approach has been
widely adopted as a baseline method in both vi-
sion (Han et al., 2015a) and language processing
(Gale et al., 2019). Magnitude pruning is built
on the assumption that neurons with larger weight
elements contribute higher gradients when input
features have similar magnitudes. However, this
assumption does not always hold true for LLMs,
where input features can differ significantly in scale,
as observed in (Dettmers et al., 2022).

To address this challenge, Sun et al. propose
the Wanda method (Sun et al., 2023), which in-
troduces a pruning criterion that multiplies the
weight magnitude by the input activation on an
element-wise basis. Specifically, given a linear
layer with a weight matrix W ∈ Rdout×din and
input X ∈ R(B×L)×din assuming the batch size is
B, sequence length is L, the Wanda pruning score
for the weight element connect input j and output

i is defined as:

Sij = |Wij | · ∥Xj∥2, (1)

where ∥Xj∥2 represent the L2 norm of the j-th
input channel Xj . The Wanda score is further im-
proved by (Das et al., 2023), which shows the first
order gradient is still crucial even though Wanda
score consider the higher-order terms and gives the
GBLM score:

Sij = (αGij + ∥Xj∥2) · |Wij |, (2)

where G is full model gradient with respect to
the cross-entropy loss between the prediction and
labels. Next, we introduce how to involve the re-
gional gradient into the pruning score and perform
a effective and lightweight regional optimization.

4 The Wanda++ Framework

In this section, we use the Wanda method to high-
light the drawbacks of the linearity assumption
in previous layer-wise post-training pruning ap-
proaches. We then introduce our Wanda++ frame-
work, which efficiently reduces pruning degrada-
tion with a two-stage process for each decoder.
This involves layer-wise pruning within blocks
based on a new pruning criterion called the Re-
gional Gradient Score (RGS) and Regional Opti-
mization (RO), as shown in Figure 2. Wanda++ is
efficient as it operates at each decoder block where
its RO requires only 5 iterations.

4.1 Regional Gradient Score
As the first stage of Wanda++, we obtain the Re-
gional Gradient Score (RGS) for in-block layer-
wise pruning. We start with constructing an RGS
loss function for obtaining the gradient of each
weight matrix. Given a model with L decoder
blocks, we represent the set of input hidden states
for the l-th decoder block specifically as X l =
{X l

1, · · · ,X l
N} and define the decoder block func-

tion as f l(X l
n) with input X l

n ∈ X l. The RGS
loss for l-th block is defined as Ll

RGS(X
l
n) =

∥f l(X l
n)∥2. By performing a single BP through a

certain decoder block regarding the regional loss
Ll, we can efficiently obtain the stochastic esti-
mated gradient magnitude for each weight matrix
by taking the absolute value for the estimated gra-
dient ∇WijLl

RGS(X
l
n).

By performing the element-wise multiplication
between the weight and estimated gradient mag-
nitude, we have the initial regional gradient-based
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Figure 2: Illustration of Wanda++, which leverages regional gradients in two ways: first, we estimate the block-level
gradient G, used in Regional-Gradient Scoring (RGS) for layer-wise pruning in each block. Next, we calculate the
pruning-induced loss Lro for lightweight Regional Optimization (RO). RO can be iterated multiple times to infer
better pruning masks for each decoder block.

score for each weight element Wij :

Sij = (

√∑N
n=1∇Ll

RGS(X
l
n)

2

N
)ij · |Wij |, (3)

where N represents the total number of input sam-
ples used for pruning. For simplicity, we record the
score in Eq. (3) as Sij = Gij · |Wij |.

To limit the overhead of computing the pruning
criterion, we estimate the regional gradient (Eq.
4) only once per decoder block. This can be sub-
optimal because pruning one layer in the l-th block
affects the regional gradients of other layers. To ad-
dress this, we blend in the layer-wise Wanda score,
which tracks how pruning in one layer impacts the
input of the next. Our RGS criterion is summarized
as follows:

Sij = (αGij + ∥Xj∥2) · |Wij |, (4)

where the scaling factor α is a constant to balance
the magnitude of the gradient and input activation
terms. For simplicity, we adopt the same scaling
value of 100 as in (Das et al., 2023) although it can
be model specific (see the ablation study on α in
Appendix B.2).

4.2 Regional Optimization

The second stage for our Wanda++ framework is
the Regional Optimization (RO). During this pro-
cess, we slightly update the model weights within
each decoder block to minimize the difference

between the output from dense and pruned de-
coding blocks. Specifically, for the l-th decoder
block, the output of the dense output can be repre-
sented as f l(X l

n) and the pruned output at k-th
round is defined as f̂ l,k(X l

n), respectively. To
further reduce the time of the RO process, we
randomly select M inputs from the inputs set X l

of each decoder block to construct an RO inputs
set X̂ l = {X̂ l

1, · · · , X̂ l
M}, without replacement.

Then, the RO loss with input X̂ l
m ∈ X̂ l for the

l-th decoder in the k-th round can be defined as an
MSE loss between the dense and pruned outputs,
which gives:

Ll,k
ro (X̂

l
m) = (f l(X̂ l

m)− f̂ l
k(X̂

l
m))2. (5)

For each RO sample X̂ l
m, we perform a forward

pass within the decoder block to compute the RO
loss, followed by backpropagation and a weight
update. This process takes place after the pruning
stage in each iteration of our Wanda++ framework.
Typically, we randomly select 32 RO inputs from
the 128 inputs used in the pruning stage at the start
of each RO iteration. RMSprop optimizer (Ruder,
2016) is used with the learning rate of 3e-7.

4.3 Algorithms

We summarize the Wanda++ algorithm flow in Alg.
1, as also shown in Figure 2. For each decoder
block, we perform layer-wise RGS pruning (step
5) followed by a round of the RO process (steps
6-8) for K iterations. An additional RGS pruning
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(step 11) is required to restore sparsity after RO. To
detail how RGS is computed in steps 5 and 11, we
provide PyTorch pseudo-code in Appendix A.

5 Experiment

We evaluate the proposed pruning method based
on four criteria. The first is perplexity in next-
token prediction, which is the main objective of
LLM pre-training. A lower perplexity is often a
strong indicator of superior performance in lan-
guage understanding tasks. The second criterion is
the performance on zero-shot/few-shot NLP tasks,
such as text classification, question answering, and
text generation. This is to ensure that the gradi-
ents involved in regional optimization do not lead
to overfitting for downstream tasks. The third cri-
terion is pruning time and memory consumption.
Finally, we examine the actual latency reduction
under both FP16 and FP8 quantization settings for
various batch sizes and input/output lengths.

5.1 Experimental Setup
Regarding the model, we consider OpenLLaMA
(3B/7B/70B), LLaMA-1 (7B/13B/30B/65B) and
LLaMA-3.1 (8B). We follow the same settings as
in (Sun et al., 2023) to examine pruning perfor-
mance on unstructured sparsity, 2:4 sparsity, and
4:8 sparsity. By default, we randomly select 128
samples from the C4 training data for regional op-
timization and evaluate perplexity on both the C4
validation and Wikitext test datasets. For zero-shot
evaluation, we use the Harness evaluation toolkit
(Gao et al., 2024). All experiments are conducted
on the NVIDIA H100 GPU, where a single GPU
is sufficient for models with 13B or fewer parame-
ters and 4 GPUs are used for 65B and 70B models.
Latency and model size are measured via TensorRT-
LLM. Regarding the proposed pruning methods,
by default, Wanda++ enables both RGS and RO;
Wanda++ RGS excludes RO, using only RGS for
pruning, while Wanda++ RO applies the Wanda
score (Sun et al., 2023) for pruning and weight
updates within each decoder block.

5.2 Perplexity
First, we consider OpenLLaMA-3B, a relatively
small model, for a more contrastive perplexity com-
parison between Wanda and our proposed method.
As shown in Figure 3, we begin by pruning the
first 2 decoder blocks, then gradually apply N:M
sparsity to two more decoder blocks until all 26
blocks are pruned. The LM head and embeddings
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Figure 3: Perplexity on the C4 validation (left) and
Wikitext test sets (right) as the sparsity ratio increases
by gradually pruning two additional decoding blocks at
a time, up to all 26 blocks. Wanda++ leverages regional
gradients and significantly outperforms Wanda: our 2:4
results are comparable to Wanda’s 4:8 counterparts.

are excluded from pruning. Perplexity results are
reported on both the C4 validation dataset and the
WikiText test dataset. When all decoder blocks are
pruned with the N:M pattern, resulting in a 50%
sparsity ratio, our method outperforms Wanda by
a noticeable margin: on the C4 validation dataset,
with 2:4 sparsity, perplexity is reduced from 36.5
to 23.9, a relative reduction of 34.4%; with 4:8
sparsity, perplexity is reduced from 23.1 to 16.4,
a relative reduction of 29.0%. Similarly, on the
WikiText test dataset, the relative perplexity reduc-
tions are 32.1% and 25.5% for 2:4 and 4:8 sparsity,
respectively. The margin generally increases with
the sparsity ratio, although in the lower sparsity
ratio region, particularly on WikiText (right plot),
the benefit is obscure. Note that, in higher sparsity
ratios, our method can achieve comparable or supe-
rior perplexity results under 2:4 sparsity compared
to Wanda for 4:8 sparsity, a much more relaxed
sparsity setting.

A more comprehensive comparison of perplexity
is summarized in Table 1, where LLaMA-1 models
with four different sizes are included along with
OpenLLaMA 7B and 70B. We consider SparseGPT
and Wanda as two baseline pruning methods to
compare with our method, Wanda++ w. RO. To un-
derstand the contribution of each enhancement in
our method, we also report results from Wanda++
RO, where the Regional Optimizer (RO) is enabled
for each decoder block, and Wanda++, where re-
gional gradients are used along with the L2 norm of
the input data for every layer in each decoder block.
Regarding the sparsity patterns, we consider 50%
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Algorithm 1 Pruning framework of Wanda++

Require: {X l}l∈[1,L] ▷ Inputs set for each decoder block
Require: Scaling factor α

1: for ℓ = 1 . . . L do
2: Calculating the RGS loss Ll

RGS with X l, backward, and record gradient G
3: for k = 1 . . .K do
4: Selecting RO samples X̂ l from X l

5: Calculating and pruning with RGS by Eq. (4) ▷ Stage 1: Pruning
6: for X̂ l

m ∈ X̂ l do ▷ Stage 2: Regional Optimization
7: Calculating the RO loss Ll,k

ro (X̂ l
m), backward, and update weights

8: end for
9: end for

10: Calculating the RGS loss Ll
RGS with X l, backward, and record gradient G

11: Calculating and pruning with RGS by Eq. (4)
12: end for
13: return Pruned model

unstructured pruning, 2:4, and 4:8 semi-structured
pruning methods, although 2:4 sparsity is the most
commonly supported in hardware for runtime ac-
celeration.

Between Wanda++ RO and Wanda++ RGS,
leveraging regional gradients within the decoder
block-level optimization proves more effective in
mitigating pruning-induced degradation. Further-
more, applying RO to a better pruning criterion, as
shown in Wanda++ w. RO compared to Wanda++
RO, further improves performance. We compare
our method (the strongest among those three in
italics) to Wanda and report the relative perplexity
reductions in Table 1. The most noticeable benefit
is observed with 2:4 sparsity: on LLaMA-1, the
relative reductions are 19%, 20%, 7%, and 11% for
model sizes 7B, 13B, 30B, and 65B, respectively.
Our method is most effective in reducing pruning
degradation for smaller models, where higher prun-
ing degradations usually occur, which is also the
case for OpenLLaMA models. In all experiments,
our method consistently shows superior perplexity
compared to the baseline methods. However, for
4:8 sparsity and unstructured pruning, where per-
plexity values are generally lower than those with
2:4 sparsity, the benefits of our method become
less salient. Nonetheless, the improvement remains
more substantial compared to what Wanda achieves
on top of SparseGPT.

Sparsity-aware model fine-tuning may further
improve the performance. We further show our
Wanda++ method is orthogonal to LoRA fine-
tuning (Hu et al., 2021) method in Section. 5.6.
Also Another method distills smaller LLMs from a

15B pre-trained model but requires 16 DGX A100
nodes (Muralidharan et al., 2024) (128 80GB GPUs
in total), whereas our method only needs one for
the similar model size.

5.3 Zero-Shot Accuracy

We measure the zero-shot accuracy via Harness
(Gao et al., 2024). Along with Wanda, we examine
two of our proposed methods both leveraging
regional gradients: Wanda++ RGS only uses
regional gradients to compute the pruning criterion,
while Wanda++ applies them to both weight
pruning (RGS) and in-block weight recompute
(RO). We aim to understand if the observed
benefit of improved perplexity from Wanda++ can
pan out in downstream NLP tasks, and that the
integration of RO does not negatively impact the
generality of the pruned model. Results from the
LLaMA 7B model on 9 tasks are listed in Table
2. All pruned models are conformed to 2:4 sparsity.

Although no consistent pattern shows, Wanda++
in general yields the best performance among the
three pruning methods including Wanda which
leads in BoolQ task. Compared to the margin
from perplexity evaluation, the improvement
from Wanda++ against Wanda++ RGS is less
salient. This is reasonable as RO is conducted on
C4 dataset without optimizing any downstream
tasks. Note that for Mrpc and RTE tasks, Wanda++
outperforms Wanda by 46% and 24%, respectively,
close to the accuracy of the dense baseline.
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Method Sparsity LLaMA-1 OpenLLaMA LLaMA-3.1

7B 13B 30B 65B 3B 7B 70B 8B

Baseline - 5.68 5.09 4.77 3.56 7.27 6.49 4.30 6.39

SparseGPT*

0.5

7.22 6.21 5.31 4.57 10.41 8.57 - -
Wanda* 7.26 6.15 5.24 4.57 12.37 9.15 5.25 9.99
GBLM 7.15 6.11 5.18 - 10.75 8.49 - 9.90

Wanda++ RO 7.07 6.08 5.12 4.43 9.86 8.27 5.14 9.34
Wanda++ RGS 7.18 6.12 5.15 4.48 10.78 8.50 5.19 9.92

Wanda++ 7.02 (-3%) 6.00 (-2%) 5.10 (-3%) 4.43 (-3%) 9.25 (-25%) 7.82 (-15%) 5.11 (-3%) 9.22 (-7%)

SparseGPT*

2:4

11.00 9.11 7.16 6.28 15.91 11.62 - -
Wanda* 11.53 9.58 6.90 6.25 28.04 15.35 6.47 24.83
GBLM 11.33 9.16 6.87 - 24.75 13.19 - 24.34

Wanda++ RO 10.78 7.89 6.51 5.86 19.41 11.69 6.37 19.43
Wanda++ RGS 11.46 9.44 6.93 6.23 24.77 13.27 6.40 24.54

Wanda++ 9.43 (-19%) 7.75 (-20%) 6.39 (-7%) 5.59 (-11%) 19.03 (-32%) 11.30 (-26%) 6.35 (-2%) 18.32 (-26%)

SparseGPT*

4:8

8.61 7.40 6.17 5.38 12.20 9.79 - -
Wanda* 8.57 7.40 5.97 5.30 16.83 11.38 5.73 14.63
GBLM 8.48 7.26 5.89 - 14.86 10.38 - 14.29

Wanda++ RO 8.34 7.18 5.73 5.11 13.10 9.52 5.67 12.88
Wanda++ RGS 8.58 7.33 5.90 5.17 14.92 10.42 5.70 14.32

Wanda++ 7.88 (-8%) 6.75 (-9%) 5.65 (-5%) 5.07 (-4%) 12.54 (-25%) 9.42 (-17%) 5.65 (-1%) 12.55 (-14%)

Table 1: Wikitext perplexity comparison on LLaMA-1, OpenLLaMA, and LLaMA-3.1 model families. * indicates
results from either the previous paper (Sun et al., 2023). - means results are not applicable from running their source
code directly or out-of-memory issue. Bold highlights relative perplexity improvements over Wanda of 5% or more.

Method Wic Mrpc Hellaswag Arc_easy Arc_challenge Winogrande BoolQ RTE MMLU

Baseline 49.84 69.12 56.96 75.29 41.80 70.00 75.02 66.43 35.10

Wanda 48.75 46.81 41.66 59.34 27.47 61.96 69.60 49.82 25.85

GBLM 49.32 65.31 41.80 61.43 30.45 63.24 71.20 57.43 26.34

Wanda++ RGS 49.37 (1%) 64.46 (38%) 41.43 (-1%) 62.42 (5%) 31.06 (13%) 62.83 (1%) 67.95 (-2%) 58.48 (17%) 26.40 (-2%)

Wanda++ 50.00 (2%) 68.38 (46%) 45.31 (8%) 63.72 (7%) 29.27 (6%) 65.04 (4%) 67.80 (-2%) 62.09 (24%) 27.52 (6%)

Table 2: Zero-shot accuracy (%) from LLaMA-1 7B across various tasks under 2:4 sparsity.

5.4 Sensitivity Analysis

While Wanda’s complexity is O(d2hidden), the
pruning time and memory consumption both
depend linearly on the amount of calibration data.
This is also the case for our proposed methods.
We alternate the number of samples and context
length of each sample in C4 training data and
compare the corresponding perplexities in each
calibration dataset setting in Figure 4 as the box
plot. OpenLLaMA-3B is used in this sensitivity
analysis on the size of calibration data. We run
each experiment 30 times. Each box extends
from the lower to the upper quartile with a 95%
confidence interval (the notch) of the median.
The outliers are also shown in the black circles.
For Wanda, we stick to the default setting with
128 calibration samples and 2048 context length
each. For both Wanda++ RO and Wanda++, we
consider nine calibration settings (number of
samples/context length): from a tiny calibration set
of 8/8 up to the 128/2048 case. In both 128/2048†

and 128/1024† settings, each epoch uses 32
random samples to avoid out-of-memory issues.

Compared to Wanda, which shows stable
perplexity across various numbers of calibration
samples (Sun et al., 2023), our methods favor
larger calibration sizes, particularly for Wanda++,
which only starts to outperform Wanda++ RO
beyond the 64/64 setting. However, even at the
16/16 setting, both of our proposed methods yield
lower perplexities than Wanda. Both Wanda
and Wanda++ RO are more stable overall than
Wanda++. The comparison is less contrastive with
larger calibration datasets.

5.5 Pruning Time and Memory Consumption

We further discuss the memory and time efficiency
of our proposed method. As mentioned earlier,
integrating gradient information into the pruning
score poses a significant computational challenge.
Wanda avoids any gradient approximation and
backpropagation, and therefore achieves simple

4327



128/2048† 128/1024† 128/512 128/256 128/128 64/64 32/32 16/16 8/8
Calibration data size

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0
Pe

rp
le

xi
ty

17.7 17.9
19.4 19.4 19.5 19.9 20.9

22.9

16.7 16.9 17.8 18.7 19.0 19.9
21.3

24.4

27.8
29.7

28.1
Wanda
Wanda++ RO
Wanda++

Figure 4: Box plot of perplexity on the Wikitext test set, based on 30 runs from 2:4 sparse OpenLLaMA-3B model.

and efficient LLM pruning compared with other
post-training pruning methods like SparseGPT.
Here, we evaluate the time and memory costs dur-
ing the pruning process to demonstrate that our
proposed method maintains similar computational
advantages, especially when compared with previ-
ous LLMs pruning methods that utilize full model
gradient information. For GBLM, we combined
the time for both gradient computation and pruning,
based on the provided code.

Without model weight updates, Wanda has the
shortest pruning time. Wanda++ RGS (without
RO) comes in second. When RO is added, as
shown in the Wanda++ (M) row, the pruning time
approaches that of SparseGPT. We also report met-
rics for Wanda++ (L) as a reference, though in
practice, Wanda++ (M) is sufficient to achieve the
performance shown in Table. 1. It takes 10 minutes
or less to prune the 7B and 13B models, and about
30 minutes for the 65B model. For 7B and 13B,
one 80 GB GPU is enough, while the 65B model
requires 4 H100 GPUs.

Unlike conventional BP involved methods that
require loading the full model into memory,
Wanda++ significantly reduces memory overhead
by performing regional optimization at the decoder
block level—loading only one decoder block at a
time. This design decouples memory cost from the
overall model size, which scales with both hidden
dimension and the total number of decoder blocks.
Instead, Wanda++’s memory usage depends solely
on the hidden size. For instance, in the Megatron-
Turing NLG 530B model (Smith et al., 2022)—the
largest model to our knowledge—each decoder
block contains approximately 5.03 billion param-
eters with a hidden size of 20,480. The estimated
theoretical memory required for optimizing a sin-
gle block is approximately 40.24 GB (assuming
we using Adam (Kingma, 2014) optimizer). While
actual usage may be higher due to activations and
implementation overhead, it remains within twice

this estimate and can be accommodated by a sin-
gle 80GB GPU with proper optimization. This
modest memory cost is particularly favorable given
the up to 32% performance improvement achieved
by Wanda++, especially when contrasted with the
16–20 80GB GPUs typically needed just for infer-
ence of such large-scale models.

Method Time (Sec.) Memory (GB)

7B 13B 65B 7B 13B 65B

SparseGPT 322 594 - 23 38 -
GBLM 5801 10733 49663 26 50 269
Wanda 55 95 628 22 36 320

Wanda++ RGS 147 190 1461 29 49 320
Wanda++ (M) 290 574 1821 25 49 280
Wanda++ (L) 2381 5569 22409 31 49 335

Table 3: Memory and pruning time comparison: For
Wanda++, we consider two calibration settings that dif-
fer in the nunmber of tokens per input sample. Wanda++
(M) uses an input length of 128, while Wanda++ (L)
uses 2048 like others.

5.6 Sparsity-aware Fine-tuning

We conducted experiments using LoRA (Hu et al.,
2021) to fine-tune both Wanda and Wanda++
pruned LLaMA-1 7B models. We followed the
same experimental settings as the original Wanda
paper, where LoRA is applied to the q and v mod-
ules in all transformer blocks. Both models were
trained for 30k steps on the C4 dataset. As shown in
Table 4, our method achieves similar improvements
with LoRA compared to the Wanda method. This
demonstrates our proposed method is orthogonal
to the fine-tuning approach, further strengthening
the fairness of our comparison with weight-update-
free methods like Wanda in Table 1. Note that
even we fine-tune the model with LoRA, the pro-
cess is still time consuming, which takes around 12
hours to improve the performance. Also, the LoRA
fine-tuning method requires much more memory
compared with regional optimization, which makes
it infeasible for the weights update of large scale
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Methods Dense Pruned Model After LoRA-tuned

Wanda 5.68 11.59 8.23(-29%)
Wanda++ 5.68 9.43 6.88(-27%)

Table 4: Perplexity comparison on Wikitext with LoRA.
All experiments are conducted on LLaMA-7B model
with 2:4 sparsity.

pruned models.

5.7 Experiments on Higher Sparsity
In this section, we evaluate the performance of
our proposed method under higher unstructured
sparsity levels. Specifically, we compare Wanda++
against baselines such as GBLM and the original
Wanda, with results summarized in Table 5. As
shown, Wanda++ consistently outperforms prior
methods across varying sparsity levels. However,
we note that unstructured pruning—even at high
sparsity—may not yield inference speedups com-
parable to structured formats such as 2:4 sparsity
on modern GPUs. As a result, the 2:4 and 4:8 spar-
sity settings are of greater practical relevance for
deployment.

Methods 0.6 0.7 0.8
GBLM 10.37 54.60 2550.10
Wanda 9.71 76.17 1942.53
Wanda++ 9.50 55.52 1586.69

Table 5: Performance comparison of different methods
under varying sparsity ratios.

6 Extending Wanda++ to Structured
Pruning

While our main focus is on unstructured and semi-
structured pruning, we further evaluate the appli-
cability of our method to structured pruning to in-
spire the future work. Specifically, we conduct
experiments on a naive row-wise structured prun-
ing (SP) for each weight matrices in the model,
where the pruning score for each row is the aver-
age score of all paramters in the row. Prior work
has shown that naively adapt Wanda methods to
structured pruning (Wanda-SP) tend to degrade
sharply under structured settings when applied
naively (An et al., 2024). Nonetheless, we adapt
our approach (Wanda++-SP) to this setting and
compare it against a baseline Wanda-SP method
across varying pruning ratios.

As shown in Table 6, Wanda++-SP consis-
tently achieves lower perplexity than Wanda-SP,
particularly at higher pruning ratios. These re-
sults highlight the robustness and generalizabil-
ity of our method beyond the unstructured and

Method 0.1 0.3 0.5

Wanda-SP 9.10 118.72 8804.84
Wanda++-SP 7.84 63.45 5428.97

Table 6: Perplexity of row-wise structured pruning (SP)
on LLMs at different sparsity levels. Lower is better.

semi-structured regimes originally explored in this
work. We further emphasize that the regional op-
timization component of Wanda++ is orthogonal
to most existing structured pruning methods, such
as SliceGPT (Ashkboos et al., 2024) and LLM-
Pruner (Ma et al., 2023). In practice, a lightweight
regional optimization using only a few hundred cal-
ibration samples is sufficient to yield substantial
improvements in model performance.

7 Conclusion

In this paper, we proposed Wanda++, a lightweight
post-training LLM pruning method that leverages
regional gradients to effectively mitigate pruning-
induced performance degradation. Wanda++ de-
fines a region as each decoder block. The method
includes a pruner based on regional gradient scores
(RGS) and a Regional Optimizer (RO) for in-
block, sparsity-aware calibration. By utilizing re-
gional gradients, it outperforms Wanda on vari-
ous LLaMA models. Wanda++ is efficient, espe-
cially compared to full gradient fine-tuning meth-
ods, pruning 7B LLMs in 10 minutes, as it operates
only within each decoder block.

We also note that the regional optimization com-
ponent of Wanda++ is orthogonal to most existing
LLM pruning approaches, as well as to works ex-
ploring dense-to-MoE transformations (Wu et al.,
2024). Incorporating regional optimization from
Wanda++ provides a strong initialization for the
foundation model, which can be further combined
with downstream optimization techniques such as
LoRA fine-tuning (Hu et al., 2021), Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
or Group Relative Policy Optimization (GRPO)
(Rafailov et al., 2023). An exciting direction for
future work is to explore the potential of using
Wanda++ as a general tool to enhance model per-
formance following architectural adaptations.

Limitations

While Wanda++ demonstrates significant improve-
ments in mitigating pruning-induced degradation
and achieves state-of-the-art results under unstruc-
tured, 2:4, and 4:8 sparsity patterns, we have not
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fully tested Wanda++ for structured pruning, as it
is not the main focus of this paper. Although the
RO method has been tested with structured prun-
ing approaches like SliceGPT, the full Wanda++
framework is not yet fully compatible with struc-
tured pruning. Future work could focus on adapting
the Wanda++ method to better support structured
pruning scenarios.
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Algorithm 2 PyTorch pseudo-code for computing RGS criterion for a single decoder block
# block: DecoderBlock
# inps: Input hidden states of decoder block
# sq_grad: empty gradient dictionary
# alpha: hyperparameter
def wanda_plus_plus_pruner(block: torch.nn.module, inps: List, sq_grad: Dict, alpha: Constant):

for inp in inps:
loss = torch.norm(block.forward(inp))
loss.backward()
with torch.no_grad(): # Compute aggregate gradient for each weight

for name, param in block.named_parameters():
sq_grad[name] += param.grad ** 2

for key, value in sq_grad.items():
sq_grad[key] = torch.sqrt(value / inps_len)

for n, par in layer.named_parameters(): # Compute the pruning scores
layer_inps = torch.stack(get_signal(inps, n)) # Obtaining and stacking layer-wise inputs
score = par.weight.abs() * (alpha * sq_grad[n] + layer_inps.norm(p=2, dim=0))

A Pytorch pseudo-code for Calculating
RGS Criterion

For the pruning process, we first perform the for-
ward and construct the loss function with the L2
norm of the decoder output hidden state. Then, a
backward pass is conducted to obtain the gradient
for each parameter weight matrices and the scaled
stochastic gradients regarding each calibration data
sample are aggregated to reduce the noise included
with each single data sample. The aggregated gra-
dient magnitude is normalized with the number of
calibration data samples and used to calculate the
designed pruning score with the weight magnitude
given, as given in Eq. (4). Also, we summarize
the Pytorch pseudo-code for calculating our RGS
criterion here.

B Additional Experimental Results

B.1 Model Size and Latency Reduction

We measure the Time to First Token (TTFT), Time
Per Output Token (TPOT) and total model weight
memory consumption to examine 2:4 sparsity’s ac-
tual impact on a dummy 7B LLaMA-akin model in
Table 7 using TensorRT-LLM-0.9.0 with the Sparse
Tensor Core support (NVIDIA Developer Blog,
2023). Only the multi-layer perceptron (MLP)
modules are pruned, with both tensor parallelism
and pipeline parallelism set to 1. Under FP16 for-
mat, we observe a TTFT reduction of 33% or more,
while the TPOT reduction is around 10%. Total
weight memory is reduced by 28% for FP16 (from
12.8 GB to 9.2 GB), which are also reflected in the
size of compiled TensorRT engines. See Appendix
B.3 for FP8 format (Kuzmin et al., 2022) results.

Batch
Size

Token Length Latency Weight
MemoryInput Output TTFT TPOT

1

128

64

33 10

28

1024 47 11

2048 47 10

4096 46 10

4

128

64

45 11

1024 47 11

2048 45 9

4096 43 7

Table 7: Relative reduction (%) for latency and weight
memory from 2:4 sparsity under FP16 format.

B.2 Ablation Study on RGS Scaling Factor

We examine the hyperparameter α in the RGS crite-
rion (Eq. 4), which balances the regional gradient
score and the layer-wise Wanda score. An abla-
tion study is conducted, testing α values from 1
to 1,000,000, to assess their effect on perplexity.
Results from LLaMA-3 8B models are presented
in Table 8. The lowest perplexity for LLaMA-3 8B
with 2:4 sparsity occurs at α = 50, indicating that
the optimal choice of α is model-specific.

RGS Criterion Perplexity

(1 ·Gij + ∥Xj∥2) · |Wij | 24.55
(10 ·Gij + ∥Xj∥2) · |Wij | 24.62
(50 ·Gij + ∥Xj∥2) · |Wij | 23.99
(100 ·Gij + ∥Xj∥2) · |Wij | 24.68
(500 ·Gij + ∥Xj∥2) · |Wij | 25.66
(1000 ·Gij + ∥Xj∥2) · |Wij | 26.25
(5000 ·Gij + ∥Xj∥2) · |Wij | 29.07
(10000 ·Gij + ∥Xj∥2) · |Wij | 29.90
(1000000 ·Gij + ∥Xj∥2) · |Wij | 31.14

Table 8: Perplexity with different α values in RGS on
LLaMA-3 8B model for 2:4 sparsity.
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B.3 Latency / Model Size Reduction for FP8
When the weight, activation and KV-cache are
quantized to the FP8 format, the TTFT latency
reduction from 2:4 sparsity is smaller, particularly
when the batch size and input length increase com-
pared to that under FP16. One explanation is that
the model leans towards being compute-bound,
where reducing weight memory load becomes less
meaningful. TPOT reduction under FP8 is 13%
or greater, except when the batch size is 4 and the
output length is 4096. Total weight memory is
reduced by 22% with 2:4 sparsity under the FP8
format (from 6.8 GB to 5.3 GB).

Batch
Size

Token Length Latency Weight
MemoryInput Output TTFT TPOT

1

128

64

15 15

22

1024 4 13

2048 7 15

4096 8 14

4

128

64

7 16

1024 7 14

2048 0 13

4096 -13 1

Table 9: Relative reduction (%) for latency and weight
memory from 2:4 sparsity under FP8 format.
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