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Abstract

Command-lines are a common attack surface in cybersecurity. Yet they often
contain sensitive user information, creating a dual challenge: systems must detect
suspicious commands accurately while protecting user privacy. Existing approaches
typically tackle one challenge without the other. To address this gap, we present
PASTRAL, a practical framework for privacy-preserving detection of suspicious
command-lines. Our main insight is that suspicious activities are typically rare and
highly diverse in large-scale multi-user environments, which makes them naturally
well suited to anomaly detection. PASTRAL represents command-lines using
language-model and Abstract Syntax Tree (AST)-based embeddings, applies differ-
ential privacy (DP) noise injection at the embedding layer, and performs detection
with a conditional variational autoencoder. By design, only differentially private
embeddings are shared, which provide sufficient signal for accurate detection while
abstracting away unnecessary details. Empirical evaluation demonstrates that PAS-
TRAL achieves strong anomaly detection performance and sustains a favorable
privacy-utility trade-off. Our real-world case study outlines practical considerations
for deploying secure LLM detection systems in production.

1 Introduction

Rapid threat detection is critical in cybersecurity, as many attacks exploit misconfigurations and
vulnerabilities [1, 2] and leave traces in command-line activity [3]. However, command-lines often
contain sensitive information such as API tokens, file paths, and credentials. This creates a dual
challenge: systems must detect suspicious activity reliably while also protecting user privacy.

This challenge is especially pronounced in multi-user settings, where a service provider (SP) must
protect many customers simultaneously. Customers are concerned about what SPs can access [4, 5]
and often do not want their raw data to be used for model training [6] or even post-detection
investigation. At the same time, suspicious activity is both rare and highly diverse, making it difficult
to rely on rule-based signatures or supervised classifiers. Moreover, what appears suspicious often
depends on context: commands that are routine for one organization may look unusual for another.
These realities naturally motivate an anomaly detection (AD) approach, where the system learns
a broad distribution of command-line behaviors and flags deviations as potential threats, all while
protecting user privacy.

Existing methods typically achieve either strong detection or privacy preservation, but not both.
Language model-based approaches have shown promise for command-line detection [7, 8, 9, 10, 11],
delivering strong semantic modeling but paying little attention to privacy. Conversely, privacy-
preserving systems aim to safeguard sensitive data [12, 13], but they do not leverage pretrained
language models and often sacrifice detection utility. To our knowledge, no prior work jointly achieves
language model-based anomalous command-line detection with integrated privacy guarantees.



Figure 1: Overview of PASTRAL. Command-line representation is extracted on the user side, where
language-model embeddings and AST features are combined and perturbed with DP noise injection.
The resulting private embeddings are then sent to the SP for anomaly detection via a CVAE.

In this paper, we present PASTRAL, a privacy-preserving framework for anomalous command-line
detection. Figure 1 shows the workflow: on the user side, command-lines are represented with
language-model and Abstract Syntax Tree (AST)-based embeddings, and differential privacy (DP)
noise injection [14] is applied at the embedding layer. The private embeddings are then sent to the SPs,
where a conditional variational autoencoder (CVAE)-based anomaly detector [15] performs detection.
By design, PASTRAL ensures raw commands never leave the user’s machine; only differentially
private embeddings reach threat detection SPs, thereby mitigating sensitive attribute inference without
sacrificing detection quality. Our contributions are:

• A representation of command-lines that combines language-model with AST structure.
• An embedding pipeline with DP noise injection to limit sensitive content inference.
• A CVAE-based anomaly detector tailored for command-line behavior.
• An empirical study showing strong detection performance and a favorable privacy-utility trade-off.

In Section 2, we describe the user-side representation extraction consisting of language model and
AST embeddings, with an DP privacy guarantee. Section 3 presents the SP-side conditional anomaly
detection with a CVAE. Section 4 reports detection results and ablations that quantify the benefits
of AST conditioning and the quantify the privacy-utility trade-off. Finally, Section 5 discusses
lessons learned and directions for secure LLM deployment. This work focuses on static analysis of
command-line payloads; robustness to dynamically generated or staged runtime payloads is beyond
our current scope and left for future work.

2 Privacy-preserving Command-line Embedding (User Machine)

In this section, we describe the user-side command-line representations extracted using language
model and AST. While AST provide us with syntactic structure of the program flow, language model
embeddings capture semantic representations that bridge natural language and programming language
constructs. In addition, we inject DP noise to the extracted representations for privacy guarantees.

2.1 Embedding Models

Our approach to command-line embedding extraction aims to derive meaningful representations by
focusing on two key aspects: language model-based and syntactic structure-based embeddings. We
leverage pre-trained model specialized in diverse programming languages, to capture the semantic
meaning of each command-line. Some preprocessing steps for the command-lines like de-obfuscation,
IP and URL tokenization are described in Appendix A.

Complementing this, we extract syntactic structure-based embeddings from absolute AST paths
to capture their inherent structural relationships. The combination of these embeddings creates a
semantic and structural representation of command-lines, serving as input for our AD model.

Language Model-based. Our methodology employs multilingual pre-trained language models
like [8, 11, 10, 9], which process code as natural language using transformer-based architectures, to
generate d-dimensional vectors that encapsulate sequence representations. A maximum of L lines
is selected from each command-line session, adhering to tokenization limits. Followed by that, the
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Figure 2: Session-level representations are obtained by pairing per-line CodeBERT embeddings
(content) with AST-path embeddings (context), followed by average and max pooling across lines
respectively, before injecting differential privacy noise to provide a formal privacy guarantee.

language models process each line through their transformer layers, producing hidden states from
the last layer. To standardize these representations, we apply mean pooling, which converts variable-
length token sequences into fixed-size vectors. As CodeBERT embeddings already encode diverse
command semantics; averaging stabilizes these contextual differences and captures overall intent
rather than token-level noise. Empirically, we find that CodeBERT [8] attains the best performance
for our task, but the framework itself is model-agnostic and readily supports alternative language
model choices. Detailed experimental comparisons are provided in Section 4.

AST-based ASTs represent code structure and are widely used in compilers and analysis tools [16].
We use the Tree-sitter library [17], which applies context-free grammars to convert plain text into
structured node hierarchies, to parse command-lines into ASTs. For each command-line, we extract
absolute paths from the root to each token (avoiding quadratic scaling from relative paths). This
design maintains linear scaling and robustness to line reordering or token renaming, with results
and discussion provided in Appendix F. Each AST node is assigned an embedding based on its
node type from a finite set of bash grammar tokens, using simple numeric tokenization rather than a
pre-trained model. Token embeddings are computed by summing node embeddings along these paths
(Appendix B, Fig. 6), then aggregated across tokens into an m-dimensional vector for downstream
tasks. We use max pooling to highlight the most anomalous nodes along similar syntactic paths. This
mitigates the information loss with CodeBERT’s average pooling over longer sequences and better
preserves distinctive structural deviations.

2.2 Differential Privacy (DP) Guarantees

To limit sensitive content inference, we ensure SP’s access to only privacy-protected data while
maintaining effective AD. DP provides formal privacy guarantees for data analysis [14]. A randomized
mechanism M : D → R satisfies (ϵ, δ)-DP if for any adjacent inputs D,D′ differing in one entry
and any output subset S ⊆ R:

Pr[M(D) = S] ≤ eϵ · Pr[M(D′) = S] + δ (1)

For vector-based embeddings, we employ the Gaussian mechanism by adding calibrated noise to
outputs:

M(D) = f(D) + σ∆2f · N (0, Id) (2)
where ∆2f = max

D∼D′,D,D′∈D
|f(D) − f(D′)|2 represents sensitivity. M(D) is (ϵ, δ)-DP if σ ≥

ϵ−1
√

2 ln(1.25/δ) for ϵ ∈ (0, 1).

Our framework applies DP to both embedding mechanisms (fCodeBERT(·) and fAST(·)). By nor-
malizing embedding vectors to unit length, we ensure sensitivity ∆2f ≤ 2, allowing proper noise
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calibration. Since querying our detector makes two queries on the same command-line, we leverage
composition theory to assess cumulative privacy loss:
Proposition 2.1 (Advanced composition [18]). The composition of n (ϵ, δ)-DP mechanisms is
(ϵ′, nδ + δ′)-DP for any δ′ > 0, where ϵ′ = nϵ(eϵ − 1) + ϵ

√
2n ln(1/δ′).

Furthermore, post-processing preserves DP guarantees:
Proposition 2.2 (Post-processing [14]). If M(D) is (ϵ, δ)-DP, then for any function g, g ◦M(D)
also satisfies (ϵ, δ)-DP.

Using these properties, we establish our main privacy guarantee:
Theorem 2.1 (Privacy guarantee for PASTRAL). Let M = (M1,M2) be the composition of
two (ϵ, δ)-DP mechanisms. The CVAE-based AD model of PASTRAL preserves (2ϵ(eϵ − 1) +

ϵ
√
4 ln(1/δ′), 2δ + δ′)-DP for its input.

Proof. From advanced composition with n = 2, the CVAE input is (2ϵ(eϵ− 1)+ ϵ
√
4 ln(1/δ′), 2δ+

δ′)-DP. Since the CVAE applies g = gdec ◦ genc with randomization independent of raw data,
post-processing ensures the output maintains the same DP guarantees.

Notably, training the CVAE on the private data does not require re-querying them from the raw input,
thereby not causing a degradation and preserving the initial privacy levels.

In sum, our feature extraction pipeline combines language-model embeddings with AST-derived
structural features and DP noise injection to balance detection utility with privacy guarantees; an
overview of this user-side embedding extraction process is shown in Figure 2.

3 Conditional Anomaly Detection (Service Provider Machine)

In this section, we propose a novel AD model for command-lines addressing the challenge of
rare and highly diverse suspicious activities in production. We approach this as an unsupervised
learning problem, using an encoder-decoder architecture to learn representations of normal behavior
from historical command-line data of the customers. Our model, shown in Figure 3, leverages a
Conditional Variational Autoencoder (CVAE) [15] that takes differentially private CodeBERT and
AST embeddings as input and produces reconstructions whose errors serve as anomaly indicators
triggering AD based on a predefined threshold.

Figure 3: The anomaly detector is a Conditional Variational AutoEncoder (CVAE) that uses Code-
BERT embeddings as content and AST embeddings as context. The AST embedding is incorporated
into both the input and the latent space of the CVAE. The output is the reconstruction of content.

3.1 Model Architecture

Our model processes differentially private CodeBERT embeddings x ∈ Rd and AST embeddings
a ∈ Rm to reconstruct x̂ ∈ Rd. The encoder qϕ(z | xc) generates a latent variable z conditioned on
the concatenated input xc = [x; a] ∈ Rd+m, where x is the content and a is the context embedding.

This concatenated input passes through a downsampling ResNet block [19] with three layers
(f1, f2, f3), incorporating residual connections and attention mechanisms. The architecture’s bot-
tleneck condenses the representation using residual connections and attention, applying group
normalization and SiLU activation to produce the mean µ and standard deviation σ of the latent
variable z ∈ Rl. The latent z is sampled using the reparameterization trick [20, 21].
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The decoder pθ(x | zc) takes the concatenation zc = [z; a] ∈ Rl+m and reconstructs the original
representation through an upsampling ResNet block. The anomaly score is calculated as s =
∥x− x̂∥22/d, with higher scores indicating potential anomalies.

3.2 Training Objectives

We train the model by maximizing the conditional log-likelihood, using the Stochastic Gradient
Variational Bayes (SGVB) [22] estimator for approximation. The lower bound of the model loss is:

log pθ(x | a) ≥ −KL [qϕ(z | xc) ∥ pθ(z | a)] + Eqϕ(z | xc) [log pθ(x | zc)]

The conditional prior pθ(z | a) models the latent distribution conditioned on the AST context, with
the empirical lower bound:

LCVAE(a, x; θ, ϕ) = −KL [qϕ(z | xc) ∥ pθ(z | a)] + s

To train the CVAE, we minimize the negative empirical lower bound, balancing the KL divergence,
ensuring the approximate posterior remains close to the prior, with the reconstruction term to enable
accurate input reconstruction from the latent representation and context.

4 Experiments

We first introduce the evaluation datasets and present evaluation results.
Datasets. We curate datasets from two in-house and two public sources. The in-house datasets are
used for both training and testing, while the public datasets are testing-only, allowing evaluation of
out-of-distribution (OOD) performance.

• In-house commands: Collected from a decade-long honeypot simulating SSH, web, and IoT.
Malicious samples were validated via VirusTotal or MITRE ATT&CK; benign samples were
drawn from attack-free sessions.

• In-house scripts: Longer command-line sequences reflecting real-world usage. Malicious scripts
are collected from VirusTotal and the honeypot; benign scripts from clean virtual machine and
GitHub repositories with ≥1000 stars.

• zenodo (public): Malicious shell-commands covering seven attack types [23].
• atomic (public): Malicious powershell-commands simulating penetration threats [24].

Detailed statistics for the datasets is in Appendix C, with implementation details and experiment
setup in Appendix D.

Evaluation. Each experiment was run five times using different random seeds, and we report the
95% confidence interval around the mean.

Language Model Choices. For practical deployment, CodeBERT [8] achieves accuracy comparable
to billion-parameter LLMs [11, 10] on most benchmarks, while being far more efficient. On three of
the four subsets: scripts, cmd-lines, and zenodo, CodeBERT reaches an AUROC of 1.0, essentially
identical to StarCoder and Phi-3 (0.9996–1.0000; Appendix Table 4). On the more challenging
atomic set, CodeBERT performs better, with AUROC 0.9990 compared to 0.9664 for StarCoder
(+3.26%) and 0.9812 for Phi-3 (+1.78%). These accuracy results come at much lower cost: relative to
StarCoder (3B) and Phi-3 (3.8B), CodeBERT uses 24–30× fewer parameters and delivers 3.25–3.89×
higher throughput (3.31 vs. 1.02/0.85 inputs/s; Appendix Table 5).

Overall, scaling to large parameters yields negligible utility gains for this task but increase compute
overheads, making CodeBERT a strong, practical choice for user-side embedding extraction.

Anomaly Detection Performance. Adding program structure (AST) to a CodeBERT embedding
yields clear gains over a language model-only detector (IDS-LLM [25]). On in-house data, AUROC
improves from about 0.96 to 0.99 (+3%), while FPR drops from 2.7% to 0.3%. On OOD sets,
the effect is even stronger: AUROC approaches 1.0 and FPR falls to zero, compared to 4–5%
for the baseline. The ablation in Fig. 5 confirms this: CodeBERT-only and AST-only each have
complementary weaknesses, while their combination consistently achieves the best performance with
narrow confidence intervals.
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Subset Detection Model FPR (↓) Recall (↑) Precision (↑) F1-Score (↑) AUROC (↑)

scripts PASTRAL 0.0049 ± 0.0002 0.9146 ± 0.1100 0.9946 ± 0.0008 0.9511 ± 0.0616 0.9885 ± 0.0132
IDS-LLM 0.0420 ± 0.0101 0.7255 ± 0.0211 0.9380 ± 0.0098 0.8215 ± 0.0065 0.9442 ± 0.0018

cmd-lines PASTRAL 0.0001 ± 0.0004 0.9995 ± 0.0005 0.9999 ± 0.0004 0.9997 ± 0.0003 1.0000 ± 0.0000
IDS-LLM 0.0128 ± 0.0053 0.8462 ± 0.0148 0.9672 ± 0.0013 0.8490 ± 0.0110 0.9824 ± 0.0006

zenodo PASTRAL 0.0000 ± 0.0000 0.9378 ± 0.1674 1.0000 ± 0.0000 0.9635 ± 0.0988 1.0000 ± 0.0000
IDS-LLM 0.0450 ± 0.0054 0.7679 ± 0.0231 0.7334 ± 0.0176 0.7710 ± 0.0074 0.9881 ± 0.0019

atomic PASTRAL 0.0000 ± 0.0000 0.9099 ± 0.1414 1.0000 ± 0.0000 0.9497 ± 0.0827 0.9948 ± 0.0145
IDS-LLM 0.0472 ± 0.0016 0.7661 ± 0.0442 0.9475 ± 0.0065 0.8286 ± 0.0214 0.9589 ± 0.0082

Table 1: PASTRAL model performance compared with related detection models. PASTRAL is robust
across in-house (scripts and cmd lines) and out-of-distribution data (zenodo and atomic).

(ε, δ) σ σ/σbase AUROC ∆%

(0.95, 1.00) 0.703 1.05× 0.99 0.00
(0.95, 0.90) 0.853 1.28× 0.98 −1.01
(0.80, 0.70) 1.346 2.01× 0.97 −2.02
(0.75, 0.60) 1.615 2.42× 0.92 −7.07
(0.75, 0.50) 1.805 2.70× 0.90 −9.09

Figure 4: Privacy-utility trade-off across (ε, δ). AUROC heatmap (left): moving from least private to
most private, noise σ increases and AUROC decreases. Selected operating points (right): at 2.01×
noise, AUROC merely drop 2%; and even at 2.70× noise, AUROC only drops 9%.

In sum, incorporating AST structure enhances AD performance. A detailed threat-coverage analysis
highlights that PASTRAL identifies 99.3% of suspicious samples missed by 65 VirusTotal vendors,
after manually labeled by security researchers. (Appendix F)

Figure 5: AUCROC with 95% CI for ablation of
embeddings (CodeBERT, AST, both).

Privacy-Utility Tradeoff. Our detector sus-
tains strong performance under DP noise injec-
tion, reflecting robustness to increasingly strin-
gent privacy constraints. We add Gaussian DP
at the embedding layer with L2-sensitivity = 1,
σ(ε, δ) =

√
2 ln(1.25/δ)/ε. Figure 4 visual-

izes the privacy-utility trade-off: moving from
the upper-right (least private) to the lower-left
(most private) increases the injected noise σ and
decreases AUROC. The table shows representa-
tive operating points taking baseline at (ε, δ) =
(1.0, 1.0), σbase = 0.668, AUROC= 0.99. In par-
ticular, at about 2× the baseline noise standard
deviation (ε, δ) = (0.8, 0.7), σ = 1.35, AUROC drops only 2% (0.99→0.97). Even at about 2.7×
the baseline noise (ε, δ) = (0.75, 0.5), σ = 1.81, AUROC decreases around 9% (0.99 → 0.90).
These preliminary results are promising for deployments that require stricter privacy budgets.

5 Conclusions and Lessons Learned

PASTRAL provides a practical framework for combining language model-based anomaly detection
with formal privacy guarantees in command-line data, addressing key challenges in secure LLM
deployment. Unlike prior approaches that focus on either accuracy or privacy, PASTRAL achieves
both by performing local embedding extraction and applying DP noise injection before transmission,
ensuring raw text never leaves the user machine. Our results show that scaling to larger language
models does not yield additional benefits for this task, while augmenting a compact CodeBERT
encoder with AST structure markedly improves detection, even under distribution shifts. The privacy-
utility trade-off is also favorable: even with two to three times more DP noise, AUROC decreases by
only 2–9%, indicating that stricter privacy budgets remain feasible. Together, these findings provide
practical lessons learned towards deploying secure LLM systems in production environments.
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A Basic Preprocessing

We preprocess the data before embedding it into vector representation by decoding Base64 content
and tokenizing URLs and IP addresses to counter evasion techniques and improve command-line
quality.

Base64 Decoding: Base64 encoding and code nesting are common evasion techniques. For example,
in the potentially malicious script below, we observed that Base64-obfuscated Python code is nested
within a shell command:

1 nohup python -c "import base64;exec(base64.b64decode(
2 'I2NvZGluZzogdXRmLTgKI3NpbXBsZSBodHRwX2JvdAppbXBvcn'
3 'QgdXJsbGliCmltcG9ydCBiYXNlNjQKaW1wb3J0IG9zCgpkZWYg'
4 'c29zKCk6CiAgICB1cmwgPSAnaHR0cHM6Ly9wYXN0ZWJpbi5jb2'
5 '0vcmF3LzA1cDBmVFlmJwogICAgdHJ5OgogICAgICAgIHBhZ2U9'
6 'YmFzZTY0LmI2NGRlY29kZSh1cmxsaWIudXJsb3Blbih1cmwpLn'
7 'JlYWQoKSkKICAgICAgICBmID0gb3MucG9wZW4oc3RyKHBhZ2U'
8 ...
9 'OgogICAgcHJpbnQoJ1NvcnJ5IGJvc3MgSSBjYW5cJ3QgZ2V0I'

10 'Gluc3RydWN0aW9ucycpCiAgICBwYXNzCg=='
11 ))" >/dev/null 2>&1 &
12 touch /tmp/.tmpk

Without base64 decoding and preprocessing of nested code, malicious content in the command-
line may go undetected. We employ regex to identify and decode Base64-encoded content within
command-lines, enabling analysis of otherwise obfuscated commands.

Nested Code Recognition: In the previous example, we also observe nested code patterns. These
embedded snippets (e.g., Python within Shell) often appear as generic word or string AST nodes,
obscuring intent. To recover structure, we detect such patterns and re-parse them with language-
specific Tree-sitter parsers, yielding richer ASTs and improving detection in multi-language contexts.

URL and IP Tokenization: We detect URLs and IPs with regular expressions and prepend special
tokens (URL_TOKEN, IP_TOKEN) before them during encoding. For AST embeddings, corresponding
URL or IP nodes are attached to leaf nodes like word and string to add contextual information
missing from the native AST.

B AST Embedding Example

In Figure 6, we show the AST for the code setenforce 0 2>/dev/null. The setenforce token
generates the word node, signifying its role as a keyword. The subsequent number node for 0 and
file_redirect node for 2>/dev/null become leaves branching from the word node. Similarly,
file_descriptor for 2 and word for /dev/null are leaves of the file_redirect node. In this
manner, ASTs nest functionally-related chunks of code into subtrees. We begin by parsing each
script, which consists of multiple command-lines, into an AST. For each code token within the script,
we extract the absolute AST paths from the root node to the token, with the token itself serving as the
final leaf of the path. We do not use relative path encodings because their number scales quadratically
with the number of leaves. The AST embeddings for each corresponding token are then obtained
by summing the embeddings of the AST nodes along these absolute paths, as shown in red paths of
Figure 6.

C Dataset Statistics

The detailed training and testing subset composition can be found in Table 2. We train on benign
samples from both in-house datasets, as this combination significantly improves performance. For
testing, we use set-aside in-house data alongside public datasets (as detailed in Table 2). To ensure
balanced evaluation with public malicious datasets, we pair them with equal amounts of randomly
sampled in-house benign command-lines. This approach enables assessment of both in-distribution
performance and OOD generalization capabilities.

For our in-house scripts and command-lines dataset, we also give an overview of the file length,
base64 encoding, and nested code in Table 3. We found that script files can be lengthy, necessitating
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Figure 6: An AST example for the command setenforce 0 2>/dev/null. Red paths are absolute
(root-to-leaf) and green paths are relative paths (leaf-to-leaf).

Subset Composition Count

Training Set Benign scripts 72,986
Benign commands 3,112

Testing Subset: scripts Benign scripts 18,246
Malicious scripts 18,246

Testing Subset: commands Benign commands 3,112
Malicious commands 3,112

Testing Subset: zenodo Benign commands 267
Malicious zenodo 267

Testing Subset: atomic Benign commands 322
Malicious atomic 322

Table 2: Training and test set compositions.

the limitation of maximum file length. Base64 encoding is prevalent in both malicious and benign
files, underscoring the importance of decoding during preprocessing steps.

Dataset Benign
scripts

Malicious
scripts

Benign
cmd lines

Malicious
cmd lines

count 89348 45926 6224 104658
mean 391 72 26 33
std 23528 237 14 15
min 1 1 4 1
max 6293733 11592 145 1401

base64 18072 13672 141 1522
nested 107 12 0 0

Table 3: Summary of file counts and file length statistics. The last two rows show the counts of
base64-encoded and nested code files.

D Implementation and Experiment Setup

We use CodeBERT (d = 768) and AST (m = 100) embeddings with command sequences up to
L = 512 lines. The model consists of a convolutional layer (kernel=3, 100 channels) and MaxPool
(kernel=2, stride=2), followed by encoders/decoders built from three ResnetBlockCondNorm2D
layers [26]. The latent space has l = 32 channels with output matching the CodeBERT dimension.
Pretrained language model baselines were used, as fine-tuning degraded OOD performance due
to dataset size. We use uncertainty quantification technique to compute thresholds for determine
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Subset Embedding Model FPR (↓) Recall (↑) Precision (↑) F1-Score (↑) AUROC (↑)

scripts

CodeBERT 0.0046 ± 0.0026 0.9997 ± 0.0007 0.9954 ± 0.0026 0.9976 ± 0.0010 1.0000 ± 0.0000
StarCoder 0.0043 ± 0.0018 0.9867 ± 0.0063 0.9957 ± 0.0018 0.9912 ± 0.0037 0.9996 ± 0.0007

Phi-3 0.0038 ± 0.0033 0.7785 ± 0.5406 0.7961 ± 0.5526 0.7872 ± 0.5464 0.9991 ± 0.0004
UnixCoder 0.0048 ± 0.0010 0.9628 ± 0.0129 0.9950 ± 0.0010 0.9786 ± 0.0065 0.9968 ± 0.0018

EPVD 0.0050 ± 0.0015 0.9690 ± 0.0026 0.9948 ± 0.0012 0.9805 ± 0.0055 0.9940 ± 0.0013

cmd-lines

CodeBERT 0.0045 ± 0.0026 1.0000 ± 0.0000 0.9956 ± 0.0026 0.9978 ± 0.0013 1.0000 ± 0.0000
StarCoder 0.0052 ± 0.0009 0.9976 ± 0.0006 0.9949 ± 0.0009 0.9962 ± 0.0005 0.9999 ± 0.0000

Phi-3 0.0051 ± 0.0004 0.9981 ± 0.0013 0.9949 ± 0.0004 0.9965 ± 0.0005 1.0000 ± 0.0000
UnixCoder 0.0049 ± 0.0007 0.9927 ± 0.0021 0.9950 ± 0.0007 0.9939 ± 0.0013 0.9996 ± 0.0001

EPVD 0.0083 ± 0.0009 0.9921 ± 0.0009 0.9954 ± 0.0006 0.9950 ± 0.0012 0.9981 ± 0.0004

zenodo

CodeBERT 0.0337 ± 0.0235 1.0000 ± 0.0000 0.9677 ± 0.0223 0.9835 ± 0.0114 1.0000 ± 0.0000
StarCoder 0.0570 ± 0.0192 1.0000 ± 0.0000 0.9462 ± 0.0170 0.9723 ± 0.0090 1.0000 ± 0.0000

Phi-3 0.0364 ± 0.0395 0.7976 ± 0.5536 0.7656 ± 0.5321 0.7811 ± 0.5424 0.9994 ± 0.0007
UnixCoder 0.0494 ± 0.0039 0.9356 ± 0.0519 0.9497 ± 0.0046 0.9423 ± 0.0279 0.9832 ± 0.0094

EPVD 0.0521 ± 0.0044 0.9226 ± 0.0114 0.9390 ± 0.0032 0.9370 ± 0.0130 0.9824 ± 0.0064

atomic

CodeBERT 0.0230 ± 0.0224 0.9975 ± 0.0042 0.9777 ± 0.0214 0.9875 ± 0.0112 0.9990 ± 0.0016
StarCoder 0.0503 ± 0.0018 0.8389 ± 0.1397 0.9425 ± 0.0111 0.8847 ± 0.0871 0.9664 ± 0.0264

Phi-3 0.0498 ± 0.0018 0.9102 ± 0.0654 0.9479 ± 0.0049 0.9281 ± 0.0365 0.9812 ± 0.0113
UnixCoder 0.0497 ± 0.0000 0.7118 ± 0.0996 0.9342 ± 0.0082 0.8062 ± 0.0661 0.9329 ± 0.0242

EPVD 0.0477 ± 0.0014 0.9077 ± 0.0204 0.9321 ± 0.0042 0.9166 ± 0.0204 0.9712 ± 0.0203

Table 4: Performance metrics for our datasets and LLMs; CodeBERT has a robust performance
across all the datasets.

anomaly [27, 28]. Training employed Adam [29] (lr=0.001) for 50 epochs on an Intel Xeon CPU
with 4 Tesla V100-SXM2 GPUs.

E Ablation on Language Models

To evaluate, we benchmarked our model against SotA techniques increasingly used in AD for
cybersecurity [30, 31, 32]. Specifically, we compared it with SotA LLMs such as StarCoder [10],
UnixCoder [9], and Phi-3 [11].

Our analysis aims to: (1) demonstrate that our approach performs comparably to SotA LLMs in
command-line threat detection, and (2) highlight the scalability benefits of our model for real-world
scenarios with high volume of command-lines.

We extract hidden states from the last layer of each LLM and train an XGBoost classifier [33] on a
mix of malicious and benign scripts and cmd-lines from in-house datasets. For a fair comparison, we
use the encoder part of the CVAE and implement XGBoost similarly for all models. To threshold the
anomaly score for FPR comparison, we apply a statistical learning tool [27].

Table 4 shows that PASTRAL consistently outperforms other models across most datasets and metrics,
particularly excelling in AUCROC. In the scripts subset, PASTRAL achieves a perfect AUCROC and
the highest TPR, improving on StarCoder by 1.31%. While Phi-3 achieves the lowest FPR, it lags in
other metrics. In the cmd-lines subset, PASTRAL matches Phi-3 and StarCoder in AUCROC but
surpasses StarCoder with a 13.46% lower FPR. In the zenodo subset, PASTRAL achieves the lowest
FPR, 40.88% better than UnixCoder, and a higher F1-Score than StarCoder. In the atomic subset,
PASTRAL leads in AUCROC and reduces FPR by 54.27% compared to StarCoder.

In Table 5, we present the latency, throughput, and memory consumption metrics for embedding
extraction from LLMs and our proposed model, based on the mean of 100 randomly sampled scripts.
Notice that we have listed all the parameters in PASTRAL, including those for CodeBERT. Our
CVAE component, with only 2 million parameters, performs much faster during inference. We
provided the entire pipeline for a fair comparison.

The comparison demonstrates the efficiency and performance advantages of the PASTRAL. With a
combined CPU latency of 368.71 ms, it is 39.0% faster than StarCoder and 55.3% faster than Phi-3,
though slower than UnixCoder. For CUDA latency, the combined value is 283.96 ms, making it
55.2% faster than StarCoder and 63.9% faster than Phi-3. The effective throughput of the combined
model is 3.31 inputs/s, which is 224.5% higher than StarCoder and 101.2% higher than UnixCoder.
The total parameter count for PASTRAL is 127 million, which is 95.77% fewer than StarCoder. The
combined memory usage is 567.87 MB, which is 94.37% lower than StarCoder. Overall, PASTRAL
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Model Throughput Parameters Memory (MB)
StarCoder 1.02 3B 10090.03
Phi-3 0.85 3.8B 14802.67
UnixCoder 1.64 ∼125M 571.56
EPVD 2.10 ∼125M ∼500
IDS-LLM 2.50 ∼110M ∼420-500
CodeBERT 3.31 ∼125M 543.81

Table 5: Computation overhead of the embedding models. Throughput is measured in inputs/s.

Malware Type Success Miss Total Success % Miss %
adware 3812 1 3813 99.97% 0.03%
downloader 5137 0 5137 100.00% 0.00%
hacktool 2 0 2 100.00% 0.00%
miner 241 1 242 99.59% 0.41%
pua 92 0 92 100.00% 0.00%
trojan 1593 28 1621 98.27% 1.73%
virus 1 0 1 100.00% 0.00%
vt_miss 148 1 149 99.33% 0.67%

Total 11026 31 11057 99.72% 0.28%

Table 6: Threat coverage of our approach for threat types identified by VirusTotal. ‘vt_miss’ row
represents samples missed by VirusTotal yet identified malicious by manual inspection. Our approach
outperforms all VirusTotal vendors by 79.19% in terms of miss ratio.

strikes a balance between latency, throughput, and resource usage, making it a highly efficient choice
for large-scale threat detection.

F Threat Coverage Details and Robustness

In this section, we provide details on the threat coverage and robustness results. Table 6) shows
PASTRAL’s high detection accuracy across malware families. The model detected 3,812/3,813
adware samples and achieved perfect accuracy on 5,137 downloader samples. Notably, PASTRAL
identified 148/149 threats missed by VirusTotal, reducing the miss ratio by 79.19% (from 1.35% to
0.28%). The model’s main challenge was with trojans (28 missed out of 1,621), which often use
obfuscation and dynamic behavior. For example, some trojans dynamically generate command lists
using system files and fetch payloads during execution, making static analysis difficult.

While Table 7 shows the malware family distribution of the 11,057 VirusTotal reports for the malicious
scripts, it offers a clear understanding of the distribution within our in-house dataset.

Robustness Against Obfuscation Techniques Given the widespread use of obfuscation techniques,
it is critical to consider that adversaries may employ such methods to compromise the detection
capabilities of PASTRAL. To evaluate the robustness of PASTRAL against obfuscated command-
lines, we applied YARA rules [34] targeting four common obfuscation techniques: XOR encryption,
ROT13 substitution cipher, Base64 encoding, and RC4 cipher. Our analysis identified 106 samples in
the test set as potentially obfuscated, particularly using XOR encryption and Base64 encoding. These
samples were manually labeled as malicious by our security expert, and their distribution is detailed
in Table 8. PASTRAL effectively identifies all obfuscated samples as anomalies, assigning them high
anomaly scores that are 248.5% above the anomaly threshold, flagging them as highly anomalous.

12



Family Count Ratio (%) Family Count Ratio (%)
bundlore 3814 35.28% mackeeper 222 2.05%
singleton 3592 33.23% shlayer 105 0.97%
bash 1939 17.94% morila 67 0.62%
medusalocker 436 4.03% surfbuyer 52 0.48%
mirai 421 3.89% kinsing 50 0.46%

Table 7: Top 10 families with their counts and ratios (in percentages). Singleton means AVClass
cannot identify a family name for a sample.

Obfuscation Count Score Coverage
Base64 Encoded 64 0.7787 100%
XOR Encryption 42 0.7893 100%

Table 8: Prediction score for obfuscated samples in test set, threshold=0.22; PASTRAL predicted all
samples to be anomaly, providing 100% coverage.
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